Veröffentlicht am Schreiben Sie einen Kommentar

Elektrolytische Wasserspaltung für Bindemittel in Baustoffen

Die Ozeane sind reich an Magnesiumressourcen, die für die Baustoffproduktion genutzt werden könnten. Sorelzement (Magnesitzement) zum Beispiel kann im Innenausbau von Gebäuden anstelle von Estrich eingesetzt werden. Um Magnesium aus Meerwasser zu gewinnen, müssten die Magnesiumoxid (Magnesia) zuerst aus dem Meerwasser mithilfe des den traditionellen Kalzinierungsprozess sehr energieaufwendig abgeschieden werden. Die innovative Methode der elektrolytischen Wasserspaltung kann das umgehen und dadurch viel CO2 einsparen.

Dabei kann Magnesiumhydroxid (Mg[OH]₂) unter alkalischen Bedingungen ausgefällt werden. Die bisherige Forschung hat zwar elektrochemische Methoden zur Hydroxid-Erzeugung untersucht. Doch nur wenige haben die effiziente Alkali-Synthese mit direkter Fällung der Magnesiavorstufe Magnesiumhydroxid mit kohlenstoffarmen Zement kombiniert. Diese Wissenslücke für die Optimierung der Energie- und Materialeffizienz wurde nun geschlossen.

Eine neue Studie, die von einem Forschungsteam der Columbia University geführt wurde, bediente sich der elektrochemischen Wasserspaltung bei Niedrigspannung (1,6–2,0 V). Durch die Wasserstoffproduktion wurden Hydroxidionen (OH⁻) aus Meerwasser erzeugt. Dadurch kam es zu einer direkten Ausfällung von Magnesiumhydroxid, der Vorstufe von Magnesia. Die Ergebnisse wurden kürzlich in der Fachzeitschrift Desalination veröffentlicht. Der neue Ansatz reduziert die Energieintensität um 52–78%. Normalerweise liegt der Energieverbrauch pro Tonne MgO bei 0,56 MWh. Durch die neue Methode können Kohlenstoffemissionen pro Tonne Magnesia in Höhe bis zu 0,41 Tonnen CO₂ eingespart werden.

Um die Produktionseffizienz weiter zu steigern, wurde die Nanostruktur von Magnesiumhydroxid mithilfe von Harnstoff als Vernetzer optimiert. Dadurch wurden die Reaktivität, die Porosität und spezifische Oberfläche verbessert. Bei einer optimalen Dosierung von 0,2 mol/L Harnstoff zeigten die Magnesiapartikel gute Bindungseigenschaften. Die Autoren führten dies auf die Verschlußwirkung von rosettenförmigem Dypingit und stabförmigem Nesquehonit zurück. Durch die Bildung dieser Mineralien wird nach Ansicht der Autoren der CO2-Einbau und dadurch auch die Karbonathärtung erleichtert.

Fortschritte in symmetrischen elektrochemischen Systemen, wie die die hier gezeigten, haben eine bis zu 78%ige Reduktion des Energiebedarfs für Herstellung von Laugen zur Folge. Damit haben solche Methoden das Potential, sich als tragfähige Alternative zu traditionellen Verfahren zu etablieren. Die weitere Optimierung von Elektroden und Elektrolyt stellt einen wegweisenden Ansatz für die kohlenstoffneutrale Produktion von Baustoffen und Laugen dar. Zudem zeigt diese Methode, daß die Herstellung von Baustoffen einen effizienten Einbau von CO2 ermöglicht. Dadurch kann eine dauerhafte Entfernung des Treibhausgases aus der Atmosphäre stattfinden.

Die industrielle Skalierung der elektrochemischen Laugenerzeugung kann Betriebskosten senken, Umweltauswirkungen minimieren und die Eigenschaften kohlenstoffarmer Baustoffe verbessern. Die ökonomischen Aspekte dieses Herstellungsprozesses sind besonders hervorzuheben, da der Bedarf an effizienten  Bindematerialien weiter wächst.

Bei Frontis Energy widmen wir uns der Förderung nachhaltiger und zugleich wirtschaftlicher Energielösungen. Forschung wie die hier vorgestellte liefert wichtige Erkenntnisse und Innovationen zur Unterstützung solcher nachhaltiger Lösungen.

Bild: Pixabay

Schreiben Sie einen Kommentar

Diese Seite verwendet Akismet, um Spam zu reduzieren. Erfahren Sie, wie Ihre Kommentardaten verarbeitet werden..