Veröffentlicht am

Echtzeitaufnahmen von Lande-Entladezyklen in Lithiumbatterien

Partikel in Lithium-Ionen-Batterien spielen eine wichtige Rolle bei Freisetzung von positiv und negativ geladenen Lithium-Ionen. Gleichzeitig is die Bewegung dieser Ionen ein limitierender Faktor für die Lade- und Entladezyklen. Um schnelladefähige Batterien zu entwickeln, müssen Ingenieure und Wissenschaftler besser verstehen, wie sich Ionen in Batterien bewegen. Forscher der Universität Cambridge im Vereinigten Königreich haben nun einen bildgebenden Ansatz im Fachblatt Nature veröffentlicht, der die Ionenbewegung in Batteriematerialien in Echtzeit verfolgt. Diese Technologie hilft, die Funktionsweise von Lithium-Ionen-Batterien im Submikrometerbereich besser zu verstehen. Dieses Verständnis wird letztendlich dabei helfen Batterien zu konstruieren, die sich in nur wenigen Minuten aufladen.

Wissenschaftler müssen den Ionenfluß in einer prorösen Matrix besser verstehen, um leistungsfähigere Batterien zu bauen. Allerdings würde nicht nur die Batterieforschung davon profitieren, sondern auch andere galvanische Zellen wie Brennstoffzellen oder Elektrolyseure. Bisher konnten traditionelle bildgebende Ansätze zur Untersuchung des LithiumIonenfluß’ die schnelle Dynamik in schnelladenden Batterien nicht erfassen.

Das Problem

In Lithium-Ionen-Batterien bestehen aus zwei poröse Elektroden aus Partikeln hergestellt werden: Kohlenstoff, einem Metalloxid und einem Bindemittel. Die Kohlenstoff- und Metalloxide fungieren als Elektronenleiter, während das Bindemittel die Partikel aneinander bindet. Ein Elektrolyt trennt die beiden Elektroden und dient als Leitmedium für Ionen, die von einer Elektrode zur anderen wandern.

Um die interne Ionendynamik von Batterien für jeden dieser Teilprozesse verfolgen zu können, müssen Batterieingenieure die physikalischen und chemischen Wechselwirkungen mindestens zehnmal schneller abbilden. Dies ist vergleichbar mit der der Belichtungszeit einer Kamera für Sportaufnahmen. Ist die Belichtungszeit zu lang, produziert die Kamera verschwommene Bilder. Von besonderem Interesse für die Batterieentwicklung sind die Geometrie der aktiven Partikel selbst und die Struktur der porösen Elektroden.

Jedes Batterie-Bildgebungsverfahren hat für jede Batteriefunktion eine spezielle Aufnahmezeit. Bisherige Bildgebungsverfahren benötigten einige Minuten, um ein Bild zu sammeln. Daher können traditionelle Verfahren nur Prozesse abbilden, die viele Stunden in Anspruch nehmen.

Was is neu an dem Konzept?

Bemerkenswert ist, daß die neuartige Technik der Forscher weniger als eine Sekunde benötigt, um ein Bild aufzunehmen, wodurch wesentlich schnellere Prozesse als bisher möglich untersucht werden können. Als bildgebendes Werkzeug ist es auch in der Lage, Batterien während des Betriebs zu untersuchen und verfügt über eine ausreichende räumliche Auflösung. Diese Auflösung im Submikrometerbereich ist erforderlich, um zu verfolgen, was in einem aktiven Partikel passiert. Darüber hinaus kann der Ansatz durch den Vergleich der Entwicklung von in der Elektrode räumlich getrennten aktiven Partikeln mit Ionenkonzentration die Ionendynamik auf der Elektrodenskala abbilden.

Methodik

Das Forschungerteam paßte ein bisher in den Biowissenschaften verwendetes Verfahren der Lichtmikroskopie an, um die Lithium-Ionen-Mobilität in Batteriematerialien zu verfolgen. Bei dem Verfahren wurde ein Laserstrahl auf elektrochemisch aktive Batteriepartikel gerichtet, die Lithium-Ionen speichern oder freisetzen. Anschließend wurde das Streulicht analysiert. Da zusätzliches Lithium gespeichert wurde, variierte die lokale Elektronenkonzentration in der Partikel. Dadurch ändert sich auch das Streumuster. Die lokale Änderung der Lithiumkonzentration korrelierte mit dem zeitlichen Verlauf der Streusignale und konnte zur Lokalisierung der Partikel genutzt werden.

Während der Lade-Entlade-Zyklen speichern und geben die „aktiven“ Materialien der Batterieelektroden Ionen ab. Die Forscher beschreiben in ihrer Veröffentlichung einen Echtzeit-Bildgebungsansatz, der von aktiven Partikeln gestreutes Licht verwendet, um Änderungen der Ionenkonzentration zu verfolgen. Die Intensität der Streuung schwankt mit der lokalen Ionenkonzentration. In ihrem Ansatz bildeten die Streumuster im Laufe der Zeit den Ionfluß des Systems ab. Da zusätzliche Ionen in einem Partikel gespeichert wurden, zeigten die Farben der Konturen die Veränderung der Streuintensität über die letzten 5 Sekunden an: Rot bedeutete eine Zunahme der Intensität, während Blau eine Abnahme andeutete. Die Verschiebungsmuster entsprachen dem Übergang des Materials von einer Phase zur nächsten.

Schlußvolgerungen

Das neue bildgebende Verfahren kann für fast alle aktiven Materialien verwendet werden, die Lithium oder andere Ionen speichern und wo sich die Ionenkonzentration ändert. Da Standardansätze die Änderungen der lokalen Ionenkonzentration während schneller Ladezyklen nicht direkt verfolgen konnten, konnten bisher auch keine schnelladenden Batterien entwickelt werden. Die neue Lösung wird es Elektrochemikern ermöglichen ihre erdachten Mechanismen des Ionentransports in der Praxis zu testen, da das Bildgebungsproblem überwunden gelöst wurde.

Einschränkungen dieses Ansatzes

Hervorzuheben ist, daß die räumliche Auflösung des neuen bildgebenden Verfahrens durch die Wellenlänge des Lichts begrenzt ist. Zur Auflösung feinerer Details sind kürzere Wellenlängen erforderlich. In der veröffentlichten Arbeit lag die Auflösung bei etwa 300 nm. Ein weiterer zu berücksichtigender Punkt ist, daß die Laserstreuung das Ergebnis der Wechselwirkung von Licht mit nur einem Objekt ist. Zudem ist die Streuung durch die Wechselwirkung von Licht mit den ersten atomaren Ebenen des Teilchens ein Problem. Als Ergebnis fängt diese Methode nur die Ionenbewegungen in der zwei Dimension bezogen auf diese Atomschichten ein. Langsamere Ansätze wie die Röntgentomographie können dagegen dreidimensionale Informationen zu sammeln.

Ausblick

Es wird spannend sein, die Erkenntnisse der Autoren für einzelne Partikel weiterzuverfolgen und poröse Elektroden unter den Schnelladebedingungen  zu untersuchen.

Dieser Ansatz könnte auch dazu dinen, Festelektrolyte zu untersuchen. Diese sind faszinierende, jedoch kaum verstandene Batteriematerialien. Angenommen, die Lichtstreuung von Festelektrolyten variiert mit der lokalen Ionenkonzentration, wie dies bei aktiven Materialien der Fall ist. In diesem Fall könnte der Ansatz verwendet werden, um die Veränderung der Ionenverteilung zu kartieren, sobald ein elektrischer Strom sie durchfließt. Auch andere Systeme mit gekoppeltem Ionen- und Elektronentransport, wie z.B. Katalysatorschichten in Brennstoffzellen und elektrochemische Gassensoren, könnten von der Methode der optischen Streuung profitieren.

