Veröffentlicht am

Schnelles Aufladen von Lithiumakkus bei hoher Temperatur

Eine der größten Hürden bei der Elektrifizierung der Straßenverkehrs ist die lange Aufladezeit der Lithiumakkus in elektrischen Fahrzeugen. In einem aktuellen Forschungsbericht im Fachmagazin Joule wurde jetzt gezeigt, daß man die Ladezeit auf 10 Minuten verkürzen kann, während man den Akku erwärmt.

Ein Lithiumakku kann nach nur 10 Minuten Ladezeit eine 320 Kilometer lange Fahrt mit Strom versorgen − vorausgesetzt, ihre Temperatur wird beim Aufladen auf mehr als 60 °C erhöht.

Lithiumbatterien, bei denen Lithiumionen zur Stromerzeugung verwendet werden, werden bei Raumtemperatur langsam aufgeladen. Das Aufladen dauertof mehr als drei Stunden, im Gegensatz zu drei Minuten beim Volltanken.

Eine kritische Barriere für die Schnellaufladung ist die Lithiumbeschichtung, die normalerweise bei hohen Laderaten auftritt und die Lebensdauer und Sicherheit der Batterien drastisch beeinträchtigt. Die Forscher der Pennsylvania State University in University Park stellen wir eine asymmetrische Temperaturmodulationsmethode vor, die einen Lithiumakku bei einer erhöhten Temperatur von 60 °C auflädt.

Durch das Hochgeschwindigkeitsladen wird Lithium normalerweise dazu angeregt, eine der Elektroden der Batterie zu beschichten (Lithiumplattierung). Dadurch wird der Energiefluß blockiert und der Akku wird schließlich unbrauchbar. Um eine Ablagerung von Lithium auf der Anodenzu vermeiden, haben die Forscher die Expositionszeit bei 60 °C auf nur ~10 Minuten pro Zyklus begrenzt.

Dabei griffen die Forscher auf industriell verfügbare Materialien zurück und minimierten den Kapazitätsverlust bei 500 Zyklen auf 20%. Eine bei Raumtemperatur geladene Batterie konnte nur 60 Zyklen lang schnell geladen werden, bevor ihre Elektrode plattiert wurde.

Die asymmetrische Temperatur zwischen Laden und Entladen eröffnet einen neuen Weg, um den Ionentransport während des Ladens zu verbessern und gleichzeitig eine lange Lebensdauer zu erreichen.

Über viele Jahrzehnte wurde allgemein angenommen, daß Lithumakkus wegen des beschleunigten Materialabbau nicht bei hohen Temperaturen betrieben werden sollten. Im Gegensatz zu dieser herkömmlichen Weisheit stellten die Forscher nun ein Schnelladeverfahren vor, das eine Zelle bei 60 °C lädt und die Zelle bei einer kühlen Temperatur entlädt. Zudem wird durch Laden bei 60 °C  der Batteriekühlungsbedarf um mehr als das 12-fache verringert.

Bei Batterieanwendungen hängen die Entladungsprofile vom Endverbraucher ab, während das Ladeprotokoll vom Hersteller festgelegt wird und daher speziell ausgelegt und gesteuert werden kann. Das hier vorgestellte Schnelladeverfahren eröffnet einen neuen Weg für den Entwurf elektrochemischer Energiesysteme, die gleichzeitig eine hohe Leistung und eine lange Lebensdauer erzielen können.

Bei Frontis Energy denken wir ebenfalls, daß es sich bei dem neuen einfachen Ladeverfahren um eine vielversprechende Methode handelt. Wir sind gespannt auf die Markteinführung dieser neuen Schnellademethode.

(Foto: iStock)

Veröffentlicht am

Energiespeicherung in Italien

Italiens Stromportfolio

In unserem letzten Beitrag haben wir Sie über das Energiespeicherpotenzial in Großbritannien informiert. Italien wird mit dem Brexit nach Deutschland und Frankreich das drittgrößte EU-Mitglied. Italien, das im Norden ein ausgedehntes Bergland hat, war lange Zeit von der Stromerzeugung aus Wasserkraft abhängig. Bis Mitte der 1960er Jahre entfiel fast die gesamte Stromerzeugung in Italien auf Wasserkraft. Die installierte Kapazität der Wasserkraft stagnierte aber seit Mitte der 1960er Jahre, wobei ein rascher Anstieg der Erzeugung fossiler Brennstoffe den Gesamtanteil der Wasserkraft im Jahr 2014 von ~90% auf 22% senkte. Eine detaillierte Aufschlüsselung der Stromquellen in Italien ist nachstehend aufgeführt .

Italiens Stromproduktion 2015

Es wurden erhebliche Anstrengungen unternommen, um Italien auf kohlenstoffarmen Stromerzeugung umzustellen. Italien hatte 2016 die fünfthöchste installierte Solarkapazität der Welt und die zweithöchste Pro-Kopf-Solarkapazität nach Deutschland. Neben dem beeindruckenden Fortschritt bei der Photovoltaik belegte Italien mit 0,9 GW weltweit den 6. Platz in der Geothermie.

Das Solarwachstum in Italien wurde durch Einspeisevergütungen vorangetrieben, die im Jahr 2005 verabschiedet wurden. Dies bot den Eigentümern von PV-Wohnhäusern eine finanzielle Entschädigung für den Verkauf von Energie an das Netz. Das Einspeisevergütungensprogramm wurde jedoch am 6. Juli 2014 eingestellt, nachdem das Subventionslimit von 6,7 Mrd. EUR erreicht war.

Trotz der beeindruckenden Erfolge im Bereich der erneuerbaren Energien macht die traditionelle Wärmeerzeugung (Erdgas) in Italien immer noch ca. 60% der gesamten Stromerzeugung aus. Wie viel Aufwand in die Reduzierung dieser Zahl gesteckt wird, ist noch unklar. Italien hat bis 2020 18% erneuerbare Energien zugesagt und ist bereits zu fast 70% vor Ort, sodaß die Reduzierung fossilen Stroms im Hinblick auf die Erreichung dieses Ziels kaum dringend erforderlich scheint. Italien ist jedoch in hohem Maße von Importen fossiler Brennstoffe abhängig, und die Anforderungen an die Energiesicherheit werden wahrscheinlich weiterhin die Entwicklung von mehr heimischen Stromquellen wie erneuerbaren Energien vorantreiben.

Energiespeicher

Italien dominiert den Markt für elektrochemische Energiespeicher in Europa. Mit über 6.000 GWh geplanter und installierter elektrochemischer Erzeugungskapazität (~84 MW installierte Kapazität) liegt Italien weit vor dem zweiten Platz in Großbritannien. Dies ist vor allem auf das umfangreiche SNAC-Projekt von TERNA (Italiens Übertragungsnetzbetreiber) zurückzuführen, einer Natriumionenbatterieanlage mit einer Gesamtleistung von fast 35 MW in drei Phasen. Eine Aufschlüsselung der Energiespeicherprojekte nach Technologietyp ist hier aufgeführt.

Energiespeicherprojekte nach Typ (Sandia National Laboratories)

Service-Einsatz von Energiespeichern

In Italien wird der elektrische Energiespeicher fast ausschließlich für netzunterstützende Funktionen verwendet. vor allem Entlastung von Übertragungsstaus (Frequenzregelung). Zwar handelt es sich möglicherweise nicht direkt um eine Straffung erneuerbarer Energien, doch lassen sich Engpässe auf die Variabilität der Sonnenenergie zurückführen, was bedeutet, daß die Entwicklung der elektrischen Energiespeicher in Italien weitgehend von der Notwendigkeit der Integration der Sonnenenergie getrieben wird.

Energiespeicherung nach Nutzungsart (Sandia National Laboratories)

Energiespeichermarktausblick

Italien ist einer der Top-Märkte für Energiespeicher in der EU und auf Wachstum ausgerichtet. Der italienische Übertragungsnetzbetreiber TERNA hat den Verkauf von Energiespeichern als Dienstleistung untersucht. Im Jahr 2014 schlug die AEEG, die elektrische Regulierungsbehörde, unter der TERNA tätig ist, vor, Batterien als Erzeugungsquellen zu behandeln, die Kraft-Wärme-Kopplungs-Anlagen ähneln. Italien war schon immer ein Markt, der vollständig von einer kleinen Anzahl großer zentraler Versorgungsunternehmen dominiert wurde, und dieser Trend dürfte sich bei der Einführung von elektrischer Energiespeicherung fortsetzen. Diese Unternehmen haben sich auf Batterietechnologien konzentriert und werden diesen Weg voraussichtlich fortsetzen.

Der private Markt könnte jedoch eine große Chance für P2G darstellen. Die International Battery & Energy Storage Alliance hat die Realität des unerschlossenen italienischen Energiespeichermarktes wie folgt zusammengefasst: „Mit einer hohen Solarleistung von 1.400 kWh / kWp, Nettostrompreisen für Privathaushalte von rund 23 Cent / kWh und derzeit ohne Einspeisevergütungen ist der italienische Energiemarkt als sehr empfänglich für Energiespeicherung. “

Italien ist jetzt gut mit PV-Wohnanlagen ausgestattet, für die keine Subventionen mehr erhoben werden können. Verbunden damit, daß die überwiegende Mehrheit der Haushalte in Italien Erdgas verbrennt, das aus Rußland, Libyen und Algerien importiert wird, und daß Italien eine einzigartige Chance für P2G auf Wohn- / Gemeindeebene darstellt. Dies wird durch Energy Storage Update bestätigt, das 2015 zu dem Schluß kam, daß Italien „einer der vier größten Märkte weltweit für den Eigenverbrauch von PV- und Batterie-Energie“ ist.

Zwar ist nicht genau bekannt, wie viele PV-Anlagen in Wohngebieten in Italien vorhanden sind, es wurde jedoch Ende 2015 spekuliert, daß es in Italien über 500.000 PV-Anlagen gab.

(Jon Martin, 2019)

Veröffentlicht am

Autonome Methanproduktion auf dem Mars durch mikrobielle Elektrolyse für eine sichere Rückkehr zur Erde

Wie gestalten wir die Erforschung des Mars durch Menschen? Wie minimieren wir unser Gepäck während wir gleichzeitig den Nutzen des mitgebrachten Materials maximieren? Wie nutzen wir am besten was bereits auf dem Mars vorhanden ist?

Um genügend Treibstoff für eine sichere Rückkehr der Mars-Besatzung bereitzustellen, können wir Methan und Sauerstoff auf dem Mars produzieren. Die Produktion kann durch von Mikroben bewerkstelligt werden. Diese müssen zum Mars gebracht werden. Wir empfehlen leichte Perowskit-Solarmodule, die ebenfalls zum Mars transportiert werden müssen. Im optimistischen Szenario sind für die Installation der oberflächennahen Solarenergie und die Kraftstoffproduktion für die sichere Rückkehr nach Beginn der bemannten Mission ungefähr 18 Monate erforderlich. Das pessimistische Szenario dauert 4 Jahre. Um Sauerstoff zu sparen, schlagen wir auch Marsperchloraten als Raketentreibstoffkomponente vor. Für die Versorgung späterer Missionen mit Nahrungsmitteln empfehlen wir die Verwendung von Flechten als Primärkolonisatoren zur Erzeugung von organisch reichem Boden.

Verfahren zur Energieerzeugung auf dem Mars

Für die Herstellung von Methan als Aufstiegs- und Rückkehrtreibstoff empfehlen wir die Verwendung von vorhandenen Ressourcen auf dem Mars. Da der bei der Elektrolyse entstehende Sauerstoff für eine sichere Rückführung nicht ausreicht, empfehlen wir auch die Verwendung von Algen zur Erzeugung des zusätzlichen Sauerstoffs. Algenbiomasse kann als Grundlage für die Nahrungsmittelproduktion verwendet werden. Methan produzierende Mikroben werden in methanogenen Elektrolysereaktoren (MER) angezogen, während Algen in überdeckten Marskratern wachsen. Die Methanproduktion auf dem Mars soll autonom von Robotern und Reaktoren durchgeführt werden, die in der Nähe der eisreichen Polarregionen landen und salzhaltiges Wasser als Elektrolyt für die Niedertemperaturelektrolyse schmelzen. Der Landerobotor wird eigenständig Anlagen zur Treibstoffproduktion bauen, um das Mars-Transferfahrzeug für die Rückkehr zu betanken. Das Transferfahrzeug gewährleistet den Transport zwischen der Marsoberfläche und der Erdumlaufbahn. Erst wenn genug Treibstoff für eine sichere Rückkehr zur Erde produziert wurde, beginnt eine bemannte Marsmission. Darüber hinaus wird Methan als Energiespeicher eingesetzt, falls Sonnenkollektoren ausfallen. Ziel ist es, bis zum Ende der ersten bemannten Mission ein 3,5-MW-Solarkraftwerk auf dem Mars zu errichten.

