Direktethanolbrennstoffzellen (DEBZ) sind Brennstoffzellen, die mit Ethanol als Brennstoff betrieben werden und direkt elektrische Energie erzeugen. Obwohl sie eigentlich sehr viel zu bieten haben, werden sie noch nicht industriell gefertigt. Ethanol wird aus Biomasse durch Hefen hergestellt. Seine Oxidationsprodukte – CO2 und H2O – sind daher umweltfreundlich. Die Anwendung von DEBZ könnte aufgrund der Energieeffizienz eine lukrative Lösung für Fahrzeuge sein, so sie denn in großen Stückzehen produziert werden. Unsere derzeitige Brennstoff-Infrastruktur ist für Ethanol durch die derzeitige Beimischung schon einsatzbereit. Die DEBZ-Nutzung wäre daher eine nachhaltige, umweltfreundliche und schnell einsetzbare Alternative zu aktuellen Verbrennungsmotoren. Darüber hinaus ist Ethanol flüssig, was die Verteilung, Lagerung und Verwendung erleichtert.
Laut einer von der Internationalen Energieagentur (IEA) gesponserten Studie stellen DEBZ hohe Leistungsdichten bereit, die zwischen 50 und 185 mW / cm² liegen. Derzeit sehen sich DEBZ mit mehrfache Herausforderungen konfrontiert. Dazu zählen wie langsame Redox-Kinetik, begrenzte Leistung und hohen Kosten für die benötigten Elektrokatalysatoren.
Die beiden Hauptreaktionen in DEBZ sind:
Ethanoloxidationsreaktion (EOR)
Sauerstoffreduktionsreaktion (SRR)
Die träge Reaktionsgeschwindigkeit hat die Verbreitung dieser Technologie bisher verhindert. Moderne DEBZ benötigen teure platinbasierte Materialien, um diese Reaktionen zu katalysieren. Sie oxidieren jedoch Ethanol nicht vollständig zu CO2. Das begrenzt die Energieeffizienz. Eine Dieses Problem kan behoben werden, indem nicht umgesetzter Brennstoff erneut injizieren eingespeist wird. Da dies die Komplexität der Brennstoffzelle erhöht, wäre eine bessere Lösung, effizientere Katalysatoren zu finden. Um das wahre Potenzial von DEBZ auszuschöpfen sollten am besten günstigere Katalysatoren für die beiden Reaktionen gefunden werden.
Die Forscher an der University of Central Florida und ihre Kollegen experimentierten mit Palladium-Stickstoff-Kohlenstoff-Katalysatoren (Pd-N-C) und versuchten, die Leistung durch Einführung von Fluoratomen zu verbessern. Das Team benutzte alkalische Membranen und platinfreie Katalysatoren. Diese waren sowohl kostengünstiger erzeugten auch eine hohe Ausgangsleistungsleistung.
Bisherige Forschung an elektrokatalytischen Systemen ergab, daß die lokale Elektrodenkoordinierung von zentraler Bedeutung für die Aktivität von Redox-Katalysatoren aus kohlenstoffbasierten Metallnanopartikeln ist. Die neue Studie zeigte, daß die Einführung von Fluoratomen in Pd-N-C-Katalysatoren die Elektrodenkoordinierung günstig beeinflußt. Dadurch wurde sowohl Aktivität erhöht als auch Haltbarkeit der Katalysatoren verbessert. Zusammengenommen wirkte sich das positiv auf die Gesamtleistung des Brennstoffzelle aus. Die experimentellen Ergebnisse der langfristigen Stabilität sind ein vielversprechender Fortschritt gegenüber praktischen Anwendungen solcher Katalysatoren in DEBZ.
Ergebnisse
Bei Experiment mit dem neuen Katalysator wurde festgestellt, daß die Fluoratome die Kohlenstoff-Stickstoff-Bindung schwächen und die Stickstoffatome in Richtung Palladium entlassen. Diese Elektronenübertragung regulierte effizient die Elektrodenkoordinierung des Palladiums, indem aktive Palladium-Stickstoff-Zenten für katalytische Reaktionen gebildet wurden.