Künftig könnten gründliche Streutests mit homogenen Partikeln helfen, den Zusammenhang zwischen Streuverhalten und Lithium-Ionen-Konzentration zu quantifizieren. Die Streusignale könnten dann unter Verwendung dieser Korrelation zur Bestimmung lokaler Ionenkonzentrationen verwendet werden. Die Verbindung zwischen verschiedenen Materialien wird jedoch nicht immer gleich sein. Künstliche Intelligenz könnte das Auffinden dieser Verbindungen beschleunigen und die Lichtstreuungsanalyse automatisieren.

Das bildgebende Verfahren der Autoren eröffnet auch die Möglichkeit, gleichzeitig chemische, physikalische und geometrische Veränderungen aktiver Partikel während des Betriebs zu messen. Der Unterschied zwischen der Streuung eines Partikels und der von anderen Materialien in einer Batterie (wie dem Bindemittel oder dem Elektrolyten) könnte verwendet werden, um die Partikelform und ihre Entwicklung zu bestimmen. Die Zeit, die für die Lichtstreuung eines Partikels benötigt wird, würde lokale Veränderungen der Lithiumkonzentration aufdecken. Diese Materialien speichern deutlich mehr Energie als gängige aktive Materialien. Ihre Verwendung könnte das Batteriegewicht weiter reduzieren. Dies wäre insbesondere bei Elektrofahrzeugen von Vorteil, da durch die zo erreichte höhere Energiedichte größere Reichweiten möglich wären.

Die Forschung liefert bisher nicht verfügbare Einblicke in Batteriematerialien. Diese Methode zur direkten Überwachung von Veränderungen aktiver Partikel während des Betriebs wird bisherige Ansätze ergänzen, die auf zerstörenden Batterietests beruhen. Infolgedessen hat das Verfahren das Potenzial, den Batteriedesignprozeß zu verändern.

Merryweather, et al., 2021 “Operando optical tracking of single-particle ion dynamics in batteries”, Nature, 594, 522–528, doi:10.1038/s41586-021-03584-2

Bild: Pixabay / cebbi

Veröffentlicht am

Selbstregulierende Anoden in intelligenten Brennstoffzellen verbessern das Wassermanagement

Wasserstoffbrennstoffzellen werden häufig als Schlüsselelement beim Übergang zu nachhaltiger Energieerzeugung angesehen. Ihr Wirkungsgrad ist doppelt so hoch wie der von Verbrennungsmotoren. Brennstoffzellen wandeln die chemische Energie von Wasserstoff und Sauerstoff direkt in Strom und Wasser um. Daher spielt Wasser eine zentrale Rolle in Brennstoffzellen. Es sorgt für den Ionentransport und ist natürlich auch das Produkt der Reaktion selbst. In einer Anionenaustauschmembran-Brennstoffzelle (AAMBZ) muß das Wasser in der Anodenkatalysatorschicht (AKS) für die Sauerstoffreduktionreaktion auf die Kathodenkatalysatorschicht (KKS) diffundieren. Für einen höheren Effizienz der Wasserstoffdiffusion ist daher intelligentes Wassermanagement erforderlich, um so das Reaktionswasser aus der AKS zu entfernen und in der gesamten Membranelektrodenanordnung (MEA) auszubalancieren.

Es ist daher nur folgerichtig, daß ein besonderer Schwerpunkt der Brennstoffzellenforschung auf Wassermanagement liegt, um so bessere Reaktionsbedingungen sowohl für die Anode als auch für die Kathode zu ermöglichen. Die asymmetrische Befeuchtung von Reaktionsgasen wird allgemein als bester Lösungsansatz angesehen. Dadurch soll eine ausgeglichene Wasserbilanz zwischen den beiden Elektroden erreicht werden. Bei höheren Temperaturen verdampft jedoch überschüssiges Anodenwasser. Dieser Vorgang verursacht Wassermangel an der Kathode, die jedoch Wasser benötigt, um einwandfrei zu funktionieren. Um dem Wasserverlust entgegenzuwirken, wurde ein Komtrollsystem entwickelt, das den Rückfluß an der Anode und der Kathode steuert. Solche externen Steuerungsmechanismen erhöhen jedoch die Komplexität der Systemsteuerung.

Ein passives Steuerungssystem durch MEA-Modifikationen könnte das Wassermanagement erleichtern. Die Feuchtigkeitskontrolle in Brennstoffzellen kann durch besser dafür geeigneten Gasdiffusionsschichten erreicht werden. Verschiedener Arten von hydrophoben Materialien für die Anode und hydrophilen für die Kathode können so die gesamte Kraftstoffzellenleistung verbessern. Polyethylen-Tetrafluorethylen (PTFE)-Kopolymermembranen, wie Nafion™, haben eine hohe Wasserdurchlässigkeit. Diese Eigenschaft unterstützt den Wasserabfluß um so die Anodenüberflutung zu verhindern. Gleichzeitig wird so die Austrocknung der Kathode verhindert. Das Entwerfen einer geeigneten Mikrostruktur oder eine Veränderung des Ionomergehalts innerhalb der KKS könnte dem zuträglich sein. Insgesamt würde dadurch die Zelleistung und -handhabung verbessert.

Eine aktuelle Veröffentlichung in der Fachzeitschrift Cell Reports Physical Science hat sich mit diesem Thema auseinandergesetzt. Die vorgestellte Studie hat untersucht, wie mehrschichtiges KKS-Design mit der Gradientenkapillarkraft den Wasserhaushalt der Brennstoffzelle beeinflußt, um das Wasserbilanzproblem der Anoden zu lösen. Für den Zweck der Studie wurden Platin auf Kohlenstoff und Platin-Ruthenium auf Kohlenstoff als Anodenkatalysatoren ausgewählt. Ruthenium erhöht die Wasserstoffoxidationsreaktionsaktivität und besitzt auch vorteilhafte strukturelle Eigenschaften. Wassermanagement und Leistung der Brennstoffzellen sollten von der Struktur der AKS beeinflußt werden.

Mikrostrukturanalyse der AKS

Die AKS, bestehend aus verschiedenen Schichten von Pt / C und PtRu / C und einer gemischten Version mit einer ähnlichen Dicke von etwa 9 bis 10 μm wurden mit energierer dispergierender Röntgenspektroskopie (engl. EDX) analysiert.

PT / C AKS hatte Poren von weniger als 150 nm, während Poren von PtRu / C  zwischen 300-400 nm groß waren. Die gemischte AKS hatte eine Porengröße <200 nm.

Die Forscher kamen zu dem Schluß, daß PT / C und PtRu / C AKS eine stratifizierte Porengrößenverteilung in Form eines Gradienten über die Anionenaustauschermembran und die Gasdiffusionsschicht aufwiesen. Die gemischte AKS hatte jedoch über die gesamte MEA eine homogene Porenstruktur.

Membranelektrodenanordnung unter Verwendung einer Polymerelektrolytmembran

Feuchtigkeits-Adsorption und Desorptionsverhalten von AKS

Um die Feuchtigkeitsadsorption und -desorption zu untersuchen, wurde die Änderung des Feuchtigkeitsgehalts des Brennstoffzellens in bezug auf verschiedene relative Luftfeuchtigkeit geprüft.

Es wurde beobachtet, daß sich der Feuchtigkeitsgehaltspegel mit anstieg der relativen Luftfeuchtigkeit von 20% auf 80% ebenfalls um bis zu 50% erhöhte.

Mit länger anhaltenden relativen Luftfeuchtigkeit von 80% begann sich der Feuchtigkeitsgehalt von Pt / PtRu und PtRu / Pt AKS zu verringern. Dies war der Beweis für das selbstregulierende Wassermanagement.

Die Desorption kam bei einer relativen Luftfeuchtigkeit von 60% zu stande. Der Wassergehalt in der AKS zeigte in jeder relativen Feuchtigkeitseinstellung eine schnelle Adsorption und langsame Freisetzung.

Die physikalische Anpassung des Wasserverhaltens wurde in PtRu / Pt-AKS beobachtet. Dies wurde auf Gradientennanoporen zurückgeführt die den Wassertransport förderten, wenn Reaktionswasser in den AKS erzeugt wurde. Dieses Verhalten würde den Betrieb von Brennstoffzellen bei hoher Stromdichte erleichtern.