Schema des Kraftstoffherstellungsprozesses. Rote Kreise markieren die Endprodukte Stahl (oben) und CH4/O2 (unten). Oben: 1, Landeroboter auf Eis, 2, Kernspaltungsreaktor mit Wärmetauscher zum Schmelzen von Eis, 3, Abbaueinheit, 4, Eisen / Nickel-Erze, 5, Induktionsstahlgießerei mit Energieversorgung aus dem Kernspaltungsreaktor (2), 6, Algenanreicherungstank mit Wasserversorgung aus dem Kernspaltungsreaktor (2), 7, Krater-Algen-Reservoir zur Erzeugung von O2 und Biomasse für 8, Entwässerungsanlage zum Abscheiden von Wasser aus 9, Biomasse-Pellets, 10, Stahl für Unten: 11, Solarkollektor-Schmelzeis und Wasser für 12, mikrobieller Elektrolysereaktor (MER) zur Erzeugung von Methan und Sauerstoff, welche durch 13, einen Gasabscheider getrennt werden. 14, auf Stahl montierte Sonnenkollektoren zur Erzeugung von Elektrizität für den MER (11) und 15, Gasspeichertank. 16, die Mars-Rakete für die Rückkehr zur Erde wird mit CH4/O2 betrieben.

Um das Leben von 6 Besatzungsmitgliedern aufrecht zu erhalten, ist eine Stromproduktionskapazität von 170 kW (siehe „Oberflächenlebensraum-Energiebedarf“) erforderlich und hat neben der Kraftstoffproduktion höchste Priorität für eine sichere Heimreise. Die Vorgehensweise ist in der oberen Abbildung skizziert. Es ist ein schrittweiser Prozess, bei dem die meisten Schritte voneinander abhängig sind und sich daher mit zunehmender Stromerzeugung selbst beschleunigen. Um das Risiko eines Ausfalls zu minimieren, empfehlen wir mindestens vier unabhängige Landerobotor auf dem Mars. Die Polarregionen weisen den höchsten Oberflächenwassergehalt auf. Dieses Wasser istr für bemannte Forschungsmissionen, die methanogene Elektrolyse sowie die Produktion von Sauerstoff und Biomasse von entscheidender Bedeutung. Die Landeroboter werden eine kleine Kernspaltungsanlage mitführen, die mit dem Abbau von Eisen- und Titanerzen beginnt, um Stahl zu produzieren. Stahl dient als strukturelle Stütze für Sonnenkollektoren. Zunächst beginnt der Landeroboter mit dem Abbau von Eisenerzen, damit die Stahlproduktion beginnen kann. Graphit oder andere reduzierte Formen von Kohlenstoff für die Stahlproduktion werden von der Erde mitgebracht, da die Produktion von organischer Materie auf dem Mars durch Algen ein langsamer Prozess ist. Alternativ werden modulare Kohlefaser-Leichtbauelemente zur Montage von Solarmodulen von der Erde zum Mars gebracht. Sobald die 170 kW Solaranlage errichtet ist, beginnt das Schmelzen des Eises für die methanogenen Elektrolysereaktoren (MER). Der kombinierte Strom aus dem Kernspaltungsreaktor und der Solaranlage wird genutzt. Erst wenn die Methanmenge für eine sichere Rückkehr einer Orion-Kapsel produziert wurde, wird die Leistung in drei gleiche Teile umgeleitet: (1) weiterhin Eis für Algen schmelzen, (2) Erze für thermische Kollektoren fördern und (3) Methan produzieren. Nachdem genügend Wärmekollektoren hergestellt wurden, um die Eisschmelze mit dem Algenwachstum in Einklang zu bringen, wird die elektrische Eisschmelze abgeschaltet. Jetzt wird elektrische Energie für die Stahlproduktion verwendet, um mehr Sonnenkollektoren und Methan zu installieren, bis ein ausreichender Ertrag für mehr Nutzlast erreicht ist. Zu diesem Zeitpunkt trifft die Besatzung ein und entscheidet, was die höchsten Prioritäten sind. Wir empfehlen, sich auf die Beschleunigung des Algenwachstums für die Produktion von Sauerstoff und Biomasse zu konzentrieren, da die vollständige Unabhängigkeit von der Erde die Produktion von organischem Kohlenstoff aus CO2 erfordert.

Die Zusammensetzung des Marsbodens, so wie sie von NASAs Curiosity und anderen Fahrzeugen analysiert wurde (Quelle: NASA 2012)

Energiebedarf für die Rückkehr

Der auf dem Mars produzierte Kraftstoff dient drei verschieden Zwecken:

  • Rückkehr einer Orion-Kapsel
  • Produktion von zusätzlichem Kraftstoff für mehr Komfort während des Rücktransports (optional)
  • Energiespeicher bei Nacht oder Stromausfall

Zwei Optionen für die Mars-Erde-Rückkehr scheinen möglich. (1) Option 1 wurde von der NASA in DRA 5.0 vorgeschlagen und betrifft ein Orion-ähnliches Fahrzeug von etwa 12 Tonnen mit einer Geschwindigkeit von 14 km/s⁠. Diese Option erfordert nur ein Fahrzeug, bietet jedoch weniger Komfort für die lange Heimreise und setzt die Besatzung daher einem höheren Stress aus. Sie verbraucht jedoch weniger Treibstoff und ermöglicht so eine schnellere Durchführung der ersten Marsmission. (2) Wir stellen eine zweite Option vor, die zwei Fahrzeuge umfasst, eine Orion-ähnliche Kapsel für den Transport von 6 Besatzungsmitgliedern in eine Marsumlaufbahn von 250 km und ein Transitfahrzeug für die Rückkehr zur Erde. Da Option zwei die bevorzugte Option ist, empfehlen wir, Option eins, das eine-Kapsel-Szenario, nur zur Sicherheit in Betracht zu ziehen.

Wir nehmen die Kapazität einer bemannten Orion-Kapsel mit Drachentriebwerken (Draco) als Referenz an. Das Orion-ähnliche Raumschiff kann 6 Besatzungsmitglieder befördern und wiegt 12 Tonnen einschließlich Kraftstoff. Für einen Mars-Start wird ein Schub-Masse-Verhältnis von mindestens 5 N/kg benötigt, was für einem Schub von 60 kN bzw. 150 Draco-Triebwerken zum Transport von 6 Besatzungsmitgliedern in die Mars-Umlaufbahn ausreicht. Die Reisezeit von der Marsoberfläche bis zu einer Umlaufbahn von 250 km würde bei vollem Schub 7 Minuten betragen. Zum Abheben wären ca. 600 m3 Methan (bei Erdatmosphärendruck) erforderlich. Um diese Methanmenge bei 210 kW (40 kW Kernspaltung und 170 kW Solarenergie, siehe „Bedarf an Lebensraumenergie an der Oberfläche“) zu produzieren, sind 3 Jahre Brennstoffproduktion erforderlich. Die vorgeschlagenen Solarstromanlagen mit 1.400 m2 Perowskit-Solarzellen können an einem Mars-Tag von 8 Stunden effektiv 170 kW erzeugen (20 kW/m2). Wenn dieselbe Orion-Kapsel auch für den Mars-Erde-Transit verwendet wird, sind weitere 7 Minuten oder 17.000 km erforderlich, um die Reisegeschwindigkeit von 14 km/s zu erreichen, und ungefähr die gleiche Zeit für einen vollständigen Stop. Um genügend Treibstoff für den Mars-Erde-Transit zu produzieren, sind nur noch 3 Tage erforderlich. Sobald genug Treibstoff für das sichere Szenario produziert wurde, verlässt die Besatzung die Erdumlaufbahn in Richtung Mars.

Für das Komfortszenario wird die vorgeschlagene Nutzlastoption mit 63 Tonnen Besatzung aus dem Mars DRA 5.0 für den Erde-Mars-Transit angenommen. Dies erscheint sinnvoll, da die meisten Geräte auf dem Mars zurückgelassen werden und nur der Transitlebensraum, die Orion-Kapsel (für Notfälle), der Antrieb und entsprechende Kraftstoff benötigt werden. Dieses Szenario erfordert jedoch erheblich mehr Kraftstoff. Dafür würden Generatoren mit einer Papazität von 210 kW auf der Oberfläche mindestens 42 Jahre lang Methan produzieren müssen. Da dies außerhalb des Planung liegt, empfehlen wir eine Erweiterung der Oberflächenleistung auf 3.500 kW, wodurch die erforderliche Methanproduktion auf 30 Monate bei einer Geschwindigkeit von 14 km/s oder 12 Monate bei 9 km/s reduziert würde. Die geringere Belastung der Besatzung rechtfertigt die geringere Fluggeschwindigkeit und die höhere Investition. Es werden jedoch 6,3 Tonnen (entsprechend 0,18 km2) Perowskit-Zellen benötigt, um ausreichend Brennstoff zu produzieren. Für dieses Szenario werden rund 280 Tonnen Stahl als strukturelle Unterstützung gebraucht. Da für das Elektroschmelzen 900 kWh/t Stahl verbraucht werden⁠, sollte zusätzlich der Kernspaltungsreaktor von etwa 40 kW für etwa ein Jahr Stahlproduktion (bzw. zwei Monate mit den kompletten 210 kW) eingesetzt werden. Alternativ könnten von der Erde mitgebrachte Kohlefaserelemente die Stahlproduktion in dieser Phase der Mission überflüssig machen. Der gesamte Prozess beschleunigt sich von selbst, da die Stromerzeugung während des Montageprozesses der Solarmodule zunimmt.

Zur Erzeugung von ausreichen Methan für den Start, wird ein MER von 200.000 Litern unter Verwendung von Stahlgitter- oder Bürstenelektroden (Anode und Kathode) mit einer projizierten Oberfläche von 2.200 m2 benötigt (siehe Abbildung unten). Ein modulares Redundanzsystem mit kleineren Abmessungen verbessert die Sicherheit, erfordert jedoch mehr Material. MERs haben die theoretische Kapazität, innerhalb von weniger als ein oder zwei Tagen ausreichend Kraftstoff für den Start einer Orion-Kapsel zu produzieren, wenn die Stromversorgung gesichert ist. Bei maximaler Leistung würde dieser Reaktor etwa 100 GWh oder 220 kWh/mol Methan verbrauchen. Mikroben erleichtern die Elektrolyse bei niedrigen Temperaturen, und diese Mikroben werden vom Landeroboter in kleinen (100 ml) redundanten Chargen transportiert. Da die Grenze für die Methanproduktion nicht die Reaktorkapazität, sondern die zur Verfügung stehende elektrische Leistung ist, kann die Verdoppelung der Menge an Sonnenkollektoren die erforderliche Zeit für die Methanproduktion halbieren. Um das so erzeugte Methan zu lagern, empfehlen wir, das Elektrolyt vor dem Beladen des MER zunächst auf 200 bar zu bringen. Zur Extraktion aus dem Elektrolyt ist ein geringer Druckabbau erforderlich, und die so erhaltene Gasphase wird dann zur späteren Verwendung in Druckstahltanks geleitet.

Ein experimenteller MER muß zunächst auf der Erde gebaut werden. Wie der Mars-Reaktor wird auch dieser experimentelle MER ein 5 x 5 m großer zylindrischer Reaktor mit einer oder zwei Kammern sein. Der Vorteil des Zweikammersystems ist die Trennung von Sauerstoff und Methan, erfordert jedoch mehr Wasser, während der Einkammerreaktor einfacher zu bauen ist und weniger Wasser enthält. Nach der Produktion ist jedoch eine O2/CH4-Trennung erforderlich. Leider ist das Verhältnis von Sauerstoff zu Methan schwer vorherzusagen, da es vom anodischen pH-Wert abhängt. Ein Massenverhältnis von mehr als 2:1 ist erforderlich. Wir schlagen daher die Verwendung von Algen als zusätzliche Sauerstoffproduzenten vor (siehe „Photosynthese-Krater zur Erzeugung von Sauerstoff und Biomasse“). Als Elektroden werden Bürsten- oder Stahlgitterelektroden verwendet. Auf dem Mars hergestelltes Stahlgewebe (40 x 40 mesh) mit einer projizierten Fläche von 1.100 m2 pro Elektrode kann verwendet werde.

A detailed description of the reactor can be found here.