Die N-reiche Palladiumoberfläche förderte die Spaltung der Kohlenstoffbindungen und ermöglichte die vollständige Ethanoloxidation. Während der SRR hat die N-reiche Palladiumoberfläche nicht nur die CO2-Adsorption reduziert, sondern erzeugte auch besser zugängliche katalytische Stellen für eine schnellere Sauerstoffadsorption.
Nach Angaben der Autoren wurde ein häufig auftretendes Problem in den DEBZ – die nicht abgeschlossenen Schlüsselreaktionen – behoben. Der neue Katalysator verbesserte die Gesamtleistung der Brennstoffzelle. Die Fluordotierung erhöhte auch die Haltbarkeit des Katalysators, indem die die Korrosion die Kohlenstoffkorrosion reduziert. Auch wurde die Palladiummigration und -aggregation gehemmt.
In einer DEBZ getestet, wurde mit dem neuen Katalysator eine maximale Leistungsdichte von 0,57 W / cm² erreicht. Die Brennstoffzelle lief für mehr als 5.900 Stunden stabil. Die vorgeschlagene Strategie der Fluordotierung führte unter Verwendung anderer kohlenstoffgestützter Metallkatalysatoren generell zu verbesserter Aktivität und Stabilität.
Ausblick
Der Hauptmangel alkalischer DEBZ ist ihre Haltbarkeit. Derzeit reicht sie für praktische Anwendungen nicht aus. Darüber hinaus haben die verwendeten Anionenaustauschermembranen zwei Probleme:
Die strukturelle Stabilität der Membran reicht nicht aus, um sie langfristig zu verwenden
Katalysatorcarbonisierung erfolgt in Anwesenheit von CO2 aufgrund seiner Reaktion mit Hydroxidionen, wodurch sich der Katalysator letztendlich abnutzt.
Obwohl die DEBZ in der vorgestellten Studie für bemerkenswerten 5.900 Stunden lief, mußte die Membran nach 1.200 Stunden ausgetauscht werden. Da das Austauschen der Membranen eine vollständige Demontage der Zelle erforder, ist dies langfristig keine praktable Lösung.
Daher sollte sich die zukuenftige Forschung auf die ionische Leitfähigkeit und der Stabilität anionischer Membranen unter alkalischen Bedingungen konzentrieren. Idealerweise wird die zur Erhöhung der ionischen Leitfähigkeit verwendete Hydroxidlösung vermieden, um die Energiedichte zu erhalten und die Komplexität der Vorrichtung zu reduzieren. Festoxidbrennstoffzellen bieten eine Lösung für diese Probleme, da der Kraftstoff in gasförmiger Form oxidiert wird. Ihre keramische Membran ist jedoch zu fragil für mobile Anwendungen.
Das publizierte Experiment ist ein signifikanter Fortschritt bei der Verbesserung der Leistungsdichte von DEBZ und bringt sie damit auf einen neuen Stand der Technik. Die weitere Forschung muß jedoch die zahlreichen kleineren Hindernisse bei der langfristigen Verwendung von anionischen Membranen angehen.
Experimentelle Analyse
Verwendete Materialien
Handelsübliche Pd/C-Partikel (10%, 8 nm PD-Partikel auf Aktivkohle) sowie Pt/C (20%, 3 Nm-Pt-Partikel auf Kohle) wurden als Basiskatalysatoren verwendet. Nafion™ -Lösung (5%), Kohlepapier (TGP-H-060) und Anionenaustauschermembranen (Fumasep FAS-PET-75) kamen ebenfalls zum Einsatz.
Synthese von Heteroatom X-dotiertem Kohlenstoff (X-C, X = N, P, S, B, F)
Kohlepartikel mit reich vorhandenen Sauerstoff-Gruppen und Melamin (C3H6N6) wurden gemischt und gemahlen und schließlich pyrolysiert. Nach dem Abkühlen auf Raumtemperatur wurde N-C durch Waschen mit Ethanol und Wasser erhalten. Die gleiche Methode wurde verwendet, um P-C, S-C, B-C und F-C aus Natriumhypophosphitsäure-, Schwefelpulver, Borsäure und Polyvinylidendifluorid zu synthetisieren.