Brennstoffzellenleistung mit modifizierter AKS

Um den strukturellen Effekt auf das Wassermanagement während des Betriebs zu beurteilen, wurde die Leistung der Brennstoffzellen bei unterschiedlicher relativer Luftfeuchtigkeit und Temperatur untersucht.

Mit zunehmender relativer Luftfeuchtigkeit von 40% auf 80% wurde auch eine Erhöhung der maximalen Leistungsdichte beobachtet, während die Temperatur bei 50°C konstant blieb. Dies war auf eine höhere ionische Leitfähigkeit bei hoher Membranhydratation zurückzuführen.

Bei relativer Luftfeuchtigkeit von 100% verringerte sich jedoch eine maximale Leistungsdichte der Pt / PtRu-MEA und der gemischten MEA. Bei der invertierten MEA-Version mit PtRu / Pt wurde ein Anstieg auf 243 mW / cm² beobachtet. Dies deutete an, daß die Feuchtigkeitsdesorptionsfähigkeit der PtRu / Pt-MEA den Stofftransport während des Brennstoffzellenbetriebs förderte.

Bei einer Temperatur von 60°C und 100% relativer Luftfeuchtigkeit erreichte die PtRu / Pt-Brennstoffzelle eine maximale Leistungsdichte mit 252 mW / cm².

Für PtRu / Pt-MEA wurde auch ein Haltbarkeitstest durchgeführt. Dieser zeigte, daß nach einem Dauerbetrieb von mehr als 16 Stunden bei 100 mA / cm² der Spannungsabfall lediglich <4% betrug.

Schlußfolgerungen

Durch die Untersuchung wurde deutlich, daß die PtRu / Pt-AKS mit seiner homogenen Schicht eine bessere Selbstregulierung in bezug auf Brennstoffzellen-Wassermanagement hatte. Die Nanoporenstruktur der Katalysatorschicht ermöglichte es, Wasser durch Kapillarkräfte zu transportieren. Überschüssiges Wasser der Anode konnte in Richtung der Kathode transportiert werden, wo es bei der Reaktion half oder es wurde über die Gasdiffusionsschicht entfernt, um eine Überflutung der Anode zu verhindern. Darüber hinaus zeigte diese Katalysatorschicht aus PtRu / Pt auch  allgemein bessere Leistungsdaten.

Bei Frontis Energy glauben wir, daß die Forschungsergebnisse Probleme beim Wassermanagement in den Brennstoffzellen lösen könnten. Da es sich um ein passives Steuerungssystem handelt, das durch interne Designmodifikationen der Brennstoffzellen chrakterisiert ist, könnten komplizierte externe Systeme ersetzt oder ergänzt werden. Die Studie hilft sicherlich bei der automatisierten Steuerung von Brennstoffzellen, da die Ergebnisse sie intelligenter machen könnten.

Quelle: Self-adjusting anode catalyst layer for smart water management in anion exchange membrane fuel cells, Cell Reports Physical Science, Volume 2, Issue 3, 24 March 2021, 100377

Veröffentlicht am

Umweltfreundliche Alternative zu fluorierten Membranen in PEM-Brennstoffzellen

Polymerelektrolytmembran (PEM)-Brennstoffzellen haben eine hohe Leistungsdichte, niedrige Betriebstemperaturen und, wenn sie mit grünem Wasserstoff betrieben werden, keine Kohlenstoffemissionen. Ihre Herstellung dieser Polymere erfordert jedoch perfluorierte Sulfonsäure (PFSA) als Elektrolyt und als Ionomer in der Elektrode. PFSA-Membranen sind sehr teuer. Nafion® ist das führende kommerzielle PFSA-Polymer auf dem Markt. Die Herstellung ist jedoch sowohl kostspielig als auch umweltschädigend. Daher sind kostengünstige, umweltfreundliche PFSA-Polymerersatzstoffe einer der Hauptschwerpunkte gegenwärtiger Membran- und Brennstoffzellenforschung.

Forscher der Texas A&M University untersuchten zusammen mit dem Unternehmen Kraton Performance Polymers Inc deren NEXAR™-Polymermembranen in Wasserstoffbrennstoffzellen hinsichtlich ihrer Ionenaustauschkapazität. NEXAR™-Polymermembranen sind im Handel erhältliche sulfonierte Pentablock-Terpolymere. Die forscher veröffentlichten die Ergebnisse im Journal of Membrane Science. Frühere Studien zeigten, daß eine Änderung der Ionenaustauschkapazität, bedingt durch den Sulfonierungsgrad von NEXAR™-Membranen, die Morphologie im Nanomaßstab verändern und die mechanischen Eigenschaften erheblich beeinflussen kann. Dies kann die Leistung der Brennstoffzelle begünstigen. Daher kann dieses Polymer als Membranalternative zu Nafion® in Brennstoffzellen verwendet werden.

Versuchsdurchführung

  1. Bei den untersuchte Materialien handelte es sich um drei verschiedene Varianten des Polymers wurden jeweils mit unterschiedlichen Ionenaustauschkapazitäten (IECs: 2,0, 1,5 und 1,0 meq/g), die als NEXAR™ -2.0, NEXAR™ -1.5 und NEXAR™ -1.0 bezeichnet wurden.
  2. Die NEXAR™ -Membranen wurden hergestellt, indem die NEXAR™-Lösungen unter bei Raumtemperatur und -druck maschinell auf einen silikonbeschichteten Mylar-PET-Film gegossen wurden. Zur Messung der mechanischen Eigenschaften und der Leitfähigkeit wurden zwei verschiedene Größen hergestellt.
  3. Die mechanischen Eigenschaften NEXAR™-Membranen wurden mit verschiedenen Größen getestet: 25 × 0,5 mm und 30 × 10 mm.
  4. Herkömmliche Nafion®-Elektroden wurden als Kontrollen untersucht.
  5. NEXAR™ -Elektroden wurden auf zwei Arten für die Studie hergestellt, jede mit einer anderen Zusammensetzung.
  6. Die Elektrodenprofile wurden mithilfe von Rasterelektronenmikroskopie (REM) charakterisiert.
  7. Membranelektrodenanordnung (MEA) der Brennstoffzelle wurden hergestellt, indem die Membran zwischen zwei katalysatorbeschichteten Gasdiffusionsschichten (Anode und Kathode) angeordnet und heißgepreßt wurde. Die gesamte Brennstoffzellenanordnung bestand aus einer MEA, zwei Dichtungen und zwei Durchflußplatten, die zwischen Kupferstromkollektoren angeordnet waren. Zusammengehalten wurde die MEA von verschraubten Endplatten. Leistungstests wurden unter Umgebungsdruck mit gesättigten Anoden- und Kathodenströmungsraten (100% relative Luftfeuchtigkeit) von 0,43 l/min Wasserstoff bzw. 1,02 l/min Sauerstoff durchgeführt.
  8. Elektrochemische Impedanzspektroskopie (EIR) wurde nach den Brennstoffzellentests durchgeführt um die Elektroden elektrochemisch zu charakterisieren.

Ergebnisse

NEXAR™ -2.0 und NEXAR™ -1.5 hatten bei allen Temperaturen eine ähnliche Protonenleitfähigkeit. Das deutet darauf hin, daß die Protonenleitfähigkeit limitiert war. Im Gegensatz dazu wiesen NEXAR™ -Membranen im Vergleich zu Nafion® NR-212-Membranen eine ausreichende Protonenleitfähigkeit auf. Entsprechen wiesen die Wasserstoffbrennstoffzellen eine ähnlich hohe Leistungsdichte auf.

NEXAR™-2.0- und NEXAR™ -1.5-Membranen (mit Nafion® als Ionomer) zeigten jedoch nicht unter allen Brennstoffzellenbetriebsbedingungen (Temperatur, Druck, Spannung und Luftfeuchtigkeit) die erwartete Brennstoffzellenleistung. Überraschenderweise zeigte die NEXAR ™-1.0-Membran (mit Nafion® als Ionomer) eine vergleichbare Brennstoffzellenleistung unter allen Betriebsbedingungen, sowie mit Nafion® vergleichbare Leistungsdichten. Das deutet darauf hin, daß NEXAR™ -1.0 eine Alternative zu Nafion® in Wasserstoffbrennstoffzellen sein könnte.