Alternative Oxidationsmittel in kalten Methanbrennstoffzellen oder Raketentreibstoff

Es wird erwartet, daß die Sauerstoffknappheit jede bemannte Marsmission stark einschränkt. Sauerstoff ist als Treibstoff und für jede menschliche Anwesenheit von entscheidender Bedeutung. Die Verwendung von Methan zur Energiespeicherung ist nur bei ausreichendem Elektronenakzeptor sinnvoll. Während Methan in Turbinen mit akzeptablen Wirkungsgraden für die Stromerzeugung verbrannt werden kann, kann es auch in Brennstoffzellen verwendet werden. Es gibt jedoch keine Katalysatoren, die Methan an Elektroden bei Raumtemperatur oder darunter oxidieren. Die einzig mögliche Ausnahme bilden anaerobe Methanoxidationskonsortien, die auf natürliche Weise biologische Elektronentransportketten nutzen. Der Einsatz biologischer Elektronentransportketten eröffnet die Möglichkeit, die beim Transport in Elektronen gespeicherte Energie einzufangen. Da dies elektronenakzeptorunabhängig ist, können oxidierte Metallmineralien, die auf dem Mars häufig vorkommen, als Elektronenakzeptoren verwendet werden. Der Nachteil dieser Methanbrennstoffzellen ist, daß im Vergleich zu Sauerstoff weniger Energie eingefangen wird. Zudem existieren sie nur theoretisch.

(1) CH4 + 2 O2 → HCO3 + H+ + H2O ;∆G°’ = −830 kJ/molCH4

(2) CH4 + 4 Fe2O3 + 15 H+ → HCO3 + 8 Fe2+ + 9 H2O ;∆G°’ = −250 kJ/molCH4

Der hohe Säuregehalt auf dem Mars spricht jedoch für eine Reaktion, bei der aus Eisenoxiden und Protonen mithilfe der Reduktionskraft von Methan zusätzliches Wasser gebildet wird. Lösliches Fe2+ könnte für die Herstellung von Elektrostahl verwendet werden, da die Reduktion von Fe2+ zu Fe0 ein erheblich geringeres Redoxpotential und damit weniger Energie erfordert.

Perchloratsalze, die auf dem Mars vorhanden sind, können als Oxidationsmittel im Raketentreibstoff dienen. Ammoniumperchlorat und Calciumperchlorat, welches auf dem Mars häufiger vorkommt, sind explosive Oxidationsmittel. Um Calciumperchlorat in das Ammoniumsalz umzuwandeln, kann Ammonium durch eine Vielzahl von mikrobiellen Verfahren hergestellt werden, wie z.B. durch Stickstoffixierung (über die Nitrogenaseenzyme) und katabolische Ammonifizierung von Aminosäuren oder Abfallharnstoff (über das Ureaseenzym). Auch das Haber-Boschverfahren könnte zum Einsatz kommen. Sollte sich das Sammeln und Komprimieren des photosynthetisch gewonnenen O2-Gases in Raketentreibstoff als unpraktisch erweisen, könnte sich unser Ansatz mit festen Oxidationsmitteln als nützlich erweisen. Diese Doppeloxidationsstrategie sorgt für eine weitaus größere Flexibilität und mehr Sauerstoff zur Atmung. Abgebautes Perchlorat kann auch zur Desinfektion von Wasser verwendet werden.

Photosynthese-Krater zur Erzeugung von Sauerstoff und Biomasse

Die sauerstoffhaltige Biophotolyse von Wasser unter Verwendung von psychrophilen (Kälte-liebend), Distickstoff fixierenden Cyanobakterien, d.h. Blaualgen, die in bedeckten Kratern gezüchtet werden, ist ein plausibles Mittel, um den Bedarf an Sauerstoff und Biomasse zu decken. Der überschüssige Sauerstoff wird als Treibstoff und Bestandteil der künstlichen Luft im Oberflächenhabitat benötigt. Während dies für eine Marsmission zunächst nicht entscheidend ist, ist die Produktion von organischer Materie für längere Missionen mit größeren Teams und längerer Präsenz nützlich. Organisches Material ist für einen gesunden Boden unerläßlich, der wiederum für die Produktion von pflanzlichen Lebensmitteln auf dem Mars von entscheidender Bedeutung ist. Darüber hinaus benötigen Cyanobakterien und Algen wenig Technik und Energie, was sie ideal für die autonome Herstellung von organischem Material und Sauerstoff macht.

Die Menge an schädlichen kosmischen Strahlen sowie UV-Strahlen kann aufgrund des Fehlens einer Ozonschicht und einer schützenden Magnetosphäre höher sein. Die Menge der kosmischen Strahlung (ca. 0,076 Gray pro Jahr) liegt für viele irdische Mikroben mit Sicherheit im erträglichen Bereich. So ist z.B. das Innere  der internationalen Raumstation einer ähnlichen Strahlendosis ausgesetzt. UV-Licht mit seiner kürzeren Wellenlänge kann leicht durch eine dünne Abdeckung des Mars-Bodens blockiert werden, während längere Wellenlängen der photosynthetisch aktiven Strahlung weiter eindringen können. Die Mikroben werden in ihren Überlebenszonen selektiv angereichert. Alternativ könnte eine UV-Schutzhülle über dem Krater verwendet werden. Die leichte, aber haltbare und robuste Kraterabdeckung könnte die Form einer aufblasbaren Kuppel haben, die am Kraterrand verankert ist. Die durchsichtige obere Abdeckung läßt Sonnenlicht durch, hat jedoch eine Beschichtung, um schädliche Strahlung abzuhalten, während die gekrümmte untere Oberfläche reflektierend (um die Photosynthese zu maximieren) oder schwarz sein kann, um Wärme zu absorbieren. Solarbetriebene Gaspumpen könnten den Gasinnendruck regulieren, um die Kohlenstoff- und Stickstoff-Fixierungsraten sowie die Wasseransammlung aus dem verfügbaren Wasserdampf zu beschleunigen.

Die Umwandlung einer begrenzten Menge an Sonnenenergie mit gefrorenem Wasser, plus reichlich CO2 in biologisch erzeugten Sauerstoff, sowie organisches Material erfordert phototrophe Mikroben, die bei extrem niedrigen Temperaturen überleben können. Solche Temperaturen sind auf der Marsoberfläche üblich. Wir schlagen vor, terrestrische Cyanobakterien zu identifizieren, die dazu in der Lage sind, indem sie selektiv aus gemischten Biofilmkonsortien angereichert werden, die aus der Arktis oder Antarktis stammen. Proben aus felsigen Küstensolen werden in selektiven Anreicherungsreaktoren, die zur Nachbildung des Lebensraums der Marsbewohner eingerichtet sind, einer intensiven Untersuchung unterzogen. Der Befund, daß die Flechte Pleopsidium chlorophanum unter marsianischen Umweltbedingungen überleben, sich anpassen und wachsen kann, ist ein gutes Vorzeichen für diesen Ansatz.

Während der anfänglichen Phase der Nutzung der Oberflächenressourcen (siehe Abbildung oben) ist das Algenwachstum der zeitaufwändigste Schritt und daher hat die Gewinnung von flüssigem Wasser höchste Priorität. Durch die Verwendung von Kratern werden keine Behälter zum Wachsen benötigt und die Menge des zum Mars gebrachten Materials wird verringert. Im Idealfall handelt es sich bei solchen Kratern um äquatoriale Flachwasserteiche, die ein Maximum an Sonneneinstrahlung und ein Minimum an Wassererwärmung gewährleisten. Diese Voraussetzungen stimmen nicht mit dem anfänglichen Missionsaufbau (Landung in der Nähe von Polkappen) überein, sollten jedoch während der ersten Mission vorbereitet werden. Das heißt, Wasserleitungen von den peripheren Polargebieten zu den Äquatorgebieten müssen gebaut werden. Die Rohre müssen möglicherweise erwärmt werden, was zusätzliche Energie erfordert, oder das geschmolzene Wasser muss auf hohe Temperaturen und Drücke erhitzt werden, um die Eisbildung während des Transports zu verhindern.

Produktion von Wasser als Medium für die methanogene Elektrolyse und Algen

Der Mangel an flüssigem Wasser ist ein Haupthindernis, da jeder aktive Metabolismus ein flüssiges wässriges Medium erfordert. Neben der Produktion von Methan ist das Schmelzen von Eis die größte Herausforderung für die erste bemannte Marsmission. Flüssiges Wasser ist für MERs und Algenkrater unverzichtbar. Daher sollte jeglicher Wärme- oder Stromüberschuß auf das Schmelzen von Eis gerichtet werden, nachdem die Methanproduktion sichergestellt ist. Die so gewonnene CO2-reiche Sole ist der Elektrolyt für die MERs. Der hohe Säuregehalt ist nicht hemmend für das mikrobielle Wachstum, da acidophile Methanogene und Algen aus terrestrischen Umgebungen verwendet werden könen.  Der niedrige pH-Wert verringert das für die Wasserstofferzeugung erforderliche elektrische Überpotential. Wasserstoff ist der Zwischenschritt bei der methanogenen Elektrolyse⁠. Andererseits hemmt der niedrige pH-Wert die Sauerstoffbildung, weshalb davon auszugehen ist, daß die Korrosion von Stahlanoden zu einem möglichen Problem werden kann. Die Anodenkorrosion muß überwacht werden und darf einen bestimmten, noch zu bestimmenden Schwellenwert nicht überschreiten. Verbrauchte Anoden können in Stahlgießereien wieder aufbereitet werden, die mit der ersten Mission gebracht wurden.

Die niedrigen Temperaturen auf dem Mars, die in äquatorialen Regionen nur 20°C erreichen, stellen auch eine große Hürde für den Unterhalt von flüssigem Wasser dar. Das heißt, Wasser muß möglicherweise durch parabolische Wärmekollektoren erwärmt werden, um flüssig zu bleiben. Fischer et al. haben festgestellt, daß sich „bei Kontakt der Salze mit Wassereis innerhalb weniger Minuten flüssige Salzlösung bildet, was darauf hinweist, daß sich vorübergehend wässrige Lösungen bilden können, wenn sich Salze und Eis auf der Marsoberfläche und im flachen Untergrund befinden.“ Wenn unser Kraterdach mit einer inneren reflektierende Beschichtung im Infrarotspektrum ausgestattet ist, können so Wärmespeicher erzeugt werden und die Sole bleibt länger flüssig.

Die MER enthält methanogene Mikroorganismen für die Methanproduktion, die vom Landerobotor zusammen mit Algen zum Mars gebracht werden. Die methanogenen Mikroben sind hocheffizient in der Methanproduktion, was zu Wirkungsgraden von nahezu 100% ⁠ bei der Stromerzeugung führt. Edelmetallkatalysatoren sind nicht erforderlich. Im Gegensatz dazu kann für eine effektive Sauerstofferzeugung eine Platin- oder Palladiumbeschichtung auf der anodischen Seite der MER erforderlich sein. Anodische Algen scheinen eine mögliche Alternative, müssen aber weiter erforscht werden. Da die Menge an verwendetem Platin sehr gering ist, kann es als Salz zum Mars transportiert und auf Stahlelektroden elektroplattiert werden, sobald sie fertig sind. Das Galvanisieren ist ein einfaches Verfahren, so daß ein Roboter diese Aufgabe innerhalb weniger Minuten erledigen kann. Platinrecycling erfordert jedoch 1-2 Arbeitstage eines Besatzungsmitglieds.

Etwa 280 Tonnen Stahl für die strukturelle Unterstützung von Sonnenkollektoren werden benötigt (siehe „Herstellung von Stahl für die strukturelle Unterstützung von Mars-Oberflächenteilen“). Der Kohlenstoffgehalt von Stahl sollte 2,1% nicht überschreiten, um eine hohe Stabilität zu gewährleisten. Aus diesem Grund haben wir für Mars-Stahl 1,5% Kohlenstoff gewählt. Das heißt, für die Stahlproduktion werden ca. 4 Tonnen Kohlenstoff benötigt. Dies ist der Engpaß in der Stahlproduktion. Unter der Annahme, daß es auf dem Mars kalt ist wie in der Antarktis, kann man von einer Biomassekonzentration in der Sole von 5 mg/m3⁠ ausgehen. Bei dieser Konzentration muß fast 1 Milliarde m3 Wasser aufbereitet werden. Während die vorhandene Menge von 821.000 km3 mehr als ausreichend wäre, ist es unmöglich, diese Eismenge innerhalb des Zeitrahmens der Mission unter Verwendung eines Kernreaktors von 40 kW zu schmelzen, selbst wenn andere Energiequellen einbezogen würden. Daher könnten Parabolkollektoren von der Erde mitgebracht werden. Bei einem energetischen Wirkungsgrad der Parabolwärmekollektoren von 80% wären 300 Tonnen dieser Kollektoren erforderlich, um diese Wassermenge innerhalb von 2 Jahren zu schmelzen. Mit 10 Tonnen Parabolkollektoren kann man 2 Jahre lang nur 26.000 m3 Wasser für die Algen schmelzen. Dies reicht aus, um bei einer konstanten Konzentration von 5 mg/m3 in etwas mehr als 2 Jahren 130 g Algenkohlenstoff zu produzieren. Es ist effizienter, 4 Tonnen Graphit für die anfängliche Stahlproduktion auf den Mars zu bringen oder andere reflektierende Oberflächen als polierten Stahl für die Wasserschmelze in Betracht zu ziehen.

