
DOI: 10.13140/RG.2.2.16014.22082
In den letzten Jahrzehnten hat sich der Schwerpunkt der Abwasserbehandlung von der reinen Entsorgung hin zur Rückgewinnung von Ressourcen verlagert. Dabei werden im Abwasser enthaltene Energie und Nährstoffen erschlossen. Unter den aufkommenden Technologien befinden sich auch bioelektrische Systeme. Neben Energie und Kohlenstoff können auch wertvolle Verbindungen wie Ammonium zurückgewonnen werden. In Ammonium gebundener Stickstoff ist ein zentraler Bestandteil von Düngemitteln. Zwei Drittel dieser Ressource werden heute im sehr energieaufwendigen Haber-Bosch-Verfahren mithilfe von Erdgas aus Luft gewonnen. Die Düngemittelherstellung trägt damit wesentlich zu anthropogenen CO2-Emmissionen und schlußendlich zur globalen Erwärmung bei.
Bioelektrische Systeme zur Ammoniumrückgewinnung werden in mikrobielle Brennstoffzellen und mikrobielle Elektrolysezellen unterteilt. In beiden oxidieren elektrogene Mikroorganismen im Abwasser enthaltenes organisches Material zu Kohlendioxid und Protonen. Elektrogene Mikroorganismen werden auch als anodenatmende Bakterien bezeichnet. Im Gegensatz zu sauerstoffatmenden Bakterien nutzen Elektrogene die Anode als Elektronenakzeptor und gewinnen dadurch Energie für ihren Stoffkreislauf.
Durch die Verbindung mikrobieller Aktivität mit elektrochemischen Prozessen werden die chemischen Reaktionen bei der Abwasserreinigung effektiv katalysiert. Diese neuartige biokatalytische Anwendung steht jedoch vor Herausforderungen bei der Optimierung für den praktischen Einsatz. Bei Frontis Energy haben wir in einem patentierten Verfahren schon gezeigt, daß Ammonium in bioelektrischen Systemen effektiv aus Abwasser entfernt werden kann. Wir arbeiten derzeit daran, das Verfahren für den industriellen Einsatz zu skalieren. Allerdings fehlt derzeit noch das Verständnis sowohl der genauen Prozesse, als auch der für mögliche Rückgewinnung von Ammonium.
Eine neue Studie der Autonomen Universität Barcelona wurde die Entwicklung und Optimierung bioelektrischer Systeme untersucht. Ziel war es, Ammonium aus Abwasser energieeffizient und in konzentrierter Form zurückzugewinnen. Die Ergebnisse wurden kürzlich im Fachblatt Bioelectrochemistry veröffentlicht. Mithilfe einer Drei-Kammer-Konfiguration mit hydrophober Membran untersuchten die Forscher systematisch den Einfluß unterschiedlicher Stromstärken und Ammoniumkonzentrationen auf die Rückgewinnung. Das System erreichte seine höchste Ammoniumrückgewinnungsrate von 55 g / m² / Tag bei einem Strom von 75 mA. Insgesamt wurde eine 97%ige Entfernung des Ammoniums aus einer 0.3%igen Lösung erzielt.
Bemerkenswerterweise fließen Elektronen vom Anoden- zum Kathodenbereich über einen externen Stromkreis, wo sie mit einem Elektronenakzeptor reagieren. In Systemen zur Rückgewinnung von Ammonium wandern Ammoniumionen durch eine Kationenaustauschmembran von der Anode zur Kathode, angetrieben durch Konzentrationsgradienten und das elektrische Feld, wodurch sie sich in der Kathodenkammer anreichern können.
Während dieser Ionentransportmechanismus eine effiziente Ammoniumrückgewinnung unterstützt, beobachteten die Forscher, daß ein Betrieb mit hoher Leistungsfähigkeit zu einem Materialverschleiß an der Kathode führte. Das unterstreicht die Notwendigkeit, Betriebsintensität mit Materialbeständigkeit in Einklang zu bringen. Folglich untersuchten die Forscher verschiedene Kathodenmaterialien und Spannungen. Dabei zeigte sich, daß Edelstahlkathoden bei 1,4 V die besten Ergebnisse lieferten – mit einer Entfernungsrate von 21 g / m² / Tag und einer Rückgewinnungsrate von 17 g / m² / Tag, vor allem aufgrund der verbesserten Kationenmigration infolge höherer Stromdichte.
Langzeitversuche zeigten, daß eine höhere Ammoniumkonzentration im Anolyt die selektive Migration von Ammoniumionen durch die Kationenaustauschmembran deutlich verbessert. Diese Verbesserung steigert wiederum die Gesamtleistung des Systems. Der Betrieb bei 1,4 V erhöhte die Rückgewinnungseffizienz und senkte den Energieverbrauch pro Gramm Stickstoff – was den Prozeß kosteneffizienter und umweltfreundlicher machte.
Diese Erkenntnisse unterstreichen das praktische Potential bioelektrischer Systeme als wegweisend zur nachhaltigen Stickstoffrückgewinnung. Durch die Abstimmung von Materialwahl, Systemdesign und Betriebsparametern lassen sich hohe Ammoniumentfernungs- und Rückgewinnungsraten bei minimalem Energieeinsatz erzielen.
Aus industrieller Sicht stelt diese Studie einen skalierbaren Fortschritt in Richtung Ressourcengewinnung bestehender Abwasserbehandlungssysteme dar. Skaliert könnte die Technologie die Abhängigkeit vom energieintensiven Haber-Bosch-Verfahren reduzieren.
Da es sich bei Ammonium in konzentrierter Form um ein marktfähiges Produkt handelt, senkt seine Rückgewinnung die Betriebskosten von Kläranlagen. Sollte das skalierte Produkt durch die selbe stabile Langzeitleistung und geringen Energiebedarf überzeugen, wären dies starke Argumente für den Einsatz bioelektrischer Technologien im Rahmen der Kreislaufwirtschaft.
Bei Frontis Energy sehen wir großes Potential darin, diese Technologie zu skalieren und einen wichtigen Beitrag zur nachhaltigen Abwasserbehandlung zu leisten.
Bild: Shutterstock