Während des Brennstoffzellenbetriebs war das Membranionomer NEXAR™ -1.0 thermisch und mechanisch stabil. Diese Ergebnisse wurden durch die Ergebnisse der Leistungsdichte gestützt. Die MEAs mit NEXAR ™ -1.0-Membranionomeren wiesen eine bessere Leistung auf als alle anderen MEAs.

Aus den oben genannten Ergebnissen wurde deutlich, daß die NEXAR™ -1.0-Variante der optimale Anwärter war, um aktuelle PFSA-Polymere nach dem Stand der Technik zu ersetzen.

Um den Einfluß des NEXAR™ -1.0-Ionomers auf die Brennstoffzellenleistung zu verstehen, wurde die Zusammensetzung der Ionomer- und Lösungsmittelgemischverhältnisse in der Katalysatortinte modifiziert. Die Ergebnisse legen nahe, daß sich NEXAR™ -1.0 als Ionomer ähnlich wie Nafion®-Ionomere in Brennstoffzellenelektroden verhält.

Die REM-Analyse legte nahe, daß die Menge an Ionomer einen deutlichen Einfluß auf die Bindung des Ionomers an die Katalysatorteilchen und folglich auf die Morphologie der Katalysatorschicht hat. Das optimale Katalysator-Ionomer-Verhältnis war 2/1 für das Pt / C-Ionomer unter Verwendung von NEXAR™ -1.0 in Brennstoffzellenelektroden.

Schlussfolgerungen

Letztendlich ist NEXAR™ -1.0 aufgrund seiner hohen Leitfähigkeit eine denkbare kommerziell praktikable und umweltfreundliche Alternative zu Nafion® r in PEM-Brennstoffzellen. Alternative Zusammensetzungen könnten die Eigenschaften des Polymers weiter verbessern. Ziel ist es, die Innenwiderstände der Brennstoffzelle zu minimieren, um so mit Leistung von Nafion®-Membranen entsprechen.

Insgesamt zeigten Nafion® / Nafion®-MEAs unter Berücksichtigung der Gesamtleistung immer noch die höchste Brennstoffzellenleistung. Aber alternative Polymerzusammensetzungen auf Kohlenwasserstoffbasis für das NEXAR™ -Polymer könnten ein zukünftiges nicht fluoriertes Polymer als Nafion®-Ersatz für PEM-Brennstoffzellen darstellen.

Weitere Analysen sind erforderlich, um möglicherweise eine genaue Annäherung an die Variante des NEXAR™ -Polymers zu erhalten. Zukünftige Forschungsarbeiten konzentrieren sich auf die Untersuchung von Varianten der Ionenaustauschkapazitäten im Bereich von beispielsweise 1 meq / g bis 1,5 meq / g. Derzeit kann jedoch gesagt werden, daß das NEXAR™ -Polymer als praktikabler Ersatz für eine nicht fluorierte Membran vielversprechend ist. Möglicherweise kann weitere Forschung mit anderen physikalischen Varianten sowie chemischen Modifikationen des Materials einen Durchbruch bringen.

Quelle: https://doi.org/10.1016/j.memsci.2021.119330: Sulfonated pentablock terpolymers as membranes and ionomers in hydrogen fuel cells, Journal of Membrane Science, 2021, 119330

Veröffentlicht am

Langlebige Platin-Palladium-Legierungen als Elektrokatalysator für PAM-Brennstoffzellen

Um den Verbrauch fossiler Energie zu verringern, könnten Protonenaustauschmembran-Brennstoffzellen (PAMBZ) eine vielversprechende saubere Stromquelle darstellen. Ihre Leistung hängt jedoch stark von der Effizienz und Haltbarkeit des verwendeten Elektrokatalysators ab. Solche Katalysatoren sind für die an den Elektroden auftretenden Wasserstoff- und Sauerstoffreaktionen notwendig. Edelmetalle wie Platin und Gold werden immer noch als die effizientesten Katalysatoren eingesetzt. Gleichzeitig sind ihre hohen Kosten eine großes Hindernis für die massenhafte Vermarktung vom PAMBZ.

Verschiedene Lösungen des Katalysatordesigns werden intensiv untersucht, um diese Technologie wirtschaftlich erfolgreich zu machen. Die Suche nach hoher Katalysatoraktivität und -haltbarkeit von Brennstoffzellen ist daher Schwerpunkt der aktuellen Forschung. Der aktuelle Stand der Technik sind Platin-Elektrokatalysatoren auf Kohlenstoffmaterialien mit unterschiedlichen Beladungen.

Hochaktive Legierungen mit der Platingruppe als Elektrokatalysator

Obwohl die jüngsten Forschungsergebnisse eine hohe Aktivität einiger Metallegierungskatalysatoren zeigen konnten, bleiben ungelöste Probleme. Ein Kernproblem ist nach wie vor die Nutzung hoher Mengen von Metallen der Platingruppe (MPG, bis zu 75% Pt), deren kurze Lebensdauer und schwache Leistung unter Einsatzbedingungen. Forscher der State University of New York in Binghamton, USA, und ihre Kollegen beschreiben der Fachzeitschrift Nature Communication einen neuen Snatz: Eine hochbeständige Katalysatorlegierung aus Platin und Palladium mit weniger als 50% Edelmetall und zudotierten 3d-Übergangsmetallen (Kupfer, Nickel oder Cobalt) in ternärer Zusammensetzung.

Die Forscher untersuchten das Problem der De-Legierung herkömmlicher Katalysatorlegierungen unter den Betriebsbedingungen. De-Legierung führt zu rückläufigen Leistungen. Zum ersten Mal wurde eine dynamische Re-Legierung als Weg zur Selbstheilung von Katalysators unter realistischen Betriebsbedingungen gezeigt, um die Lebensdauer der Brennstoffzellen zu verbessern.

Legierungszusammensetzung

Legierte Pt20PdnCu80−n-Nanopartikeln mit definierten Platin-, Palladium- und Kupferanteilen wurden synthetisiert. Der ausgewählte Satz von ternären Legierungen in den Nanopartikeln mit abstimmbaren Legierungszusammensetzungen- und anteilen enthielt einen Gesamtgehalt an Platin und Palladium von weniger als 50%. Das ist weniger, als bei herkömmlichen legierten MPG-Hochleistungsatalysatoren. Der Einbau von Palladium in Platin-Nanomaterialien resultierte in verminderter De-Legierung und damit in erhöhter Stabilität. Darüber hinaus ist Palladium ein guter Partner für Platin aufgrund ihrer katalytischen Synergie und deren Korrosionsbeständigkeit.

Um die Verbrauch von Platin- und Palladiumkernkatalysatoren zu reduzieren, wurde ein drittes, synergetisches Übergangsmetall für die Legierung eingesetzt. Nicht edle Metalle wie Kupfer, Kobalt, Nickel oder ähnliches wurden zu diesem Zweck verwendet. Die Platin-Palladium-Legierung mit Basismetallen ermöglichte es den Forschern, die thermodynamische Stabilität der Katalysatoren besser abzustimmen.

Morphologie und Phasenstruktur

Die thermochemische Behandlung von Kohlenstoff-Nanopartikeln war für die strukturelle Optimierung von entscheidender Bedeutung. Die Metallatome in den katalytischen Nanopartikeln waren lose in ein erweitertes Kristallgitter gepackt. Die oxidativen und reduktiven Behandlungen der Platin-Palladium-Legierung (MPG <50%) erlaubten einen thermodynamisch stabilen Zustand in Bezug auf Legierung, Relegierung und Kristallgitter. Der Relegierungsprozess homogenisierte nicht nur die inhomogene Zusammensetzung. Er lieferte auch einen wirksamen Weg zur Selbstheilung nach der Delegierung.