Alternative Verwendung von bedeckten Kratern zur Anreicherung von Wasser mit natürlichen Perchloraten

Angesichts der erheblichen Schwierigkeiten, die mit der Installation langer Wasserleitungen verbunden sind, um Krater mit Wasser zu füllen, skizzieren wir eine elegante alternative Strategie zur schrittweisen Gewinnung von Wasser aus der Atmosphäre unter Verwendung von nativen Perchloraten in den Mars-Sedimenten.

Perchloratsalze wurden in Mars-Sedimenten und Kratern wie der Dale-Krater und in Konzentrationen von 0,5 bis 1% nachgewiesen. Calciumperchlorat ist eine extrem hygroskopische Komponente des Marsbodens. Dieses zieht bei Nacht zyklisch H2O aus der Marsatmosphäre in den Boden, um dort eine Salzlösung zu bilden. Durch das Versiegeln der Kraterabdeckungen bei Tag, wenn das Wasser normalerweise sublimiert, und das Öffnen von Einstrom- oder Einwegventilen bei Nacht, nachdem photosynthetisch gebildetes O2 gewonnen wurde, kann sich atmosphärischer Wasserdampf langsam als Salzlösung mit Eis im Inneren des Kraters ansammeln. Dies geschieht minimalen Energiekosten.

Halophile Algen vertragen hohe Salzkonzentrationen und niedrige Temperaturen. Aufgrund der hohen CO2-Konzentration in der natürlichen Atmosphäre verstärkt die Kraterbedeckung die Erwärmungseffekte dieses Treibhausgases, um die Dauer des zur Fixierung von Stickstoff und Kohlenstoff erforderlichen Wassers im flüssigen Zustand zu verlängern. Durch den Transport von mehr aus dem Boden stammenden Perchloraten, möglicherweise mit Eisablagerungen, kann sich langsam Wasser in den bedeckten Kratern ansammeln. Biologisch gebildetes Distickstoffoxidgas könnte die innere Erwärmung dieses Gewächshauses und damit die biologischen Aktivitätsraten weiter verstärken.

Perchloratsalze aus dem Inneren des Kraters können aus der flüssigen Salzlösung gewonnen werden, um den Salzgehalt des Wassers allmählich zu verringern. Dies könnte durch parabolische Verdunstungsrinnen geschehen, die regelmäßig über die Salzoberfläche gehoben werden. Da Perchlorate giftig sind, können sie von einigen Mikroben wie Perchlorat-reduzierenden Bakterien (PRBs), die Percholorate als alternative Elektronenakzeptoren verwenden, entfernt werden. Solche PRBs könnten zu einem späteren Zeitpunkt eingeführt werden, um die mit Wasser gefüllten Krater für höhere Lebensformen ungiftig zu machen.

Bodenkonditionierung durch phototrophe Primärproduktivität

Flechten und Blaualgen werden seit Hunderten von Jahren als Nahrungsmittel auf der Erde verwendet. Spirulina ist ein Beispiel für ein weit verbreitetes Cyanobakterium, das mithilfe von Sonnenlicht essentielle Vitamine, Antioxidantien wie Beta-Carotin und Fettsäuren aus CO2 synthetisiert. Ein Hauptvorteil der Verwendung eines stickstoffixierenden Cyanobakteriums besteht darin, daß es Sonnenenergie verwenden kann, um atmosphärisches Stickstoffgas direkt in die essentiellen Aminosäuren umzuwandeln, die zukünftige bemannte Missionen benötigen, um Muskeln auf dem Roten Planeten aufzubauen und aufrechtzuerhalten. Dies reduziert die Menge an Treibstoff, die für den Transport von Nahrungsmitteln in benötigt wird. Überraschenderweise enthalten einige Arten von Cyanobakterien 60% Protein pro trockenes Gramm, was mehr Protein als im einem Rindersteak ist, ohne die hohe Menge an schädlichem Cholesterin. Gasförmiger Stickstoff macht etwa 2,7% der dünnen Marsatmosphäre aus und ist überall verfügbar. Stickstoffgas ist nicht die einzige bioverfügbare Form von Stickstoff, die zum Züchten von sauerstoffhaltigen Phototrophen benötigt wird. Nitrate sind ein idealer Dünger. Der Curiosity Rover identifizierte bioverfügbare Nitrate als wesentlichen Bestandteil des Sediments auf dem Mars. Spurenelemente sind auch in Gesteinen und Böden vorhanden, müssen jedoch möglicherweise verarbeitet werden.

Die von dieser Pioniermission eingeleitete Bodenkonditionierung der Marslandschaft wäre für eine spätere längerfristige Besiedlung durch Menschen erforderlich. Flechten und Cyanobakterien sind weit verbreitete Pionierarten auf der Erde, die im felsigen Gefolge sich zurückziehender Gletscher wachsen. Es ist bekannt, daß diese Phototrophen die Steinverwitterung beschleunigen und die Freisetzung essentieller Mineralien erleichtern. Phosphor ist ähnlich wie Stickstoff ein wichtiger Makrophytnährstoff, von dem heute bekannt ist, daß er ein wesentlicher Bestandteil der Marsoberfläche ist. In der Tat können einige stickstofffixierende Cyanobakterien ihre Expression von Phosphor freisetzenden Phytaseenzymen unter Phosphoreinschränkung hochregulieren⁠. Cyanobakterien bauen und stabilisieren außerdem Böden, indem sie ihre Anfälligkeit für Winderosion durch die Bildung von organischen extrazellulären Polysacchariden verringern, die dazu beitragen, Feuchtigkeit einzufangen und zu speichern. Flechten können auch Säuren und andere Metabolite freisetzen, die zum Gesteinsabbau und zur Bodenbildung beitragen. Flechten und Cyanobakterien können sich zwar an höhere UV-Lichtdosen auf dem Mars anpassen, sie müssen jedoch zunächst durch eine dünne Abdeckung geschützt werden, wie im Abschnitt „Photosynthese-Krater zur Erzeugung von Sauerstoff und Biomasse“ beschrieben.

Herstellung von Stahl für Marsoberflächenbauteile

Stahl kann nicht zum Mars gebracht werden, da mindestens 2,2 Tonnen Stahl für die strukturelle Unterstützung von 1.400 m2 Perowskit-Solarmodulen benötigt werden. Während leichte Kohlefasermodule als strukturelle Unterstützung verwendet werden könnten, ist es möglich, Stahl vor Ort zu produzieren. Die Stahlproduktion auf dem Mars scheint angesichts der Fülle an Eisen, Nickel und Titan auf dem Mars eine offensichtliche Alternative zum Transport von Baumaterial zu sein. Es wird jedoch auch organischer Kohlenstoff benötigt, der durch CO2-fixierende Algen erzeugt werden soll, die zuerst in Anreicherungsbecken (transparente Plastiktüten) und später in bedeckten Kratern wachsen. Nachdem das Algenmedium entwässert, recycelt und wieder erwärmt wurde, werden trockene Algenpellets als Ergänzung für die Stahlproduktion verwendet. Der Dehydratisierungs- und Wiedererwärmungsprozess erfordert zusätzliche Energie, die mit Hilfe von Parabolkollektoren als Wärme bereitgestellt werden kann. Parabolkollektoren sind effizienter in Bezug auf die Energieerfassung und einfacher zu konstruieren, da polierter Stahl im Gegensatz zu organischen Pb/I-Verbundstoffen in Perowskit-Solarzellen verwendet werden kann. Anschließend wird Stahl geformt und poliert, um parabolische Wärmekollektoren zu bauen, die mehr Eis schmelzen und mehr Energie liefern, bis der Kernreaktor und die Solarkollektoren vollständig durch Parabolkollektoren ersetzt werden können. Diese können die auch Strom produzieren. Die Stahlproduktion ist begrenzt durch die Menge an verfügbarem organischem Kohlenstoff. Daher empfehlen wir, die Möglichkeit zu prüfen, Methangas als Reduktionsmittel und Kohlenstoffquelle für die Stahlerzeugung zu verwenden. Die Methangasproduktion ist schneller und erfordert weniger Wasserressourcen als Algen.

Die Landeroboter wird auch Eisenerze und Silikate für die Herstellung von Drähten, Sonnenkollektoren und Baumaterialien abbauen. Stahl wird in einem Induktionsofen aus Eisenerzen und Graphit oder organischer Biomasse hergestellt. Für die Stahlproduktion wird organische Biomasse aus Algentanks verwendet. Diese organische Biomasse wird zu einem späteren Zeitpunkt der Mission auch für die Graphitherstellung verwendet. Alternative Ofenkonzepte sind möglich. Beispielsweise kann Methan als Reduktionsmittel verwendet werden. Eine andere Alternative wäre ein Lichtbogenofen oder Opfergraphitelektroden. Graphit kann wie folgt aus organischem Kohlenstoff hergestellt werden:

  • Organischer Kohlenstoff aus CO2 durch kaltangepasste Algen
  • Organischer Kohlenstoff + 800ºC → C
  • C + SiO2 + 1.400 ° C → SiC
  • SiC + 4.200ºC → Graphit

Die Induktionsöfen aus Stahl und Graphit

Energie für die anfängliche Stahlerzeugung für den Bau der 170-kW-Solaranlage (siehe „Oberflächenenergiebedarf“) wird von einem Kernreaktor erzeugt. Ein 40 kW Kernreaktor wird empfohlen. Die Stahlproduktion aus Eisenerz mittels Elektroschmelze erfordert 900 kWh pro Tonne Stahl⁠. Das heißt, um eine ausreichende strukturelle Basis für Solarmodule für 6 Personen zu erzeugen, sind etwa 2.000 kWh oder etwa 3 Tage Energieerzeugung bei voller Leistung erforderlich. Dies basiert auf der Annahme, daß der Stahl mit einer Dicke von 2 mm und 10% der Perowskitfläche von 1.400 m2 ausreichend sind. Um eine ausreichende strukturelle Stabilität für 3,5 MW (0,18 km2) Perowskit-Solarzellen zu erzeugen, die für die komfortable Rückgabeoption benötigt werden, werden 280 Tonnen Stahl benötigt. Das sind 50 Tagen Stahlproduktion mit den gesamten 210 kW (40 kW Kernreaktor + 170 kW Perowskit). Um 1,5% Kohlenstoff hinzuzufügen, werden 4 Tonnen Graphit benötigt, die als Ladung von der Erde transportiert werden.

Stahl ist auch für Parabol-Wärmekollektoren vor Ort erforderlich. Parabolische Wärmekollektoren werden zum Schmelzen des Eises für das Algenwachstum benötigt. Ungefähr 600 Tonnen Stahl werden für Parabolkollektoren für 1 Milliarde m3 Eisschmelze benötigt. D.h. es müssen 9 zusätzliche Tonnen Graphit mitgebracht werden. Um diese Menge Stahl auf dem Mars herzustellen, sind mindestens zwei weitere Jahre erforderlich. Dies scheint der beste Kompromiß zwischen Transport und Wartezeit für eine Marsmission zu sein, ist aber immer noch eine Annäherung. Auch das Algennebenprodukt Sauerstoff rechtfertigt diesen Ansatz. Da der Start einer bemannten Mission nicht von der Algenproduktion abhängt, gilt dies nicht als Wartezeit, die weitere 4 Jahre vor dem Start erforderlich macht. Dies soll nur die Machbarkeit der Stahlproduktion auf dem Mars belegen. Alternativ muß die Verwendung von auf dem Mars erzeugtem Methan als Kohlenstoff- und Elektronenquelle für Stahl untersucht werden, da dadurch möglicherweise kein Graphittransport mehr erforderlich ist.

Mögliche Perowskitproduktion und Wiederverwendung von Blei aus dem Kernspaltungsreaktor

Bleireste aus dem Kernspaltungsreaktor 235U an Bord des Landeroboters können verwendet werden, da sie ein Nebenprodukt des radioaktiven Zerfalls der Kontamination von 238U sind. Es gibt keine bestätigten höheren Jodkonzentrationen auf dem Mars. Um das PbI und Methylammoniumiodid in Solarzellen zu produzieren, muß dieses Element in Form von elementarem Jod, KI oder NaI mit dem Landeroboter mitgebracht werden. Da jedoch Jod durch das Element Chlor zur Herstellung von Perowskit ersetzt werden kann, muß die ursprüngliche Menge Jod möglicherweise nicht nachgefüllt werden. Chlor ist auf dem Mars ein reichlich vorhandenes Element.

