Veröffentlicht am Schreiben Sie einen Kommentar

Elektrolytische Wasserspaltung für Bindemittel in Baustoffen

Die Ozeane sind reich an Magnesiumressourcen, die für die Baustoffproduktion genutzt werden könnten. Sorelzement (Magnesitzement) zum Beispiel kann im Innenausbau von Gebäuden anstelle von Estrich eingesetzt werden. Um Magnesium aus Meerwasser zu gewinnen, müssten die Magnesiumoxid (Magnesia) zuerst aus dem Meerwasser mithilfe des den traditionellen Kalzinierungsprozess sehr energieaufwendig abgeschieden werden. Die innovative Methode der elektrolytischen Wasserspaltung kann das umgehen und dadurch viel CO2 einsparen.

Dabei kann Magnesiumhydroxid (Mg[OH]₂) unter alkalischen Bedingungen ausgefällt werden. Die bisherige Forschung hat zwar elektrochemische Methoden zur Hydroxid-Erzeugung untersucht. Doch nur wenige haben die effiziente Alkali-Synthese mit direkter Fällung der Magnesiavorstufe Magnesiumhydroxid mit kohlenstoffarmen Zement kombiniert. Diese Wissenslücke für die Optimierung der Energie- und Materialeffizienz wurde nun geschlossen.

Eine neue Studie, die von einem Forschungsteam der Columbia University geführt wurde, bediente sich der elektrochemischen Wasserspaltung bei Niedrigspannung (1,6–2,0 V). Durch die Wasserstoffproduktion wurden Hydroxidionen (OH⁻) aus Meerwasser erzeugt. Dadurch kam es zu einer direkten Ausfällung von Magnesiumhydroxid, der Vorstufe von Magnesia. Die Ergebnisse wurden kürzlich in der Fachzeitschrift Desalination veröffentlicht. Der neue Ansatz reduziert die Energieintensität um 52–78%. Normalerweise liegt der Energieverbrauch pro Tonne MgO bei 0,56 MWh. Durch die neue Methode können Kohlenstoffemissionen pro Tonne Magnesia in Höhe bis zu 0,41 Tonnen CO₂ eingespart werden.

Um die Produktionseffizienz weiter zu steigern, wurde die Nanostruktur von Magnesiumhydroxid mithilfe von Harnstoff als Vernetzer optimiert. Dadurch wurden die Reaktivität, die Porosität und spezifische Oberfläche verbessert. Bei einer optimalen Dosierung von 0,2 mol/L Harnstoff zeigten die Magnesiapartikel gute Bindungseigenschaften. Die Autoren führten dies auf die Verschlußwirkung von rosettenförmigem Dypingit und stabförmigem Nesquehonit zurück. Durch die Bildung dieser Mineralien wird nach Ansicht der Autoren der CO2-Einbau und dadurch auch die Karbonathärtung erleichtert.

Fortschritte in symmetrischen elektrochemischen Systemen, wie die die hier gezeigten, haben eine bis zu 78%ige Reduktion des Energiebedarfs für Herstellung von Laugen zur Folge. Damit haben solche Methoden das Potential, sich als tragfähige Alternative zu traditionellen Verfahren zu etablieren. Die weitere Optimierung von Elektroden und Elektrolyt stellt einen wegweisenden Ansatz für die kohlenstoffneutrale Produktion von Baustoffen und Laugen dar. Zudem zeigt diese Methode, daß die Herstellung von Baustoffen einen effizienten Einbau von CO2 ermöglicht. Dadurch kann eine dauerhafte Entfernung des Treibhausgases aus der Atmosphäre stattfinden.

Die industrielle Skalierung der elektrochemischen Laugenerzeugung kann Betriebskosten senken, Umweltauswirkungen minimieren und die Eigenschaften kohlenstoffarmer Baustoffe verbessern. Die ökonomischen Aspekte dieses Herstellungsprozesses sind besonders hervorzuheben, da der Bedarf an effizienten  Bindematerialien weiter wächst.

Bei Frontis Energy widmen wir uns der Förderung nachhaltiger und zugleich wirtschaftlicher Energielösungen. Forschung wie die hier vorgestellte liefert wichtige Erkenntnisse und Innovationen zur Unterstützung solcher nachhaltiger Lösungen.

Bild: Pixabay

Veröffentlicht am

Von Abwärme zu hochreinem Wasser: Revolutioniert eine neue Technologie erneuerbaren Wasserstoff?

Wasserstoff (H₂), hergestellt mit erneuerbarer Energie, hat sich als mögliche Alternative zu fossilen Brennstoffen herauskristallisiert. Dieses vielseitige Molekül kann als Energieträger, effiziente Speicherlösung und nachhaltiger Rohstoff für den Transport, die chemische Verarbeitung und Energiesysteme weltweit dienen.

Im Gegensatz zu fossilen Brennstoffen verursacht Wasserstoff bei der Nutzung keine schädlichen Emissionen. Er kann mittels Elektrolyseuren, die mit erneuerbarer Energie betrieben werden, sowie mit reichlich verfügbarem Wasser als Ausgangsstoff erzeugt werden. Das macht ihn zu einer erneuerbaren und nachhaltigen Energiequelle, die die Abhängigkeit von fossilen Brennstoffreserven reduziert und den Klimawandel bekämpft. Folglich ist die Wasserstoffproduktion zu einer wichtigen Priorität zahlreicher Industriestaaten geworden.