In Pt20PdnCu80–n-Nanolegierungen (n = 20, 40, 60, 80) wurden einzelne Würfelstrukturen beobachtet. Die Kupferdotierung der Platin-Palladium-Legierungen reduzierte die Gitterkonstante effektiv, was durch Hochenergie-Röntgenbeugung gezeigt wurde. Komprimierbarkeit und Aktivität des Pt20Pd20Cu60-Katalysators bestätigten den Zusammenhang zwischen den Gitterkonstanten und der Sauerstoffreduzierungsaktivität.

Die Forscher zeigten, daß der thermodynamisch stabile Pt20Pd20Cu60/Kohlenstoffkatalysator seine Komprimierbarkeit nach 20.000 Zyklen beibehielt. Auch seine hohe Aktivität und Haltbarkeit blieb stabil. Die Entdeckung, daß der Legierungskatalysator unter Betriebsbedingungen legiert bleibt, eine wichtige Erkenntnis im Hinblick auf die aktuell vollständig de-legierten MPG-Katalysatoren, die in der gegenwärtigen Literatur beschrieben wird.

Die Bedeutung beim Verständnis der thermodynamischen Stabilität des Katalysatorsystems ist eine potenzielle Paradigmenverschiebung des Designs, der Herstellung und der Verarbeitung von Legierung in Elektrokatalysatoren.

(Foto: Pixabay)

Veröffentlicht am

Wiederaufladbare Zink-Luft-Batterien mit Kobaltkatalysator

Zink-Luft-Batterien sind eine vielversprechende Alternative zu teuren Lithium-Ionen-Batterien. Im Vergleich zur Lithium-Ionen-Technologie weisen Zink-Luft-Batterien eine höhere Energiedichte, sehr niedrige Produktionskosten und eine bessere Sicherheit auf. Da sie jedoch nur einen Entladezyklus haben, sind sie weniger beliebt.

Zink-Luft-Batterien verwenden geladene Zinkpartikel, um gleichzeitig große Mengen Strom zu speichern. Wenn Strom benötigt wird, wird das geladene Zink mit Sauerstoff aus der Luft (und dem Wasser) reagiert, wodurch der gespeicherte Strom freigesetzt und Zinkoxid erzeugt wird. Dieser Prozeß ist als Sauerstoffreduktionsreaktion (SRR) bekannt.

Theoretisch kann dieses Zinkoxid durch Elektrizität wieder in Sauerstoff und Zinkionen umgewandelt werden. Dieser Prozeß wird wiederum als Sauerstoffentwicklungsreaktion (SER) bezeichnet. Mit diesen Reaktionen können Zink-Luft-Batterien wiederaufladbar gemacht werden, wodurch sie wie Lithium-Ionen-Batterien funktionieren.

Die größte Herausforderung beim Wiederaufladevorgang ist die Langsamkeit der Reaktionen und die dadurch verringerte Lebensdauer. Diese Batterien benötigen einen Katalysator, der möglicherweise die SRR- und OER-Reaktionen verbessern und ihre Kinetik schnell machen kann. Daher ist die Entwicklung hocheffizienter Katalysatoren für wiederaufladbare Zink-Luft-Batterien von größter Bedeutung.

In frühere Studien wurden Übergangsmetalloxide als bifunktionelle (Redox) SRR / SER-Katalysatoren vorgeschlagen, da sie Vakanzen für reversible Adsorption von Sauerstoff bereitstellen können. Die Methoden zur Erzeugung genau definierter Defekte für die reversible Adsorption von Sauerstoff in solchen Oxiden sind jedoch eine Herausforderung.

Eine Gruppe von Forschern und Ingenieuren aus China und Kanada haben diese Herausforderung angenommen. Unter Verwendung von Kobalt(II)-oxid-Nanoschichten, die auf rostfreiem Stahl oder Kohlenstoffgewebe aufgebracht wurden, wurde ein bifunktionellen Katalysator hergestellt. Ihre Forschungsergebnisse wurden in der Fachzeitschrift Nano Energy veröffentlicht.

Forschungsansatz

Herstellung des Katalysators

Verschiedene Nanostrukturen wurden unter Verwendung einfacher Wärmebehandlung und galvanischer Abscheidung hergestellt, um sie als bifunktionelle Elektrokatalysatoren zu testen. Die Art der hergestellten Nanostrukturen war:

  • Kobalthydroxid-Nanoschichten auf Edelstahl und Kohlenstoffgewebe
  • Geschichtetes Kobalt(II)-oxid-Nanoschicht auf Edelstahl- und Kohlenstoffgewebe
  • Kobalt(II)-oxid auf Edelstahl
  • Geschichtetes Kobalttetroxid-Nanoschicht auf Edelstahl

Materialcharakterisierung

Um die Eigenschaften der vorbereiteten Proben zu verstehen, wurden verschiedene Analysen und Tests durchgeführt:

Lade- und Entladetests

Spätere Entlade- und Ladezyklustests einzelner Zellen wurden durch das Batterietestsystem durchgeführt.

Ergebnisse

Durch einfache Wärmebehandlung wurden Sauerstoffdefekte geschaffen. Den Autoren zufolge zeigten die Kobaltoxid-Nanoschichten eine ausgezeichnete bifunktionelle ORR / OER-Leistung. Die durschgeführten Untersuchungen deuteten darauf hin, daß die reichlichen Sauerstoffdefekte und Kobaltzentren der Grund für eine verbesserte ORR / OER-Leistung waren. Später wurden die geschichteten Kobaltoxid-Nanoschichten auf Edelstahl als Elektrode in einer wiederaufladbaren Zink-Luft-Durchflußbatterie verwendet, und es wurde eine Rekordlebensdauer von über 1.000 Stunden bei nahezu unveränderter Spannung beobachtet. Galvanostatische Entlade- / Ladezyklen zeigten ebenfalls eine lange Lebensdauer und eine hohe Energieeffizienz.

Diese Untersuchungen bieten eine neue Methode zur Entwicklung hocheffizienter bifunktioneller ORR / OER-Katalysatoren, mit denen die Lebensdauer wiederaufladbarer Zink-Luft-Durchflußbatterie verlängert werden kann. Bei Frontis Energy hoffen wir wie immer, daß wir schon bald industrielle Anwendungen sehen werden.

(Foto: Ingenieurforum)

Referenz: https://doi.org/10.1016/j.nanoen.2020.105409 Wu et al., Cobalt (II) oxide nanosheets with rich oxygen vacancies as highly efficient bifunctional catalysts for ultra-stable rechargeable Zn-air flow battery, 2021

Veröffentlicht am

Festoxidbrennstoffzellen wandeln Methan aus dem Grundwasser in Strom um

Festoxidbrennstoffzellen (FOBZ) sind hocheffiziente Stromerzeuger mit niedrigen Betriebskosten. Sie arbeiten in einem Temperaturbereich von 800 bis 1.000°C. Dies ermöglicht die interne Umwandlung von Kohlenwasserstoffen in Wasserstoff. Methan, Methanol, Benzin und andere Kohlenwasserstoffe können direkt in der Brennstoffzelle in Wasserstoff (H2) umgewandelt werden.

SOFCs bieten eine Reihe zusätzlicher Vorteile gegenüber herkömmlichen Verbrennungsmotoren oder anderen Brennstoffzellen. Zum Beispiel macht die hohe Abwärme (über 800°C) sie zu einer nützlichen Anwendung in der Industrie für die Kraft-Wärme-Kopplung. Durch kombinierte Zyklen kann ein hoher Wirkungsgrad für die Stromerzeugung erreicht werden. Aufgrund des modularen Charakters von FOBZ bieten sie außerdem eine flexible Planung der Stromerzeugungskapazität. Auf diese Weise führt die Verwendung von FOBZ zu einer weiteren Reduzierung der Kohlendioxidemission.

Der größte Vorteil von FOBZ besteht darin, daß sie mit Kohlenwasserstoffen wie Methan (CH4, Erdgas) betrieben werden können. Durch die direkte Verwendung von Methan sind keine Vorreformer erforderlich, wodurch die Komplexität, Größe und Kosten des gesamten FOBZ-Systems verringert werden.