Lösungsmittel, die für Perowskit-Zellen benötigt werden, können vor Ort unter Verwendung von Methangas und Essigsäure (ebenfalls ein mögliches Nebenprodukt von MERs) als Vorläufer hergestellt werden, sobald sie verfügbar sind. Um die Zwischenlücke zu schließen, können Lösungsmittel und organische Substrate verwendet werden, die vom Landeroboter auf den Mars gebracht werden. Diese Materialien sind:

  • N, N-Dimethylformamid (Lösungsmittel)
  • 2-Propanol (Lösungsmittel)
  • 2,2 ‘, 7,7′-Tetrakis (N, N-di-p-methoxyphenylamin) -9,9’-spirobifluoren (Spiro-MeOTAD, Reaktant)

Da die Synthese von Perowskit-Zellen auf dem Mars immer noch zu schwierig sein kann, empfehlen wir den Transport dieser Komponenten. Wie unten gezeigt (Energiebedarf des Oberflächenlebensraums) werden nur 9 kg Perowskit-Sonnenkollektoren benötigt. Da Photovoltaikanlagen ständig verbessert werden, kann man in Zukunft eine bessere Leistung und geringere Gewichte erwarten.

Die in dieser Tabelle zum aktuellen Stand der Technik enthaltenen Geräte weisen Wirkungsgrade auf, die von unabhängigen, anerkannten Prüflabors (NREL, AIST, JRC-ESTI und Fraunhofer-ISE) bestätigt und standardisiert gemeldet werden (Quelle: NREL 2019).

Energiebedarf des Oberflächenlebensraums

Der durchschnittliche Energiebedarf pro Kopf in der Europäischen Union betrug 150 GJ/Jahr. Obwohl diese Schätzung für eine permanente Kolonie auf dem Mars wahrscheinlich zu hoch ist, haben wir dies hier als Referenz verwendet. Ein Perowskit-Solarmodul, das mit einem Wirkungsgrad von 12% betrieben wird, kann aus dem Mars-Aphel 8 Stunden Sonnenstrahlung mit einer angenommenen Leistung von 170 W/m² also 14 MJ/Tag/m² erzeugen. Das heißt, 240 m² Methylammonium-Bleihalogenid-Perowskit-Sonnenkollektoren sind erforderlich, um die Anwesenheit einer Person auf dem Mars aufrechtzuerhalten. Dies erfordert 350 g mesoporöses TiO2 und 370 g Au pro Kopf. Das geringe Gewicht von ca. 720 g pro Kopf ermöglicht einen Transport dieser Komponenten von der Erde zum Mars (insgesamt 8,5 kg). Die Montage des dünnen Solarkollektors auf einer stabilen Stahloberfläche ist auf dem Mars nur möglich, wenn Stahl vor Ort hergestellt wird. NASAs Human Exploration of Mars Design empfiehlt eine Mission von 6 Forschern. Das heißt, daß bei einer Leistung von ca. 1.400 m² Perowskit-Solarmodulen oder 170 kW nur ​​eine bemannte Forschungsmission überleben braucht. Vor dem Einbau dieser Paneele muß Stahl hergestellt werden, auf dem sie montiert werden können. Für den geplanten höheren Energiebedarf sind 3,5 MW erforderlich, wofür etwa 6,3 Tonnen Perowskit zum Mars transportiert werden können.

Auf dem Mars hergestellte Verbindungen (Zweck in Klammern)

  • Eisen, Fe0 (Stahl)
  • Stahl (Konstruktion, Drähte, Elektroden)
  • Graphit (Stahl, Elektroden)
  • Siliciumdioxid, SiO2 (Siliciumcarbid, Graphit)
  • Siliziumkarbid, SiC (Graphit)

Auf den Mars gebrachte Verbindungen (mit optionaler späterer In-situ-Produktion):

  • Graphit (für die anfängliche Stahlproduktion)
  • Oder Kohlefaserelemente (für den Bau ohne Stahl)
  • Platinchlorid (zum Galvanisieren von Anoden, alternativ zu Stahl)
  • Perowskit-Sonnenkollektoren (3,3 Tonnen)
  • Mesoporöses Titandioxid, TiO2
  • (Perowskit-Solarzellen, Photonenfalle)
  • Gold (Perowskit-Solarzellen, Leiter)
  • Bleiiodid (Perowskit-Solarzellen)
  • N, N-Dimethylformamid (Perowskitsolarzellen, Lösungsmittel)
  • Methylammoniumiodid, CH3NH3I (Perowskit-Solarzellen, Reaktant)
  • 2-Propanol (Perowskit-Solarzellen, Lösungsmittel)
  • Iodwasserstoffsäure (Perowskitsolarzellen, Reaktant)
  • Spiro-MeOTAD (Perowskit-Solarzellen, Reaktant)

(Prof. John Piscotta von der West Chest University hat and diesem Artikel mitgewirkt. Bild: NASA/Wikipedia)

Veröffentlicht am

Energiespeicherung in Großbritannien

In unserem letzten Beitrag zum EU-Energiespeichermarkt haben wir einen kurzen Überblick über die Situation in Deutschland gegeben. Jetzt wollen wir einen näheren Blick auf Großbritannien werfen. Der britische Energiemix wurde traditionell von fossilen Brennstoffen dominiert. Dies ist auch bis heute der Fall. Zirka 60% des in Großbritannien erzeugten Stroms wird aus fossilen Brennstoffen gewonnen und weitere 20% aus Kernkraft.

Stromproduktion in Großbritannien 2015 (Quelle: Die britische Regierung)

Während das Vereinigte Königreich stark von kohlenstoffintensiven Stromquellen abhängig war, verpflichteten hat es sich 2008 zum Ziel gesetzt, bis 2020 mindestens 15% aus erneuerbare Energien zu erzeugen und zudem eine 80%ige Reduzierung der CO2-Emissionen bis 2050 zu erreichen (Ministerium für Energie und Klimawandel). Das Vereinigte Königreich hat jedoch inzwischen erklärt, daß es das erneuerbare Ziel von 15% für 2020 verfehlen wird, da keine entsprechenden politischen Maßnahmen getroffen wurden. Der Übergang zu einem kohlenstoffarmen Markt wird dennoch mit erheblichem Druck vorangetrieben. Ein Viertel der vorhandenen Erzeugungskapazitäten (hauptsächlich Kohle und Kernkraft) wird voraussichtlich bis 2021 stillgelegt. Es wird erwartet, daß das Wachstum der erneuerbaren Energien zu mehr Energiespeicherkapazitäten führen wird.

Im Jahr 2011 räumte die britische Regierung ein, daß der gegenwärtige Energiemarkt für eine Umstellung auf erneuerbaren Energie nicht geeignet ist. Die Regierung schlug eine Verlagerung auf einen kapazitätsbasierten Markt vor, d.h. auf einen Markt, in dem eine zentrale Behörde die Beschaffungen von Energiekapazitäten im Voraus plant und durchführt, um die künftige Erzeugung angemessen steuern zu können. Die vorgeschlagene Marktreform würde dazu beitragen, den Übergang zu kohlenstoffarmer Energie voranzutreiben, indem die Einnahmen der Erzeuger erneuerbarer Energien durch Kohlenstoffpreise und Einspeisetarife stabilisiert werden. Der Kapazitätsmarkt war nach den ersten Energieauktionen Ende 2015 in Betrieb.

Großbritannien hat bei seinen kurzfristigen Zielen für saubere Energien große Fortschritte erzielt, und es besteht Optimismus, daß sich dieser Trend fortsetzt. Die Entwicklung kohlenstoffarmer Erzeugungstechnologien aus Wind und Sonne in großem Maßstab wird fortgesetzt.

Energiespeicher

Ende 2016 gab es in Großbritannien 27 Energiespeichernlagen (ohne Pumpspeicherkraftwerke) mit einer installierten Leistung von 430 MW. Das Energiespeicherportfolio in Großbritannien wird von elektrochemischen Technologien (hauptsächlich Blei-Säure- und Lithium-Ionen-Batterieanlagen) dominiert, wie dargestellt ist.

Anlagen zur Energie Speicherrung in Großbritannien nach Art, 2015 (Quelle: Sandia National Laboratories)

Die Verbreitung elektrochemischer Technologien scheint sich auch kurzfristig fortzusetzen. Fünf der sieben Energiespeicherprojekte in Großbritannien sind elektrochemisch. Obwohl es sich um eine relativ kleine Stichprobe handelt, stehen die sinkenden Kosten für die Speicherung von Lithium-Ionen-Batterien in Großbritannien im Mittelpunkt.

Energiespeichernutzung

Anlagen zur Energiespeicherung nach Nutzung in Großbritannien (Quelle: Sandia National Laboratories)

Wie auch in Deutschland, ist auch in Großbritannien nur ein sehr kleiner Teil der Energiespeicheranlagen für den Ausbau der Kapazitäten für erneuerbare Energien vorgesehen. Die vorhandene Speicherkapazität ist fast ausschließlich für die kritische Übertragungsunterstützung (Vor-Ort-Stromversorgung) vorgesehen. Zudem sind fast alle sich in Entwicklung befindlichen Großspeicher zum Tagesausgleich von Spitzenlasten vorgesehen.

Das Wachstum von elektrischen Energiespeichern in Großbritannien ist nach wie vor mit erheblichen Unsicherheiten behaftet. Bei einer derart geringen Stichprobengröße ist es zudem schwierig, aus den Daten in der obigen Abbildung einen Trend zu erkennen. Laut der vorherigen britischen Regierung, würde man davon ausgehen, daß das geografisch isolierte Vereinigte Königreich ein Nettoimporteur von Elektrizitä bleibt und deswegen langfristig einen stärkeren Fokus auf den Ausbau der Kapazitäten für erneuerbare Energien legen wird.

Marktausblick für Energiespeicher

Großbritannien befindet sich mitten in einer umfassenden Umstrukturierung seines Stromerzeugungsportfolios und des Marktes, auf dem diese Vermögenswerte vertrieben werden. Da ein großer Teil der vorhandenen Kapazität in den nächsten 10 bis 15 Jahren in den stillgelegt werden sollen, steht Großbritannien vor den Herausforderungen, den anfallenden Energiebedarf zu decken und gleichzeitig die Anstrengungen zur Reduzierung der CO2-Emissionen auszugleichen. Dazu sind umfangreiche Investitionen in alle Bereiche des Stromnetzes erforderlich, einschließlich Energiespeicher.

In ihrer Veröffentlichung zu Smart Power stellte die Nationale Infrastrukturkommission fest, daß das Vereinigte Königreich zwar vor Herausforderungen steht, um die alternde Infrastruktur abzudecken, dies jedoch eine Chance für den Aufbau einer effizienten und flexiblen Energieinfrastruktur darstellt. Die Kommission erklärte, daß Energiespeicherung eine der drei Schlüsselinnovationen für eine „intelligente Energiewende“ sei.

Viele andere offizielle Regierungsstellen haben ähnliche Gedanken bezüglich der Energiespeicherung geäußert. In seinem Bericht über die kohlenstoffarme Netzinfrastruktur erklärte der Ausschuß für Energie und Klimawandel, daß „Speichertechnologien so bald wie möglich in großem Maßstab eingesetzt werden sollten“, und forderte die Regierung auf, die veralteten und unfairen Vorschriften zu beseitigen, die die Entwicklung der Energiespeicher in der EU mit Handschellen belasten Großbritannien (Garton und Grimwood).

Im April 2016 erkannte die britische Regierung Bedenken hinsichtlich der regulatorischen Hürden für Energiespeicherprojekte an (vor allem die doppelte Erhebung von Netzentgelten) und erklärte, daß sie mit der Nationalen Infrastrukturkommission und dem Ministerium für Energie und Klimawandel zusammenarbeiten würden, um das Problem zu untersuchen. Während es in Großbritannien regulatorische Hürden für die Speicherung von Energie geben kann, hat die britische Regierung ihr Engagement durch Finanzierung unter Beweis gestellt. Seit 2012 hat die britische Regierung mehr als 80 Millionen Pfund für die Energiespeicherforschung bereitgestellt. Darüber hinaus hat das Ministerium für Energie und Klimawandel einen neuen Fonds in Höhe von 20 Millionen Pfund entwickelt, um Innovationen bei Energiespeichertechnologien voranzutreiben.

Insgesamt sind die Aussichten für die Energiespeicherung in Großbritannien positiv. Es besteht ein erheblicher Druck, nicht nur von der Industrie, sondern auch von vielen staatlichen Stellen mit der Entwicklung von Energiespeichern in großem Maßstab zu beginnen. Auch die Investoren sind bereit. Laut Aussage der Nationalen Infrastrukturkommission: „Unternehmen stehen bereits an, um zu investieren“.

Einfach ausgedrückt: Die regulatorischen Hürden bremsen das Wachstum auf dem britischen Energiespeichermarkt. Angesichts der großen Fortschritte der Regierung bei der Entwicklung erneuerbarer Energien und ihres Bekenntnisses, Großbritannien zu einem führenden Anbieter von Energiespeichertechnologie zu machen, werden diese regulatorischen Hürden wahrscheinlich gelockert, und der britische Energiespeichermarkt dürfte in naher Zukunft ein beträchtliches Wachstum verzeichnen.

