Zur Reduktion von Treibhausgasemissionen sind verschiedne Prozesse in der Entwicklung, die eine Trennungen von Gasgemischen bestehend aus CO2 und Methan bzw. CO2 und Stickstoffgas erfordern (CO2/CH4 und CO2/N2). Polymermembranen sind unter anderem aufgrund ihrer niedrigen Betriebskosten, hohen Energieeffizienz und einfachen Skalierbarkeit im Vergleich zu anderen Trennungstechnologien gute Kandidaten für einen großtechnischen Einsatz.
Die Gaspermeabilität und -selektivität, sowie die Kosten dieser Polymermembranen sind die entscheidenden Kriterien für ihren industriellen Einsatz. Diese Kriterien werden werden bei molekularen Ordnungsvorgängen während der Polymerisierung auf Nanometer- und Mikrometer-Ebene beeinflußt. Die Ordnungsvorgänge der meisten gängigen Membranen findet aber nicht auf dieser Ebenen statt und können daher schlecht gesteuert werden. Über Materialien mit Selbstorganisationseigenschaften und das Wirken ihrer molekularen Ordnung auf die Gastrennleistung ist wenig bekannt.
Chemiker der Technischen Universität Eindhoven in den Niederlanden untersuchten die Auswirkungen des Schichtabstands innerhalb der Membran und deren Halogenierung auf die Gastrennung und publizierten ihre Ergebnisse im Fachmagazin MDPI Membranes. Dabei fokussierten sie sich auf die Gastrennung von Helium, CO2 und Stickstoff. Sie verwendeten für ihre Untersuchung Flüssigkristallmembranen. Flüssigkristallmoleküle können sich in verschiedenen Nanostrukturen arrangieren. Diese Strukturen fallen je nach Herstellungsprozess unterschiedlich aus und sind somit steuerbar. Damit sind Flüssigkristallmembranen ideal geeignet, um den Einfluss der Nanostrukturen auf die Gastrennung zu untersuchen.
Eine häufig verwendete Herstellungsmethode besteht darin, die Selbstorganisation von reaktiven Flüssigkristallmolekülen in einer Zelle mit Abstandshaltern zu starten. Das hilft dabei, die Membrandicke und -ausrichtung besser zu kontrollieren und letztlich die molekulare Orientierung zu steuern. Die abschließende Vernetzung der Flüssigkristallmoleküle und Fixierung der Nanostrukturen ist erforderlich, um eine ausreichende mechanische Festigkeit zu erreichen. So haben z.B. hoch geordnete Kristallmembranen (also keine Flüssigkristalle) eine niedrigere Gasdurchleitungskapazität jedoch eine höhere Selektivität für Helium und CO2 gegenüber Stickstoff.
Auch lamellare Strukturen und die Richtung des Gasflusses haben einen großen Einfluß auf Selektivität und Permeabilität der Membran. Darüber hinaus ist bekannt, daß Halogenatome wie Chlor oder Fluor die CO2-Permeabilität und -Selektivität verbessern, indem sowohl die Gaslöslichkeit als auch die Diffusion beeinflussen.
In den nun vorgestellten Versuchen, waren alle Membranen, die aus Flüssigkristallen mit ähnlichen chemischen Zusammensetzungen bestanden, jedoch unterschiedliche Halogenalkylabstandslängen besaßen, planar ausgerichtet. Die CO2-Sorption und die gesamte Gaspermeation waren besser, wenn deren Schichten weiter auseinander lagen. Die Gaslöslichkeit selbst war dabei nicht entscheident. Das wurde durch die erhöhten gemessenen Gasdiffusionskoeffzienten bestätigt.
Sperrige Halogene hatten nur begrenzt Einfluß auf die Gaspermeabilität und -selektivität. Die CO2-Permeabilität aller halogenierten Flüssigkristallmembranen nahm aufgrund einer geringfügig höheren CO2-Löslichkeit und des Diffusionskoeffizienten zu, was zu einer verbesserten Selektivitäten für CO2 führte. Insbesondere der Schichtabstand war ein entscheidender Faktor, der direkt den Diffusionskoeffizienten beeinflußte. Die Forscher empfahlen, daß zukünftige Arbeiten sich auf die Verbesserung der Trennleistungen konzentrieren sollten, indem die Membrandicke verringert wird.
Bei Frontis Energy freuen wir uns wie üblich schon auf ein gutes kommerzielles Produkt, das effektiv und billig CO2 aus Gasgemischen, wie zum Beispiel Biogas abscheiden kann.
Foto: Pixabay / SD-Pictures