Methan kann aus dem Zerfall organischer Abfälle auf Abfalldeponien, Trinkwasseraufbereitungsanlagen usw. gewonnen werden. Das Gas kann uch aus dem Grundwasser gewonnen werden. Methangas gelangt durch natürlich vorkommenden anaeroben Abbau organischen Materials im Untergrund oder durch Eingasen aus Lagerstätten ins Grundwasser.

Forscher der Technischen Universität Delft ging davon aus, daß das aus der Grundwasseraufbereitung gewonnene Gas auch als Brennstoff in FOBZ verwendet werden kann, und stellten ihre Hypothese auf die Probe. Sie veröffentlichten ihre Ergebnisse in der Fachzeitschrift Journal of Cleaner Production. Derzeit wird das aus der Trinkwasseraufbereitungsanlage in Spannenburg, Niederlande, gewonnene Methan entweder in die Atmosphäre freigesetzt oder abgefackelt, wodurch eine wertvolle Ressource verschwendet wird. Zudem tragen sowohl das Methan als auch das CO2 zu weiteren Treibhausgasemissionen bei.

FOBZ stellen die sauberste der derzeit gängigen Lösungen für die Umwandlung von zurückgewonnenem Methan in elektrische Energie dar. Die so gewonnene Energie kann wiederum von der Trinkwasseraufbereitungsanlage genutzt werden. Dieser Prozess verringert den Strombedarf und gleichzeitig die Treibhausgasemissionen des DWTP.

Der gesamte Prozess war in folgende Schritte unterteilt:

  1. Methan wurde zunächst dem Grundwasser entnommen: Das Grundwasser wurde aus den Tiefbrunnen direkt in ein System von Vakuumtürmen gepumpt, die 90% des gelösten Gases mit einem Nahvakuum von 0,2 bar entfernen.
  2. Die anschließende Behandlung durch Plattenbelüftung entfernten die verbliebenen 10% Methan aus dem Grundwasser.
  3. Zur Entfernung von weiterem  CO2 wurde das Wasser einer weiteren Turmbelüftung unterzigen wodurch das Wasser zusätzlich weicher wurde.

Probenahme von zurückgewonnenem Gas:

Zweihundert Mililiter des mit Methan angereicherten Gases wurden verwendet, um die Konzentration von CH4, H2, Sauerstoff (O2), Stickstoff (N2), Kohlenmonoxid (CO) und CO2 zu bestimmen.

FOBZ-Aufbau & thermodynamischer Ansatz:

Eine FOBZ-Teststation wurde verwendet, um die Experimente durchzuführen. Das methanreiche Gas wurde der Anode zugeführt und das Leerlaufpotential aufgezeichnet. Methan muss in Wasserstoff und CO umgewandelt werden, bevor in einer FOBZ effektiv Strom erzeugt werden kann.

Ergebnisse:

Die Hauptkomponenten im Probengas waren Methan und CO2 mit Konzentrationen von 71 bzw. 23 Mol-%. Zusätzlich enthielt das zurückgewonnene Gas 9 ppm Schwefelwasserstoff (H2S), was die Zellleistung einer FOBZ dauerhaft verringern kann. Schwefelwasserstoff wurde mit imprägnierter Aktivkohle wirksam entfernt (<0,1 ppm)

Die Verwendung von CH4 aus dem Grundwasser in einer FOBZ trägt dazu bei, die Treibhausgasemissionen zu verringern und die Nachhaltigkeit von Trinkwasseraufbereitungsanlagen zu verbessern. Mit dem zurückgewonnenen Methangas des Spannenburg Trinkwasseraufbereitungsanlage kann ein 915 kW SOFC-System betrieben werden. Dies kann 51,2% des gesamten Strombedarfs der Anlage decken und die Treibhausgasemissionen um 17,6% senken, was rund 1,794 Tonnen CO2 entspricht.

Die jährliche Stromerzeugung des FOBZ-Systems könnte 8 GWh betragen, was etwa 3 GWh mehr ist als die, die von einer Gasturbine oder einem Verbrennungsmotor erzeugt wird.

In Zukunft werden die Forscher Langzeittests durchführen, um den sicheren Betrieb von FOBZ, insbesondere im Hinsblick auf das Problems der Kohlenstoffablagerung, zu untersuchen. Diese Tests werden auf die FOBZ-Reihen und die Pilotanlage (im Bereich einiger kW-Systeme) ausgedehnt.

(Abbildung: Indiamart)

Quelle: https://doi.org/10.1016/j.jclepro.2021.125877 (A solid oxide fuel cell fueled by methane recovered from groundwater, 2021)

Veröffentlicht am

Grüner Wasserstoff produziert mit Sonnenlicht und Nanopartikeln

Der Energiebedarf steigt und der Rohstoff für die Wirtschaft mit fossilen Brennstoffen nimmt ab. Darüber hinaus verschlechtert die Emission von Gasen aus dem Verbrauch fossiler Brennstoffe die Luftqualität erheblich. Die aus diesen fossilen Brennstoffen erzeugten Kohlenstoffnebenprodukte beeinflussen das Klima erheblich.

Daher besteht die Notwendigkeit, eine erneuerbare Energiequelle zu finden, die je nach Anforderung leicht hergestellt, gespeichert und verwendet werden kann. Wasserstoff kann eine vielversprechende Energieressource sein, da er eine reichlich verfügbare, ungiftige Ressource ist und leicht zum Speichern überschüssiger elektrischer Energie verwendet werden kann.

Wasserstoff erzeugt in Kombination mit Sauerstoff in einer Brennstoffzelle Strom und die Nebenprodukte sind Wasser und Wärme. Basierend auf der Methode zur Herstellung von Wasserstoff wird es in blauen Wasserstoff und grünen Wasserstoff eingeteilt. Blauer Wasserstoff wird aus fossilen Brennstoffen wie Methan, Benzin und Kohle hergestellt, während grüner Wasserstoff aus nicht fossilen Brennstoffen / Wasser erzeugt wird. Der sauberste Weg zur Herstellung von umweltfreundlichem Wasserstoff ist die Elektrolyse von Wasser, bei der Wasser elektrolysiert wird, um Wasserstoff und Sauerstoff zu trennen. Erneuerbare Energie kann als Leistungselektrolyseur zur Erzeugung von Wasserstoff aus Wasser verwendet werden. Die solarbetriebene photoelektrochemische Wasserspaltung ist eine der gängigen Methoden. Bei der photoelektrochemischen Wasserspaltung wird Wasserstoff aus Wasser unter Verwendung von Sonnenlicht erzeugt.

PEC-Zellen bestehen aus einer funktionierenden Photoelektrode und einer Gegenelektrode. Die Photoelektrode besteht aus Halbleitermaterial mit einer Bandlücke, um Sonnenlicht zu absorbieren und ein Elektron-Loch-Paar zu erzeugen. Die durch Licht erzeugten Ladungen sind für die Oxidation von Wasser und dessen Reduktion zu Wasserstoff verantwortlich. Die PEC leiden unter Geräten mit geringer Stabilität und Effizienz.

Das Forschungsteam des Instituts National de la Recherche Scientifique (INRS) hat zusammen mit Forschern des Instituts für Chemie und Prozesse für Energie, Umwelt und Gesundheit (ICPEES), einem gemeinsamen Forschungslabor der CNRS-Universität Straßburg, einen Weg zur signifikanten Verbesserung des Effizienz der Wasserdissoziation zur Erzeugung von Wasserstoff durch Entwicklung lichtempfindlicher nanostrukturierter Elektroden im Sonnenlicht.