Zu diesem Zeitpunkt wurden bestimmte Technologietypen und Dienstnutzungen noch nicht detailliert angenommen. Angesichts der geografischen Isolation des Nettostromimporteurs Großbritannien würde die Logik jedoch darauf hindeuten, daß die Kapazitäten für erneuerbare Energien langfristig ausgebaut werden, um den inländischen Verbrauch erneuerbarer Energien zu maximieren. Die rapide sinkenden Kosten für elektrochemische Technologien und die Tatsache, daß ein Großteil der vorhandenen Gaskapazitäten bis 2030 das Ende ihrer Lebensdauer erreichen wird, legen nahe, daß der britische Energiespeichermarkt für P2G-Technologien nicht ideal wäre.

In unserem nächsten Beitrag können Sie mehr über den Energiespeicherung in Italien erfahren.

(Jon Martin, 2019)

Veröffentlicht am

Bioelektrischer Alkohol als Flüssigkraftstoff mit Hilfe von Hefen

Hefen wie Saccharomyces cerevisiae werden, wie der Name erraten läßt, zur Herstellung von Bier und anderen alkoholischen Getränken im großen Maßstab eingesetzt. Ihre hohe Salz- und Ethanoltoleranz macht sie dabei aber nicht nur für die Herstellung von Getränken nützlich, sondern auch für hohe Alkoholkonzentrationen bei der Produktion von Kraftstoffen. Wie wir schon berichteten, sind dabei neben dem bekannten Ethanol besonders auch die langkettigen Fuselalkohole interessant. Schon heute wird Bioethanol mit Benzin gemischt und verbessert somit die CO2-Bilanz von Verbrennungsmotoren. Dieser flüssiger Biokraftstoff wird entweder aus Stärke oder Lignocellulose hergestellt. Die lokale Produktion und Verwendung von Bioethanol unterstützt lokale Volkswirtschaften, verringert den CO2-Ausstoß und fördert die Selbstversorgung. Letzteres ist besonders wichtig für ressourcenarme Binnenländer von Bedeutung.

Um Ethanol und andere Alkohole effizient aus Lignocellulose-Hydrolysaten herzustellen, müssen Hefen sowohl Glucose als auch Pentosen wie Xylose und Arabinose verwenden. Dies liegt daran, daß Biomasse sowohl reich an Lignocellulose und damit auch Glucose und Xylose ist. Dies ist allerdings auch der Hauptnachteil der Verwendung von Saccharomyces cerevisiae, da sie Xylose nicht fermentieren kann. Dementsprechend ist die Identifizierung von Hefestämmen, die sowohl Glucose als auch Xylose fermentieren können, von großer Bedeutung. Hocheffiziente Hefestämme können, z.B. in Co-Kulturen mit anderen Hefen, die zur Lignocellulosefermentation fähig sind, für die Ethanolherstellung verwendet werden. Eine solche Hefe ist z.B. Wickerhamomyces anomalous.

Um die Ethanolproduktion weiter zu verbessern, kann bioelektrische Fermentationstechnologie eingesetzt werden, die die traditionelle Fermentation unterstützt. Der mikrobielle Metabolismus kann so elektrochemisch gesteuert werden. Die Vorteile sind vielfältig. Die Fermentation wird durch das Anlegen eines elektrochemischen Potentials selektiv, wodurch sich die Effizienz der  von Zuckerverwertung erhöht. Zudem wird so der Einsatz von Additiven zur Kontrolle das Redoxgleichgewichts sowie des pH-Wertes minimiert. Auch das Zellwachstum kann dadurch verbessert werden.

Solche bioelektrischen Zellen sind galvanische Zellen. Die in der bioelektrischen Zelle verwendeten Elektroden können als Elektronenakzeptoren oder -quelle wirken. Solche elektrochemischen Veränderungen wirken sich nicht nur auf den Stoffwechsel und die Zellregulation aus, sondern auch auf die Wechselwirkungen zwischen den eingesetzten Hefen aus. Jetzt hat eine Forschergruppe aus Nepal (einem ressourcenarmen Binnenland) neue Hefestämme von Saccharomyces cerevisiae und Wickerhamomyces anomalous in einem bioelektrischen Fermenter verwendet, um die Ethanolproduktion aus Biomasse zu verbessern. Die Ergebnisse haben die Wissenschaftler im Fachmagazin Frontiers in Energy Research publiziert.

Für die Studie wurden Saccharomyces cerevisiae und Wickerhamomyces anomalus ausgewählt, da beide gute Ethanolproduzenten sind und von letzterer gezeigt wurde, daß sie Xylose in Ethanol umwandeln können. Nachdem die Forscher eine Spannung an das System angelegt hatten, verdoppelte sich die Ethanolproduktion durch die verwendeten Hefen. Beide Hefen bildeten einen Biofilm auf den Elektroden, was das System ideal für den Einsatz als Durchflußsystem macht, da die Mikroorganismen nicht ausgewaschen werden.

Saccharomyces cerevisiae, lichtmikroskopische Aufnahme, 600-fache Vergrößerung (Foto: Amanda Luraschi)

Die Forscher spekulierten, daß die erhöhte Ethanolproduktion durch die stärker angetrieben Umwandlung von Pyruvat zu Ethanol zu Stande kam − dem zentralen Stoffwechselmechanismus der Hefe. Dies führten die Forscher auf einen Beschleunigung der Redoxreaktionen an der Anode und Kathode zurück. Die zugeführte externe Spannung polarisierte die im Cytosol vorhandenen Ionen und erleichtert so den Elektronentransfer von der Kathode. Dies und die beschleunigte Glucoseoxidation führten wahrscheinlich zu einer erhöhten Ethanolproduktion.

Normalerweise wird Pyruvat in Gärhefen zu Ethanol umgewandelt. Eine externe Spannungseingabe kann die Kinetik des Glukosestoffwechsels in Saccharomyces cerevisiae sowohl unter aeroben als auch unter anaeroben Bedingungen zu steuern. Dabei spielen intrazelluläre wie das Transplasmamembran-Elektronentransfersystem eine wichtige Rolle für den Elektronentransport durch die Zellmembran. Das Elektronentransfersystem besteht aus Cytochromen und verschiedenen Redoxenzymen, die der Membran an bestimmten Stellen Redoxaktivität verleiht.

Die Autoren haben zudem festgestellt, daß eine erhöhte Salzkonzentration die Leitfähigkeit und damit die Ethanolproduktion fördert. Die erhöhte Ethanolproduktion aus lignocellulosehaltiger Biomasse könnte auch auf das Vorhandensein verschiedener Naturstoffe zurückzuführen sein, die das Wachstum von Hefestämmen fördern könnten. Wenn die Celluloseacetatmembran durch eine Nafion™-Membran ersetzt wurde, erhöhte dies die Ethanolproduktion ebenfalls. Das könnte auf einen verbesserten Transport von Xylose durch die Nafion™-Membran sowie auf die Abnahme des Innenwiderstands zurückzuführen sein. Eine weitere Steigerung der Ethanolproduktion wurde beobachtet, wenn der bioelektrische Reaktor mit feinen Platinpartikeln betrieben wurde, die auf die Platinanode aufgetragen waren, und Neutralrot auf der Graphitkathode abgeschieden wurde.

Hefekulturen von links nach rechts: Saccharomyces cerevisiae, Candida utilis, Aureobasidium pullulans, Trichosporum cutaneum, Saccharomycopsis capsularis, Saccharomycopsis lipolytica, Hanseniaspora guilliermondii, Hansenula capsulata, Saccharomyces carlsbergensis, Saccharomyces rouxii, Rhodotorula rubra, Phaffia rhodozyba, Cryptococcus laurentii, Metschnikowia pulcherrima, Rhodotorula pallida

Bei Frontis Energy denken wir, daß die vorliegende Studie vielversprechend ist. Für die Zukunft sollten aber langkettige Fuselalkohole in Betracht gezogen werden, da diese weniger flüchtig und besser mit derzeitigen Verbrennungsmotoren verträglich sind. Diese können zudem leicht in die entsprechenden langkettigen Kohlenwasserstoffe umgewandelt werden.

Veröffentlicht am

Deutschlands Markt für Energiespeicher

Deutschlands Stromportfolio

In unseren letzten Beiträgen haben wir elektrische Energiespeicher (EES) und den EU-Markt für EES vorgestellt. Im Folgenden konzentrieren wir uns auf einige wichtige EU-Mitglieder und beginnen mit Deutschland. Das Elektrizitätsportfolio des Landes spiegelt seinen Status als eines der fortschrittlichsten Länder der Welt in Bezug auf Klimaschutz wider. Bis November 2016 hat Deutschland ~35% seines Strombedarfs 2016 aus erneuerbaren Quellen gedeckt, wie in der folgenden Abbildung zu erkennen ist.

Stromerzeugung nach Quelle in Deutschland 2016 (Quelle: Fraunhofer ISE)

Das Wachstum der erneuerbaren Energien wurde durch die Energiewende in Deutschland weltweit vorangetrieben. Die Energiewende ist ein langfristiger Plan zur Decarbonisierung des Energiesektors. Die Richtlinie wurde Ende 2010 mit ehrgeizigen Zielen für die Reduzierung von Treibhausgasen und für die Bereitstellung von erneuerbaren Energien bis 2050 verabschiedet (80-95% weniger Treibhausgase als 1990 und 80% erneuerbarer Strom).

Ein wesentlicher Bestandteil der Energiewende-Politik 2010 war das Vertrauen in die 17 deutschen Kernkraftwerke als Bedarfsreserve, um den Übergang von fossilen Brennstoffen zu erneuerbaren Energien zu erleichtern. Angesichts der Katastrophe von Fukushima, nur sechs Monate nach dem Inkrafttreten der Energiewende, hat die Bundesregierung die Politik dahingehend geändert, daß bis 2022 ein aggressiver Atomausstieg unter Beibehaltung der Zielvorgaben für 2050 vorgesehen ist. Dies hat die Bedeutung von sauberem, zuverlässigem Strom aus alternativen Quellen wie Wind und Sonne nur noch verstärkt.

Bestehende Energiespeicher in Deutschland

Bis Ende 2016 sind in Deutschland 1.050 MW Energiespeicherkapazität (ohne PHS) installiert. Der Großteil dieser Kapazität besteht aus elektromechanischen Technologien wie Schwungrädern und Druckluftspeichern (siehe Abbildung unten).

Deutschlands Energiespeicher nach Kapazität (Quelle: Sandia National Laboratories)

Diese Zahlen sind jedoch aufgrund der Tatsache, daß es sich bei der elektromechanischen Kategorie im Wesentlichen um zwei Druckluftspeichernanlagen mit großer Kapazität handelt, etwas verzerrt. In der Realität sind elektrochemische Projekte (hauptsächlich Batterien) weit verbreitet und machen den größten Teil des Wachstums auf dem deutschen Speichermarkt aus. Derzeit befinden sich in Deutschland elf elektrochemische Energiespeicherprojekte in der Entwicklung und keine elektromechanischen Projekte in der Entwicklung (siehe Abbildung unten).

Anzahl der EES-Projekte nach Typ (Quelle: Sandia National Laboratories)

Dienstleistungen Nutzung von Energiespeichern in Deutschland

Wie bereits erwähnt, gibt es Verwendungen für EES-Technologien. Derzeit werden mit der in Deutschland vorhandenen EES-Flotte Netzbetriebs- und Stabilitätsanwendungen (Schwarzstart, Stromversorgungskapazität) sowie Vor-Ort-Strom für kritische Übertragungsinfrastruktur bedient. Eine Aufschlüsselung der Dienstnutzungen auf dem deutschen Markt ist nachstehend aufgeführt.

Service-Nutzung von Verwendung von Energiespeichern in Deutschland (Quelle: Sandia National Laboratories)

Am bemerkenswertesten ist die Tatsache, daß der Ausbau der Kapazitäten für erneuerbare Energien nur 0,3% der derzeit in Deutschland tätigen EES (ohne Pumpspeicher) ausmacht. Um dies zu verstehen, muß angemerkt werden, daß Deutschland ein Nettoexporteur von Elektrizität ist (nächste Abbildung unten). Mit einem der zuverlässigsten Stromnetze der Welt und einer idealen geografischen Lage ist Deutschland hervorragend an eine Vielzahl benachbarter Strommärkte angebunden. So ist es einfach, überschüssigen Strom zu exportieren.

Dieser „Exportausgleich“ ist ein Hauptgrund dafür, dass der EES-Markt in Deutschland kein vergleichbares Wachstum wie bei erneuerbaren Energien verzeichnet hat. Für Deutschland ist es einfach, Strom zu exportieren, um die Systemlast in Zeiten höchster erneuerbarer Produktion auszugleichen. Es gibt jedoch negative Aspekte dieses Energieexports, wie eine starke Überlastung der Übertragungsinfrastruktur in den Nachbarländern.