Allerdings muss das in Elektrolyseuren verwendete Wasser ultrarein sein, um die Elektroden der Elektrolyseure vor Verunreinigung zu schützen und die Oxidation von Chloriden zu Chlor zu vermeiden. Reichlich vorhandenes Meerwasser bringt mehrere Herausforderungen mit sich, wenn es direkt in Elektrolyseanlagen zur Wasserstoffproduktion eingespeist wird. Dadurch wird hochreines Wasser zu einer teuren Notwendigkeit. Hochreines Wasser wird in einer Reihe von Schritten hergestellt, darunter die Vorbehandlung zur Entfernung von Feststoffen, Entsalzung und die Eliminierung von kleineren Partikeln. Reinigungstechniken wie Ionenaustausch, Entgasung und UV-Behandlung werden zur Reinigung verwendet. Unter diesen Prozessen ist die Entsalzung besonders entscheidend für die Entfernung der meisten Verunreinigungen.

Umkehrosmose, insbesondere Meerwasserumkehrosmose, ist eine weit verbreitete Entsalzungstechnologie, hat jedoch erhebliche Nachteile, wie z. B. den Betrieb unter hohem Druck (hoher Energieverbrauch), intensive Vorbehandlung und die Erzeugung konzentrierter Sole, die sich bei der Einleitung ins Meer auf sein Ökosysteme schädlich auswirkt. Membrandestillation hat als Alternative zur Herstellung von hochwertigem Wasser und seiner Rückgewinnung Interesse erregt. Sie arbeitet bei niedrigeren Temperaturen und kann Abwärme nutzen.

Membrandestillation ist ein thermischer Trennungsprozeß, bei dem ein Dampfdruckunterschied über eine hydrophobe Membran Flüssigkeitspartikel zur Phasenumwandlung veranlaßt, so daß diese die Membran als Gas passieren. Der Betrieb bei Umgebungsdruck und die Nutzung von Niedertemperaturwärmequellen (<90 °C) bieten erhebliche Vorteile. Die Forschung zur Membrandestillation als praktikable Alternative zur Umkehrosmose für die Produktion von hochreinem Wasser blieb jedoch weitgehend auf Bereiche wie Moduldesign und techno-ökonomischer Analyse begrenzt.

Eine Gruppe von Forschern am Fraunhofer Institute for Solar Energy Systems (ISE) in Freiburg, Deutschland, hat das Potential der Membrandestillation als kosteneffiziente und energiesparende Alternative zur Umkehrosmose bei der Herstellung von hochreinem Wasser für Protonenaustausch-(PEM)-Elektrolyseure erforscht. Die Ergebnisse wurden kürzlich im Fachmagazin Desalination Journal veröffentlicht. Sie untersuchten die Membrandestillation als mögliche Alternative zur Umkehrosmose für die Herstellung von hochreinem Wasser. Also besonderes eleganten Ansatz benutzten die Forscher die Abwärme eines 5 MW PEM-Elektrolyseurs fuer ihr Membrandestillationssystem. So verwandelten sie einen sonst typischen Effizienzverlust in einen ökonomischen Vorteil. Ihre Ergebnisse sind beeindruckend: Membrandestillation produziert nicht nur außergewöhnlich reines Destillat (<3 μS/cm), sondern tut dies zu Kosten zwischen €2,33 und €2,85 pro Tonne Destillat im Vergleich zu den üblichen Kosten von €2,80 bis €5,51 bei Umkehrosmose. Mit Membrandestillation könnte die Meerwasserentsalzung um 50% oder mehr kostengünstiger werden.

Wirtschaftliche Analysen zeigen, daß die Kosteneffizienz der Membrandestillation durch ihren niedrigen Strombedarf und ein optimiertes Moduldesign mit kurzen Kanälen verbessert wird. Die beeindruckende Energieeffizienz wird durch die Nutzung von Restwärmeenergie ermöglicht. Das macht Membrandestillation zu einer äußerst vielseitigen und umweltfreundlichen Lösung, die gut für erneuerbare Wasserstoffproduktion geeignet ist.

Die neue Studie positioniert die Membrandestillation nicht nur als Alternative zur Umkehrosmose, sondern auch als intelligenten und nachhaltigen Ansatz zur Herstellung von hochreinem Wasser. Die vorgestellten Ergebnisse bieten einen neuen industriellen Ansatz zur Produktion von hochreinem Wasser neu zu definieren. Durch die neue Veröffentlichung einer effizienten Nutzung von Abwärme und die Bereitstellung einer kostengünstigen Lösung bietet die Studie zahlreichen Branchen einen Weg zur Verringerung der Betriebskosten und fördert gleichzeitig die Nachhaltigkeit. Dies paßt besonders gut zu Sektoren, die nachhaltige Betriebe anstreben, wie z.B. die erneuerbare Wasserstoffproduktion und andere energieintensive Anwendungen. Darüber hinaus könnte die Einführung der Membrandestillation Innovationen bei der Systemgestaltung und -integration fördern und die Industrie dazu anregen, Prozesse zu optimieren und die Abhängigkeit von traditionellen, energieintensiven Methoden zu verringern. Dieser Wandel kann zu umfassenderen Nachhaltigkeitszielen beitragen und die wirtschaftliche Umsetzbarkeit von Initiativen im Bereich der erneuerbaren Energien verbessern.

Bei Frontis Energy setzen wir uns dafür ein, nachhaltige und wirtschaftliche Energielösungen voranzutreiben. Innovative Technologien wie die Membrandestillation helfen, uns einer nachhaltigen Zukunft näherbringen.

Bild: Pixabay