Eine Vergleichsstudie zwischen Kobalt- und Nickeloxid-Nanopartikeln, die auf durch Anodisierung hergestellten TiO2-Nanoröhren abgeschieden wurden, wurde durchgeführt. Die TiO2-Nanoröhren wurden mit CoO- (Kobaltoxid) und NiO- (Nickeloxid) -Nanopartikeln unter Verwendung des reaktiven Pulslaser-Abscheidungsverfahrens dekoriert. Die Oberflächenbeladungen von CoO- oder NiO-Nanopartikeln wurden durch die Anzahl der Laserablationsimpulse gesteuert. Die Effizienz von CoO- und NiO-Nanopartikeln als Cokatalysatoren für die photoelektrochemische Wasserspaltung wurde durch Cyclovoltammetrie sowohl unter simuliertem Sonnenlicht als auch unter Beleuchtung mit sichtbarem Licht und durch externe Quanteneffizienzmessungen untersucht

Die gesamte Forschungsarbeit wurde in folgenden Schritten durchgeführt:

Schritte zur Verbesserung der Effizienz der Wasserstoffproduktion
Schritte zur Verbesserung der Effizienz der Wasserstoffproduktion

(Quelle: Favet et al., Solar Energy Materials and Solar Cells, 2020)

In dieser Studie wurden Kobalt (CoO) – und Nickel (NiO) -Oxide als wirksame Cokatalysatoren für die Spaltung von Wassermolekülen angesehen. Beide Cokatalysatoren verbesserten die photoelektrochemische Umwandlung von Photonen aus ultraviolettem und sichtbarem Licht.

Es wurde jedoch festgestellt, dass CoO-Nanopartikel unter Beleuchtung mit sichtbarem Licht der beste Cokatalysator sind, wobei die Photoumwandlungseffizienz fast zehnmal höher ist als bei TiO2. Die Leistung von CoO-Nanopartikeln wurde im sichtbaren Spektralbereich (λ> 400 nm) verbessert. Der mögliche Grund kann eine Folge ihrer sichtbaren Bandlücke sein, die es ihnen ermöglicht, mehr Photonen im Bereich von 400 bis 500 nm zu gewinnen und die durch Licht erzeugten Elektronen effektiv auf TiO2-Nanoröhren zu übertragen.

Bei Frontis Energy sind wir von dieser neuen Entdeckung zur Verbesserung der Wasserstoffproduktion aus Sonnenlicht begeistert und hoffen, bald eine industrielle Anwendung zu sehen.

(Bild: Engineersforum)

(Quelle: Favet et al., Solar Energy Materials and Solar Cells, 2020)

Veröffentlicht am

Mikrobielle Brennstoffzelle im Pilotmaßstab produziert Strom aus Abwasser

Bei der Abwasserbehandlung ist die Belüftung ein energieintensives und notwendiges Verfahren zur Entfernung von Verunreinigungen. Dabei blasen Pumpen Luft in das Abwasser und versorgen so die im Belebtschlammbecken vorhanden Mikroben mit Sauerstoff. Diese Bakterien oxidieren im Gegenzug organische Stoffe zu CO2 und entfernen diese adaurch aus dem Abwasser. Dieses Verfahren is der indutrielle Standard und hat sich seit über einem Jahrhundert bewährt. Geht es nach den Forschern der Washington State University und der University of Idaho, ändert sich das jetzt.

In ihrer Arbeit verwendeten die Forscher ein einzigartiges mikrobielles Brennstoffzellensystem, das sie als Ersatz für den Belebtschlamm entwickelten. Dieses nachhaltige Abwasserbehandlungssystem, reinigt Abwasser mithilfe von Mikroorganismen, die elektrischen Strom produzieren. Solche Mikroben nennt man Elektrophile.

Die Arbeiten sollen eines Tages zu einer geringeren Abhängigkeit von den energieintensiven Klärprozessen führen. Die meiste Energie in solchen Prozessen wird im Belebtschlamm und bei dessen Entsorgung verbraucht. Der Energieverbrauch bei der Wasseraufbereitung produziert weltweit zirka 4-5% des anthropogenen CO2. Zum Vergleich, laut der Air Transport Action Group in Genf produzierte der internationale Luftverkehr Jahr 2019 2,1% CO2. Ihre Arbeit publizierten die Forscher in der Fachzeitschrift Bioelectrochemistry. Zusätzlich zur Senkung der Emissionen, würde eine Senkung des Energieverbrauchs der Abwasserbehandlung jährliche Kostenersparnisse in Milliardenhöhe bringen.

Mikrobielle Brennstoffzellen lassen Mikroben chemische Energie ähnlich wie eine Batterie in Elektrizität umwandeln. Bei der Abwasserbehandlung kann eine mikrobielle Brennstoffzelle die Rolle der Belüftung übernehmen und Elektronen aus dem Abwasser aufnehmen. Diese Elektron sind wiederum ein Abfallprodukt des bakteriellen Stoffwechsels. Alle lebenden Organismen sind bestrebt, ihre ueberschuessigen Elektronen abzugeben. Dieser Prozess wird unter als Atmung oder Gärung bezeichnet. Der von den Mikroben erzeugte Strom kann für nützliche Anwendungen in der Kläranlage selbst verwendet werden. Die Technologie schlägt also zwei Fliegen mit einer Klappe. Einerseits spart die Klärung des Abwasser Energie. Andererseits erzeugt sie zusätzlich Strom.

Bisher wurden die mikrobiellen Brenstoffzellen experimentell in Abwasserbehandlungssystemen unter idealen Bedingungen eingesetzt, aber unter realen und wechselnden Bedingungen versagen sie häufig. Den mikrobiellen Brennstoffzellen fehlt eine interne Regulation, die das Potenzial von Anoden und Kathoden und damit das Zellpotential steuern, was zu einem Systemausfall führen kann.

Die Forscher fügten dem System eine zusätzliche Referenzelektrode hinzu, die die Steuerung ihres Brennstoffzellensystems ermöglicht. Das System ist umschaltbar. Es kann entweder als mikrobielle Brennstoffzelle für sich arbeiten und keine Energie verbrauchen, oder es kann so umgestellt werden, dass weniger Energie zur Belüftung verbraucht wird während es das Abwasser intensiver reinigt. Frontis Energy verwendet ein ähnliches Steuersystem für seine Elektrolysereaktoren.

Das System wurde ein Jahr lang ohne Fehler im Labor sowie im Pilotmaßstab in einer Test-Kläranlage in Idaho betrieben. Das System entfernte Abfälle mit vergleichbaren Raten wie in einem klassischen Belebtschlammbecken. Zusätzlich könnte die mikrobielle Brennstoffzelle möglicherweise völlig unabhängig vom Stromnetz verwendet werden. Die Forscher hoffen, daß es eines Tages für kleine Abwasserbehandlungsanlagen verwendet werden könnte, beispielsweise für die Reinigung von Viehbetrieben oder in sehr ländlichen Gebieten.

Trotz der Fortschritte gibt es immer noch Herausforderungen, die bewältigen müssen. Es handelt sich um komplexe Systeme, die schwer zu bauen sind. Bei Frontis Energy sind wir auf solche System spezialisiert und können bei der Markeinführung helfen.

(Foto: Wikipedia / National University of Singapore)

Veröffentlicht am

Hocheffiziente Entsalzung durch Nanoröhrchen

Die Trennung flüssiger Kompartimente ist nicht nur für die Energiegewinnung biologischer Zellen von Bedeutung, da dort die Zellatmung stattfindet, sondern auch für elektrochemische Zellen und Entsalzung durch revertierte Osmose und andere Prozesse. Es ist also nur folgerichtig, daß die die angewandte Forschung sich intensiv damit beschäftigt. Wir haben schon in mehreren Artikeln über vielversprechende Versuche berichtet, Membranen billiger und effektiver zu machen. Auch Nanomaterialien sind schon intensiv beforscht worden.

In Folge klimatischer Veränderungen, hervorgerufen durch die globale Erwärmung, wird Wasserknappheit immer häufiger zu einem Problem in vielen Teilen der Welt. Am Meer gelegene Siedlungen können ihre Versorgung mit entsalztem Wasser aus Meerwasser und Brackwasserquellen sichern.

Jetzt haben Forscher des kalifornischen Lawrence Livermore National Laboratory (LLNL) Poren aus Kohlenstoffnanoröhrchen entwickelt, die so effizient Salz aus Wasser entfernen, daß sie mit kommerziellen Entsalzungsmembranen vergleichbar sind. Diese winzigen Poren haben einen Durchmesser von nur 0,8 Nanometern (nm). Ein menschliches Haar einen Durchmesser von 60.000 nm. Die Ergebnisse haben die Forscher in der Zeitschrift Science Advances publiziert.