Netto-Stromexporte bei durchschnittlicher Marktpreisentwicklung für Deutschland im Jahr 2015 (Quelle: Fraunhofer ISE)

Ausblick für den Energiespeichermarkt in Deutschland

Die Logik scheint darauf hinzudeuten, daß Deutschland mit aggressiven Zielen für erneuerbare Energien, seinem geplanten Atomausstieg und einer stärkeren Betonung der Energieunabhängigkeit mehr EES-Kapazität entwickeln muß. Viele Experten sind jedoch der Ansicht, daß der hinkende kurz- und mittelfristige Ausbau der EES Kapazitäten die Energiewende nicht behindern wird. Einige behaupten sogar, daß EES in den nächsten 10 bis 20 Jahren keine Notwendigkeit sein wird. Selbst wenn Deutschland beispielsweise seine Wind- und Solarziele für 2020 erreicht (46 GW bzw. 52 GW), würden diese in der Regel 55 GW nicht überschreiten, und fast der gesamte Strom würde im Inland in Echtzeit verbraucht. Daher wäre nennenswerte Unterstützung durch EES nicht erforderlich.

Das Deutsche Institut für Wirtschaftsforschung teilt diese Einschätzung und argumentiert, daß die bei erheblichen erneuerbaren Energiekapazitäten erforderliche Netzflexibilität durch kostengünstigere Optionen wie flexible Grundlastkraftwerke und ein besseres Management der Nachfrageseite gewährleistet werden könnte. Darüber hinaus bieten Innovationen bei Power-to-Heat-Technologien, bei denen überschüssiger Wind- und Solarstrom zur Versorgung von Fernwärmesystemen verwendet wird, neue Chancen und schaffen einen neuen Markt für Energiedienstleistungsunternehmen.

Power-to-Gas

Das Bundesministerium für Verkehr und digitale Infrastruktur hat festgestellt, daß P2G ideal geeignet ist, um überschüssige erneuerbare Energie in ein vielfältiges Produkt umzuwandeln, das über einen langen Zeitraum gespeichert werden kann. Deutschland war in den letzten Jahren der zentrale Ort für die Entwicklung der P2G-Technologie. Derzeit sind in Deutschland sieben P2G-Projekte in Betrieb oder im Bau.

Während der laufenden Arbeiten ist eine wirtschaftlich realisierbare Produktion von P2G derzeit nicht möglich, da der Stromüberschuss begrenzt ist und die garantierte Kapazität niedrig ist. Dieser begrenzte Stromüberschuss ist ein Beispiel für die Wirkung der oben diskutierten Stromexporte. Während es kurzfristig möglicherweise keinen bedeutenden kommerziellen Markt gibt, könnte die Einführung von P2G für den Verkehr als zusätzlicher Motor für die weitere Entwicklung erneuerbarer Energien in Deutschland fungieren.

(Jon Martin, 2019)

Veröffentlicht am

Richtlinien für einen globalen CO2-Haushalt

Zahlreiche Untersuchungen haben während des letzten Jahrzehnts gezeigt, daß die globale Erwärmung in etwa proportional zur CO2-Konzentration in unserer Atmosphäre ist. Auf diese Weise läßt sich unser verbleibende Kohlenstoffhaushalt abschätzen. Das ist die Gesamtmenge des vom Menschen produzierten Kohlendioxids, die noch in die Atmosphäre abgegeben werden kann, bevor ein festgelegter globaler Temperaturgrenzwert erreicht wird. Auf diesen Grenzwert haben sich die Nationen der Welt im Pariser Abkommen 2015 geeinigt. Er soll 1,5°C nicht überschreiten, und in jedem Fall weit unter 2,0°C liegen. Es wurden jedoch zahlreiche Schätzungen für das verbleibende CO2 gemacht, was sich negativ auf die politische Entscheidungsfindung auswirkt. Jetzt hat eine internationale Forschergruppe von ausgewiesenen Klimaexperten eine Richtlinie für die Errechnung des globalen CO2-Haushalts im renomierten Fachmagazin Nature veröffentlicht. Die Forscher schlagen vor, daß die Anwendung dieser Richtlinie dazu beitragen soll, die teils gravierenden Unterschiede bei der Abschätzung des CO2-Haushalts auszugleichen, und die Unsicherheiten in Forschung und Politik zu verringern.

Seit dem fünften Bericht des Zwischenstaatlichen Gremiums für Klimawandel (IPCC) hat das Konzept eines CO2-Haushalts als Instrument zur Ausrichtung der Klimapolitik an Bedeutung gewonnen. In einer Reihe von Studien aus den letzten zehn Jahren wurde geklärt, warum der Anstieg der globalen Durchschnittstemperatur in etwa proportional zur Gesamtmenge der CO2-Emissionen ist, die seit der industriellen Revolution durch menschliche Aktivitäten verursacht wurden. Dabei zitiert die Forschergruppe zahlreiche veröffentlichte Belege. Diese Literatur hat es Wissenschaftlern ermöglicht, den linearen Zusammenhang zwischen Erwärmung und CO2-Emissionen als transiente Klimareaktion auf kumulierte CO2-Emissionen (TCRE) zu definieren. Die Brillianz dieses Konzepts wird deutlich, die man erkennt, daß die Reaktion des komplexen Systems Erde auf unsere CO2-Emissionen durch eine ungefähr lineare Beziehung dargestellt werden kann. In jüngster Zeit wurden jedoch zusätzliche Prozesse, die die zukünftige Erwärmung beeinflussen, in Modelle einbezogen. Dabei handelt es sich z.B. um das Auftauen des arktischen Permafrosts. Diese zusätzlichen Prozesse erhöhen die Unsicherheit. Zudem wird die globale Erwärmung nicht nur durch CO2-Emissionen verursacht. Andere Treibhausgase, wie z.B. Methan, fluorierte Gase oder Lachgas, sowie Aerosole und deren Vorstufen beeinflussen die globalen Temperaturen. Dies verkompliziert die Beziehung zwischen zukünftigem CO2 weiter.

Bei der durch CO2 verursachten Klimaerwärmung trägt jede Tonne zur Erwärmung bei, egal ob diese Tonne CO2 heute, morgen oder in der Verganganheit ausgestoßen wurde. Dies bedeutet, daß die globalen CO2-Emissionen auf das Null gesenkt werden müssen, um dann dort zu bleiben. Das heißt auch, daß unsere Emissionen umso schneller sinken müssen, je mehr wir in den kommenden Jahren emittieren. Auf Nullemission würde sich die Erwärmung zwar stabilisieren, aber nicht verschwinden oder oder sich gar umgekehren. Eine Überziehung des CO2-Haushalts müßte also später wieder durch ein Entfernen des CO2s ausgeglichen werden.  So kann z.B. die Entfernung mit Hilfe von filtern geschehen, wie wir bereits berichteten. Schlußendlich wird dies wohl der einzig verbleibende Weg sein, denn die Durchdringung unserer Energiewirtschaft mit CO2-neutralen Quellen hat sich bei 5% stabilisiert. Die Aufstellung eines Kohlenstoffhaushalts macht die Dringlichkeit deutlich. Leider sind die Angaben über die uns verbleibende Menge CO2 weit gestreut. In ihrer Richtlinie zitieren die Forscher zahlreiche Studien zur Erhaltung des 1,5°C-Ziels, die von 0 Tonnen CO2 bis zu 1.000 Gigatonnen reichen. Für das 2,0°C-Ziel reicht die Spannweite von ca. 700 Gigatonnen bis hin zu fast 2.000 Gigatonnen verbleibende CO2-Emissionen. Das Ziel der Forscher ist es, diese Unsicherheit einzuschränken, in dem sie eine klare Richtlinie vorschlagen. Das zentrale Element dieser Richtlinie ist die Gleichung zur Berechnung des verbleibenden CO2-Haushaltsrahmens:

Blim = (TlimThistTnonCO2TZEC) / TCRE − EEsfb

Dieser Rahmen sind die verbleibenden CO2-Emissionen (Blim) für die spezifische Temperaturgrenze (Tlim) als Funktion von fünf Termen, die Aspekte des geophysikalischen und gekoppelten Mensch-Umwelt-Systems darstellen: die bisherige vom Menschen verursachte Erwärmung (Thist), der Nicht-CO2-Beitrag zum zukünftigen Temperaturanstieg (TnonCO2), die Nullemissionsfestlegung (TZEC), die TCRE und eine Anpassung für Quellen aus eventuellen Rückkopplungen mit nicht erfaßten geologischen Systemen (EEsfb).

Term

Bedeutung

Art

Derzeitiges Verständnis

Erwärmungsgrenze Tlim Wahl der Temperaturmetriken, mit denen die globale Erwärmung, die Wahl des vorindustriellen
Bezugszeitraums und die Übereinstimmung mit den globalen Klimazielen ausgedrückt werden
Wählbar Mittel bis hoch
Vergangene menschenverursachte Erwärmung Thist Unvollständige Erfassung in Beobachtungsdatensätzen und Methoden zur Abschätzung der vom Menschen verursachten Komponente; Siehe auch Tlim Unsicherheit Mittel bis hoch
Nicht-CO2 Erwärmung TnonCO2 Die Höhe der verschiedenen Nicht-CO2-Emissionen, die mit den weltweiten Netto-Null-CO2-Emissionen übereinstimmen, hängt von den politischen Entscheidungen, aber auch vom unsicheren Erfolg ihrer Umsetzung ab Wählbare Unsicherheit Mittel
Nicht-CO2 Erwärmung TnonCO2 Klimareaktion auf Nicht-CO2-Verusacher, insbesondere in Bezug auf die Aerosolrückgewinnung und  Temperaturreduzierung aufgrund geringerer Methanemissionen Unsicherheit Niedrig bis mittel
Nullemissionsverpflichtung TZEC Vorzeichen und Ausmaß der Nullemissionsverpflichtung in dekadischen Zeitskalen für aktuelle und nahezu Null jährliche CO2-Emissionen Unsicherheit Niedrig
Transiente Klimareaktion auf
kumulierte CO2-Emissionen
TCRE Verteilung der TCRE-Unsicherheit, Linearität der TCRE zur Erhöhung und Stabilisierung der kumulativen CO2-Emissionen und Auswirkung von Temperaturmetriken auf die TCRE-Schätzung Unsicherheit Niedrig bis mittel
Transiente Klimareaktion auf
kumulierte CO2-Emissionen
TCRE Über die Spitzenerwärmung hinausgehende Unsicherheit der Linearität, Wert und Verteilung der TCRE zur  Verringerung der kumulierten CO2-Emissionen Unsicherheit Niedrig
Rükkopplungen mit nicht erfaßten
geologischen Systemen
EEsfb Dauer und Ausmaß des Auftauens von Permafrost und der Methanfreisetzung aus Feuchtgebieten und deren Darstellung in Geomodellen sowie andere mögliche Arten von Rückkopplungen Unsicherheit Sehr niedrig

In dem CO2-Haushalt ist wohl die Rückkopplungen mit nicht erfaßten geologischen Systemen (EEsfb) die größte Unsicherheit. Diese Rückkopplungsprozesse sind typischerweise mit dem Auftauen von Permafrost und der damit verbundenen langfristigen Freisetzung von CO2 und CH4 verbunden. Es wurden jedoch auch andere Rückkopplungsquellen für das Geosystem identifiziert, wie z.B. die Änderungen der CO2-Aufnahme in der Vegetation und die damit verbundene Stickstoffverfügbarkeit. Weitere Rückkopplungsprozesse involvieren die Änderungen der Oberflächenalbedo, der Wolkendecke oder von Brandbedingungen.

Es bleibt es eine Herausforderung, die Unsicherheiten im Zusammenhang mit den Schätzungen des CO2-Haushalt angemessen zu charakterisieren. In einigen Fällen ist die Ursache der Unsicherheiten ungenaue Kenntnis der zugrunde liegenden Prozesse oder mangelnde Genauigkeit der Messungen. In anderen Fällen werden Begriffe nicht einheitlich verwendet. Für eine bessere Vergleichbarkeit und Flexibilität schlagen die Forscher vor, die globalen Werte der Oberflächenlufttemperatur routinemäßig zu messen. Diese Methode liefert unveränderliche Zahlen für Modelle, Modellabläufe über gewählte Zeiträume hinweg. Detailliertere Vergleiche zwischen veröffentlichten Schätzungen den CO2-Haushalt sind derzeit schwierig, da oft die Originaldaten aus den ursprünglichen Studien fehlen. Die Forscher schlagen daher vor, diese zukünftig zusammen mit den Publikationen bereitzustellen.

