
Kohlenstoffbasierte Materialien haben ein breites Anwendungsspektrum, wie etwa Energiespeicherung und -umwandlung, Elektronik, Nanotechnologie, Wasserreinigung und Katalyse. Sie bestehen aus einem Element, das überall verfügbar ist.
Die elektrochemischen Eigenschaften kohlenstoffbasierter Elektroden können durch die Verwendung leitfähiger Polymere verbessert werden. Kohletuch, das aus Kohlenstoff-Mikrofasern gewebt wird, ist ein vielversprechende kohlenstoffbasiertes Elektrodenmaterial. Es ist als langlebig und kosteneffizient und gut für elektrochemische Reaktionen geeignet, die z.B. CO2 umwandeln, Schadstoffe abbauen und die Wasserqualität verbessern. Solche Elektroden, die für ihre mechanische Flexibilität, Stabilität und Kosteneffizienz bekannt sind, werden in Prozessen wie elektrochemischer Oxidation, mikrobiellen Brennstoffzellen und anderen fortschrittlichen Abwasserbehandlungstechnologien eingesetzt.
Unmodifizierter Kohletuchelektroden sind durch einige Einschränkungen gekennzeichnet, wie z.B. geringe spezifische Kapazität und eingeschränkte Benetzbarkeit durch Wasser aufgrund ihrer natürlichen Hydrophobie. Daher wird intesiv an möglichen Verbesserungen dieser modernen Elektroden geforscht. Eine bessere Benetzbarkeit trägt beispielsweise entscheidend dazu bei, die effektive Elektrodenoberfläche in wässrigen Flüssigkeiten zu erhöhen und dadurch die Interaktion mit Schadstoffen zu verbessern. Die Leistung von Kohletuchelektroden zu verbessern hilft also, kürzere Reaktionszeiten zu erreichen und so die Gesamtleistung zu verbessern.
Eine Forschungsgruppe der San Diego State University widmete sich nun der Aufgabe, diese Einschränkungen zu beheben. Ihr Ansatz bestand darin, leitfähige Polymerfilme auf die Kohlenstoffasern zu bringen. Dies erreichten sie mithilfe der Mehode oxidative chemische Dampfabscheidung (oCVD). Sie veröffentlichten kürzlich ihre Ergebnisse in der Zeitschrift Advanced Material Interfaces. Mit Antimonpentachlorid (SbCl5) als Oxidationsmittel entwickelten sie eine hochgradig einheitliche Beschichtung bestehend us dem Polymer PEDOT (Poly[3,4-ethylendioxythiophen]) auf den dreidimensional angeordneten porösen Kohlefasern. Die oCVD-Technik gewährleistetete eine gleichmäßige Beschichtung und bewahrte gleichzeitig die geometrischen und funktionellen Eigenschaften des Kohletuhs. Die Methode ist daher ein vielversprechender Ansatz zur Verbesserung der elektrochemischen Leistung solcher Elektroden.
Die PEDOT-beschichteten Kohletuchelektroden erreichten eine deutliche Verbesserung der spezifischen Kapazität und Pseudokapazität im Vergleich zu unbeschichtetem Kohlenstoffgewebe. Abhängig von der Abscheidetemperatur zeigte die PEDOT-beschichtete Elektrode eine 1,5- bis 2,3-fache Steigerung der spezifischen Kapazität. Zudem konnte eine Temperaturabhängigkeit beim oCVD-Verfahren gezeigt werden. Die Elektrode, die bei einer Abscheidetemperatur von 80 °C hergestellt wurde, wies die höchste spezifische Kapazität und die beste elektrochemische Leistung auf. Durch die Anpassung der Abscheidetemperatur zur Optimierung der Leistung können Kohletuchelektroden an spezifische Anforderungen wie z.B. bei der Abwasserbehandlung angepasst werden.
Die Untersuchung zeigt die Wirksamkeit der oCVD-Methode zur Verbesserung der Eigenschagften von Kohletuchelektroden. Dadurch ist eine Erweiterung des Anwendungsspektrums z.B. bei der Abwasserbehandlung und bei elektrochemischen Energiespeicherung möglich. Darüber hinaus zeigten die Forscher, daß PEDOT-beschichtetes Kohletuch in Superkondensatoren zum Einsatz kommen können, da gerade bei dieser Anwendung Flexibilität und hohe Kapazität entscheidend sind. Die Studie ist nicht nur bedeutende Fortschritte im Materialdesign, sondern eröffnet auch neue Möglichkeiten zur Optimierung der Elektrodenleistung für unterschiedliche Anwendungen.
Insgesamt zeigen die Ergebnisse das wachsende Potential fortschrittlicher Elektrodentechnologien zur Bewältigung industrieller Herausforderungen. Durch die Verbesserung der Funktionalität kohlenstoffbasierter Elektroden mithilfe neuartiger Materialbeschichtungen können effizientere und maßgeschneiderte Lösungen sowohl für die Abwasserbehandlung als auch für die Energiespeicherung erreicht werden. Die Fähigkeit, die Eigenschaften von Elektroden an spezifische Anforderungen anzupassen, bietet einen Weg zur Entwicklung hocheffizienter und kostengünstiger Technologien, die ein Wendepunkt für verschiedene Sektoren sein könnten, insbesondere dann wenn Nachhaltigkeit und Ressourcenmanagement eine große Rolle spielen. Da sich solche Innovationen weiterentwickelen werden, könnten sie die betriebliche Effizienz und die Umweltauswirkungen in den entsprechenden Industriesektoren erheblich verbessern, wie z.B. in der Abwasserbehandlung die Elektrokoagulation, Elektrooxidation oder Elektroreduktion.
Bei Frontis Energy glauben wir, daß Verbesserungen und Anpassungen dazu beitragen können, Elektroden zu entwerfen, die auf spezifische Schadstoffe oder Arten von Abwasser abgestimmt sind.
Bild: Pixabay