Die vorherrschende Technologie zur Entfernung von Salz aus Wasser ist die Umkehrosmose. Dabei wird eine Dünnschicht-Verbundmembran (DVM) verwendet, um Wasser von Ionen zu trennen. Bisher war die Leistung dieser Membranen jedoch unbefriedigend. Beispielsweise sind DV-Membranen durch die Kompromisse zwischen Permeabilität und Selektivität eingeschränkt. Zudem weisen sie häufig eine unzureichende Abstoßung einiger Ionen und Spuren von Verunreinigungen auf.  Das erfordert zusätzliche Reinigungsstufen die wieder die Energiekosten erhöhen.

Wie so oft, haben sich die Forscher die Natur zum Vorbild genommen. Biologische Wasserkanäle, auch als Aquaporine bekannt, liefern eine Blaupause für die Strukturen, die eine höhere Leistung bieten können. Diese Aquaporine haben extrem enge innere Poren, die das Wasser zusammendrückt. Dadurch wird eine extrem hohe Wasserdurchlässigkeit mit Transportraten von mehr als 1 Milliarde Wassermolekülen pro Sekunde pro Pore ermöglicht. Kohlenstoffnanoröhren stellen aufgrund der geringen Reibung des Wassers auf den Innenflächen einen der vielversprechenden Ansatz für künstliche Wasserkanäle dar.

Die Forschergruppe entwickelte Nanoröhrchen-Porine, die sich selbst in nachgeahmte biologische Membranen einfügen. Diese künstlichen Wasserkanäle bilden die Funktionalität von Aquaporinkanälen nach. Die Forscher maßen den Wasser- und Chloridionentransport durch die künstlichen Porine mit einem Durchmesser von 0,8 nm. Computersimulationen und Experimente unter Verwendung de künstlichen Porine in Lipidmembranen zeigten einen verbesserten Fluß sowie eine starke Ionenabstoßung in den Kanäle von Kohlenstoffnanoröhrchen.

Mit diesem Verfahren kann man den genauen Wert der Wasser-Salz-Permselektivität in den engen Kohlenstoffnanoröhrchen bestimmen. Simulationen auf Atomebene bieten eine detaillierte molekulare Ansicht der neuartign Kanäle. Bei Frontis Energy freuen wir uns über diesen vielversprechenden Ansatz und hoffen schon bald ein kommerzielles Produkt auf dem Markt sehen zu können.

(Bild: Wikipedia)

Veröffentlicht am

Wiederaufladbare PAM-Brennstoffzelle mit Wasserstoffspeicherpolymer

Brennstoffzellen gehören zu den effizientesten und saubersten alternativen Energiequellen. Sie haben das Potential, Stromerzeuger auf Basis fossiler Brennstoffe zu ersetzen. Insbesondere Protonenaustauschmembran-Brennstoffzellen (PAMBZ) sind aufgrund ihrer hohen Leistungsdichte und Effizienz bei niedrigen Betriebstemperaturen (ca. 60–80°C) vielversprechende Energieumwandler für zahlreiche Anwendung im Transportsektor, als Energiespeicher oder zur Stromerzeugung in entlegenen Regionen. PAMBZ könnten zu einem der saubersten Energieträger werden. Dies liegt daran, dass Wasser das Endprodukt solcher Energieumwandlungssysteme ist. Derzeit werden in diesen Brennstoffzellen hauptsächlich Nafion™ -Membranen als Wasserstoffbarrieren verwendet, die für ihre Robustheit bekannt sind.

PFSA Protonenaustauschmembran

Eine ausreichende Versorgung mit Wasserstoff ist für die Anwendung von PAMBZ-Systemen von entscheidender Bedeutung. Derzeit sind teure Hochdrucktanks (70 MPa) für die Wasserstoffspeicherung der neueste Stand der Technik. Neben den Kosten gibt es auch noch andere Nachteile wie die mangelnde Beweglichkeit und Sicherheit. Um diese Probleme anzugehen, wurden alternative Wasserstoffspeichermaterialien eingehend untersucht. Beispielsweise können Metallhydride und organische Hydridmaterialien Wasserstoff durch kovalente Bindung fixieren und freisetzen.

Jetzt haben Dr. Junpei Miyake und Kollegen von der Universität von Yamanashi, Japan, ein wiederaufladbares PAMBZ-System (RCFC) vorgeschlagen, das ausschließlich aus Polymeren besteht. Die Arbeit wurde in Nature Communications Chemistry veröffentlicht. Die Strategie der Forscher bestand darin, eine Polymerfolie zur Wasserstoffspeicher (HSP, ein organisches Festkörperhydrid) als Wasserstoffspeichermedium in der Brennstoffzelle anzubringen. Mit diesem Ansatz wurden die Probleme wie Toxizität, Entflammbarkeit und Flüchtigkeit sowie Bedenken in Bezug auf andere Komponenten wie Kraftstoffbehälter, Pumpen und den Verdampfer gelöst. Die HSP-Struktur basiert auf Fluorenol / Fluorenon-Gruppen, die als Wasserstoffspeicher dienen.

Um die Leistung ihrer wiederaufladbaren HSP-basierten Brennstoffzelle zu testen, brachten die Wissenschaftler die HSP-Folie an der Membranelektrode der anodischen Katalysatorschicht an. Gleichzeitig wurde die Kathodenseite wie bei regulären PAMBZ betrieben. Die Forscher berichteten ebenfalls, daß auch ein Iridiumkatalysator auf die Innenseite der HSP-Folie angebracht wurde. Dadurch wurden die Freisetzung und Fixierung des Wasserstoffs verbessert.

Zur Leistungsbeschreibung wurden der Brennstoffzellenbetrieb an sich, die Zyklusleistung und Haltbarkeit über mehrere Zyklen von je sechs Schritten getestet. Zuerst wurde die HSP-Folie für zwei Stunden mit Wasserstoff beladen. Darauf folgten eine Stickstoffgasspülung, um den überschüssigen Wasserstoff von der Anode zu entfernen. Nach dem Erhitzen der Zelle auf 80°C, wurde der Wasserstoff aus der HSP-Folie freigestzt. Zusammen mit dem der Kathodenseite zugeführten Sauerstoff erzeugte die Brennstoffzelle konstanten elektrischen Strom.

Die Forschergruppe zeigte, daß die HSP-Folie in 20, 30, 60 bzw. 360 Minuten respektive 20%, 33%, 51% oder 96% des gesamten fixierten Wasserstoffgases freisetzte. Die Temperatur betrug 80°C in Gegenwart des Iridiumkatalysators. Der Iridiumkatalysator konnte auch bis zu 58 Mol-% Wasserstoff absorbieren, was jedoch erheblich niedriger war als der im HSP gespeicherte Wasserstoff. Die maximale Betriebszeit betrug ca. 10,2 s / mgHSP (ca. 509 s für 50 mg HSP) bei einer konstanten Stromdichte von 1 mA / cm2. Die RCFCs erreichten eine Zyklisierbarkeit von mindestens 50 Zyklen. Darüber hinaus erwies sich die Verwendung einer gasundurchlässigen sulfonierten Polyphenylenmembran (SPP-QP, eine weitere PEM) als gute Strategie zur Verlängerung der Operationszeit der RCFC.

Zu den vorteilhaften Merkmalen des beschriebenen RCFC-Systems gehören seine verbessere Sicherheit, seine einfachere Handhabung und sein geringeres Gewicht. Diese Merkmale eignen sich beispielsweise perfekt für mobile Anwendungen in Brennstoffzellenfahrzeugen. Um wirtschaftlich einsetzbar zu sein, müssen jedoch die Wasserstoffspeicherkapazität und -kinetik (H2-Freisetzungs- / Fixierungsreaktionen) sowie die Katalysatorstabilität des RCFC-Systems weiter verbessert werden.

(Miroslava Varnicic, 2020)