Die Zerlegung des CO2-Haushalts in seine Einzelfaktoren ermöglicht es, eine Reihe vielversprechender Wege für die zukünftige Forschung zu identifizieren. Ein Forschungsbereich, der dieses Feld voranbringen könnte, ist die nähere Betrachtung der TCRE. Zukünftige Forschungen werden voraussichtlich die Bandbreite der TCRE-Schätzungen einschränken, was die Unsicherheit verringern wird. Ein weiteres vielversprechendes Forschungsgebiet ist die Untersuchung der Wechselbeziehung zwischen Einzelfaktoren und ihren verbunden Unsicherheiten, beispielsweise zwischen Unsicherheiten in Thist und TnonCO2. Dies könnte durch die Entwicklung von Methoden erreicht werden, die eine zuverlässige Abschätzung der vom Menschen verursachten Erwärmung in jüngerer Zeit ermöglichen. Klar ist auch, daß weniger komplexe Klimamodelle nützlich sind, um die Unsicherheiten weiter zu reduzieren. Gegenwärtig weist jeder Faktor des vorgestellten Rahmens seine eigenen Unsicherheiten auf, und es fehlt eine Methode, um diese Unsicherheiten formal zu kombinieren.

Auch bei Frontis Energy denken wir, daß Fortschritte in diesen Bereiche unser Verständnis bei der Schätzungen des CO2-Haushalts verbessern würde. Ein systematisches Verständnis des CO2-Haushalts und ist für eine wirksame Zielsetzung und die Kommunikation der Herausforderungen beim Klimaschutze von entscheidender Bedeutung.

Veröffentlicht am

Energiespeicherung in Europa

Netzintegration erneuerbarer Energien

In unserem vorherigen Beitrag dieser Blog-Reihe zum Thema Energiespeicherung in der EU haben wir Sie kurz mit verschiedenen Technologien und ihren Anwendungen vertraut gemacht. In diesem Beitrag geben wir Ihnen einen kurzen Überblick über das EU-Energienetz. Das Verbundnetz Europas ist das größte Verbundnetz der Welt und beliefert jährlich rund 2.500 TWh an 450 Millionen Kunden in 24 Ländern. Es besteht aus Übertragungsnetzbetreibern (ÜNB) aus 24 Ländern. Diese umfassen alle Staaten von Griechenland bis zur Iberische Halbinsel im Süden, sowie Dänemark und Polen im Norden und reichen bis zum Schwarzen Meer im Osten. Das Europäische Netz der Fernleitungsnetzbetreiber (engl. ENTSO-E) ist die zentrale Schaltstelle. Ihre Aufgabe ist es , die Zusammenarbeit zwischen den ÜNB der Mitgliedsländer des Netzes zu fördern. Das ENTSO-E fungiert daher im Wesentlichen als zentraler ÜNB für Europa. Eine gute Koordinierung ist notwenig, denn mit über 140 GW installierter Wind- und Solar-PV-Kapazität liegt die EU bei der installierten Kapazität nur hinter China zurück. Eine Aufschlüsselung der einzelnen Beiträge der EU-Mitgliedstaaten ist in der obigen Abbildung dargestellt.

Energiespeicherung in der EU

Für diesen Blog wurden mehrere europäische Länder ausgewählt, um den Bedarf an Energiespeichern genauer zu untersuchen. Maßgebend für die Zusammenstellung war dabei die Marktgröße, die Wachstumsabsichten für erneuerbare Energien, sowie die Energiespeicherung in innovativen Märkten im Energiesektor.

Gemessen an der Gesamtkapazität (installierte und geplante MW) sind die drei wichtigsten Energiespeichermärkte in der EU: Italien, Großbritannien und Deutschland. Diese Länder wurden auf der Grundlage ihrer bestehenden Marktgrößen ausgewählt.

Spanien und Dänemark wurden aufgrund ihrer großen Menge an vorhandenen Kapazitäten für erneuerbare Energien und − im Falle Dänemarks − des prognostizierten Wachstums der Kapazitäten für erneuerbare Energien und Energiespeicher ausgewählt.

Die Niederlande blieben in Bezug auf ihre Bemühungen zur Decarbonisierung immer noch hinter dem Rest der EU zurück und verfügten nur über einen kleinen Teil an erneuerbarer Energie. Sie wurden jedoch auch für weitere Untersuchungen ausgewählt.

Jedes der ausgewählten Länder (Deutschland, Vereinigtes Königreich, Italien, Spanien, Dänemark, Niederlande) wird in den folgenden Beiträgen erörtert, Dabei bietet wir einen detaillierten Überblick über ihre aktuellen Stromportfolios und Decarbonisierungsbemühungen, aktuelle Energiespeicherstatistiken und eine kurze Marktdiskussion Ausblick.

Pumpspeicherkraftwerke

Mit einer installierten Leistung von über 183 GW weltweit sind Pumpspeicherkraftwerke die ausgereifteste und am weitesten verbreitete Form der Energiespeicherung. Aufgrund der umfassenden Marktdurchdringung, der technologischen Reife und der Tatsache, daß dieser Blog auf die Entwicklung neuer Speichertechnologien abzielt, schließen betrachten wir diese Technologie in den folgenden Beiträgen nicht weiter.

(Jon Martin, 2019)

Veröffentlicht am

Billiger Biokraftstoff mit hoher Oktanzahl entwickelt

Forscher des National Renewable Energy Laboratory (NREL) haben eine billige Methode zur Herstellung von Benzin mit hoher Oktanzahl aus Methanol entwickelt und diese im Fachblatt Nature Catalysis veröffentlicht. Methanol kann über verschiedene Wege aus CO2 gewonnen werden, wie wir bereits im letzten Jahr berichteten. Biomasse, wie z.B. Holz, ist dabei eine mögliche Methode.

Die Herstellung von Biokraftstoffen aus Holz ist allerdings zu teuer, um mit fossilen Brennstoffen zu konkurrieren. Um eine Lösung für dieses Problem zu finden, kombinierten die NREL-Forscher ihre Grundlagenforschung mit einer wirtschaftlichen Analyse. Dabei zielten die Forscher zunächst auf den teuersten Teil des Prozesses. Danach fanden die Forscher Methoden, um diese Kosten mit Methanol als Zwischenprodukt zu senken.

Bisher lagen die Kosten für die Umwandlung von Methanol in Benzin oder Diesel bei ungef 0.24 € pro Liter. Die Forscher haben nun einen Preis von ca. 0.16 € pro Liter erreicht.

Bei der katalytischen Umwandlung von Methanol in Benzin handelt es sich um ein wichtiges Forschungsgebiet im Bereich der CO2-Rückgewinnung. Die traditionelle Methode beruht auf mehrstufigen Prozessen und hohen Temperaturen. Sie ist teuer, produziert minderwertigen Kraftstoff in geringen Mengen. Damit ist sie im Vergleich zu Kraftstoffen auf Erdölbasis nicht konkurrenzfähig.

Das entwickelte Verfahren stieß zunächst auf das Problem eines Wasserstoffmangels. Wasserstoff ist das energetische Schlüsselelement in Kohlenwasserstoffen. Die Forscher stellten die Hypothese auf, daß die Verwendung des Übergangsmetalls Kupfer dieses Problem lösen würde, was es auch tat. Die Forscher schätzen, daß der mit Kupfer infundierte Katalysator zu 38% mehr Ausbeute weniger Kosten führte.

Durch Erleichterung der Wiedereingliederung von C4-Nebenprodukten während der Homologation von Dimethylether ermöglichte der Kupfer-Zeolith-Katalysator die 38%ige Steigerung der Ausbeute des Produkts und eine 35%ige Reduzierung der Umwandlungskosten im Vergleich zu herkömmlichen Zeolith-Katalysatoren. Alternativ dazu wurden C4-Nebenprodukte an ein synthetisches Kerosin weitergeleitet, das fünf Spezifikationen für einen typischen Düsentreibstoff erfüllte. Die Treibstoffsynthesekosten nahmen dabei im Vergleich geringfügig zu. Selbst wenn die Kosteneinsparungen minimal wären, hätte das resultierende Produkt einen höheren Wert.

Abgesehen von den Kosten bietet der neue Prozess den Anwendern weitere Wettbewerbsvorteile. Zum Beispiel können Unternehmen mit Ethanolherstellern um Gutschriften für erneuerbare Brennstoffe konkurrieren (wenn der verwendete Kohlenstoff aus Biogas oder Hausabfällen stammt). Der Prozess ist auch mit vorhandenen Methanolanlagen kompatibel, die Erdgas oder festen Abfall zur Erzeugung von Synthesegas verwenden.

Veröffentlicht am

Elektrische Energiespeicherung

Elektrischer Energiespeicherung (EES) ist der Prozess der Umwandlung elektrischer Energie aus einem Stromnetz in stabile Energieform, um sie bei Bedarf wieder in Elektrizität umwandeln zu können. EES ermöglicht die Stromerzeugung in Zeiten geringer Nachfrage, niedriger Erzeugungskosten oder während der Spitzenzeiten erneuerbarer Energieerzeugung. Auf diese Weise können Erzeuger und Übertragungsnetzbetreiber (ÜNB) die Unterschiede bei Angebot und Nachfrage im Hinblick auf die Erzeugungskosten wirksam nutzen und ausgleichen. In Zeiten hoher Nachfrage, hoher Erzeugungskosten und/oder geringer Erzeugungskapazität werden diese Faktoren durch gespeicherten Strom ausbalanciert.

EES hat viele Anwendungen, einschließlich Integration erneuerbarer Energien, Nebendienstleistungen und Stromnetzunterstützung. Diese Blog-Reihe soll dem Leser vier Aspekte von EES vermitteln:

  1. Ein Überblick über die Funktionen und Anwendungen von EES-Technologien,
  2. Aufschlüsselung der wichtigsten EES-Märkte in der EU nach dem neuesten Stand der Technik,
  3. Eine Diskussion über die Zukunft dieser EES-Märkte und
  4. Anwendungen, d.h Serviceanwendungen, von EES.

Tabelle: Einige gebräuchliche Dienstverwendungen von EES-Technologien

Speicherkategorie

Speichertechnologie

Wasserspeicher

Speicherkraftwerke

Pumpspeicherkraftwerke

Elektrochemische Speicher

Batterieen

(Redox)-Flußbatterien

Kondensatoren

Wärmespeicher

Salzschmelze

Wärmespeicher

Kältespeicher

Elektromechanische Speicher

Schwerkraft

Luftdruckspeicher

Schwungräder

Wasserstoffspeicher

Brennstoffzellen

H2-Speicher

Power-to-Gas

Im Gegensatz zu anderen Rohstoffmärkten verfügt die Stromindustrie in der Regel nur über geringe oder gar keine Speicherkapazitäten. Strom muss genau zum Zeitpunkt seiner Erzeugung verbraucht werden, wobei die Netzbetreiber Angebot und Nachfrage ständig in Einklang bringen. Mit einem ständig wachsenden Marktanteil von intermittierenden erneuerbaren Energiequellen wird dieser Balanceakt immer schwieriger.

Während EES bekannt für den Ausgleich von Versorgungsschwankungen, z.B. bei der Erzeugung erneuerbarer Energien, ist, gibt es viele andere Anwendungen. EES ist für den sicheren und zuverlässigen Betrieb des Stromnetzes von entscheidender Bedeutung, da sie wichtige Zusatzdienste und -funktionen zur Verbesserung der Zuverlässigkeit des Stromnetzes bereitstellt. ES ist in allen wichtigen Bereichen des Stromnetzes anwendbar (Erzeugung, Übertragung und Verteilung sowie Endnutzerdienste). Einige der am häufigsten genutzten Dienste sind in der obigen Tabelle aufgeführt. Weitere Erläuterungen zur Verwendung von Speicherdiensten werden später in diesem Blog bereitgestellt, einschließlich einer umfassenden Liste der EES-Anwendungen.

Gebiet

Dienstleistung

Entladedauer in h

Kapazität in MW

Beispiele

Bereitstellung

Großspeicher

4 – 6

1 – 500

Pumpspeicher,
CAES, Batterien

Notfallspeicher

1 – 2

1 – 500

Pumpspeicher,
CAES, Batterien

Schwarzstart

Keine
Angaben

Keine
Angaben

Batterien

Stabilisierung erneuerbarer Energie

2 – 4

1 – 500

Pumpspeicher,
CAES, Batterien

Übertragung
& Verteilung

Frequenz- und Spannungsstabilisierung

0,25 – 1

1 – 10

Schwungräder,
Kondensatoren

Übertragungsstabilisierung

2 – 5 Sek.

10 – 100

Schwungräder,
Kondensatoren

Vor-Ort-Versorgung

8 – 16

1,5 kW – 5 kW

Batterien

Bestandsschutz

3 – 6

0,25 – 5

Batterien

Endkundenservice

Energieverwaltung

4 – 6

1 kW – 1 MW

Hausspeicher

(Jon Martin, 2019)