Synthese von Heteroatomfluor-dotierten Kohlenstoffkatalysatoren
N-C und Polyvinyliden-Difluorid wurden gemischt und gemahlen, bevor sie in eine Lösung von Aceton und Wasser hinzugefügt wurden. Nach der Ultraschallbehandlung wurde das Gemisch in einem Ölbad unter Rückfluß erhitzt, bis es vollständig getrocknet war. Um den fluorierten Katalysatorträger zu erhalten, wurde die Mischung pyrolysiert und nach dem Abkühlen auf Raumtemperatur wurden die Proben mit Ethanol und Reinstwasser gewaschen, gefolgt von Vakuumbehandlung. Die gleiche Methode wurde für die anderen Vorstufen verwendet.
Mikrowellenreduktion wurde verwendet, um den Palladiumkatalysator auf dem Katalysatorträger zu synthetisieren. Der Palladiumanteil in allen Proben war 1%, was durch Röntgenspektroskopie bestätigt wurde.
Elektrochemische Charakterisierungen.
Für die elektrischen Messungen wurden entweder eine glasartige Kohlenstoff-Ring-Platten-Elektrode oder eine rotierende Ringscheibenelektrode verwendet. Die Fumasep-Membran wurde als Anionenaustauschermembran verwendet, und durch Hydroxylgruppen modifiziert.
Literatur
Chang et al., 2021, Improving Pd–N–C fuel cell electrocatalysts through fluorination-driven rearrangements of local coordination environment. Nature Energy 6, 1144–1153 https://doi.org/10.1038/s41560-021-00940-4
Wasserstoffbrennstoffzellen werden häufig als Schlüsselelement beim Übergang zu nachhaltiger Energieerzeugung angesehen. Ihr Wirkungsgrad ist doppelt so hoch wie der von Verbrennungsmotoren. Brennstoffzellen wandeln die chemische Energie von Wasserstoff und Sauerstoff direkt in Strom und Wasser um. Daher spielt Wasser eine zentrale Rolle in Brennstoffzellen. Es sorgt für den Ionentransport und ist natürlich auch das Produkt der Reaktion selbst. In einer Anionenaustauschmembran-Brennstoffzelle (AAMBZ) muß das Wasser in der Anodenkatalysatorschicht (AKS) für die Sauerstoffreduktionreaktion auf die Kathodenkatalysatorschicht (KKS) diffundieren. Für einen höheren Effizienz der Wasserstoffdiffusion ist daher intelligentes Wassermanagement erforderlich, um so das Reaktionswasser aus der AKS zu entfernen und in der gesamten Membranelektrodenanordnung (MEA) auszubalancieren.
Es ist daher nur folgerichtig, daß ein besonderer Schwerpunkt der Brennstoffzellenforschung auf Wassermanagement liegt, um so bessere Reaktionsbedingungen sowohl für die Anode als auch für die Kathode zu ermöglichen. Die asymmetrische Befeuchtung von Reaktionsgasen wird allgemein als bester Lösungsansatz angesehen. Dadurch soll eine ausgeglichene Wasserbilanz zwischen den beiden Elektroden erreicht werden. Bei höheren Temperaturen verdampft jedoch überschüssiges Anodenwasser. Dieser Vorgang verursacht Wassermangel an der Kathode, die jedoch Wasser benötigt, um einwandfrei zu funktionieren. Um dem Wasserverlust entgegenzuwirken, wurde ein Komtrollsystem entwickelt, das den Rückfluß an der Anode und der Kathode steuert. Solche externen Steuerungsmechanismen erhöhen jedoch die Komplexität der Systemsteuerung.
Ein passives Steuerungssystem durch MEA-Modifikationen könnte das Wassermanagement erleichtern. Die Feuchtigkeitskontrolle in Brennstoffzellen kann durch besser dafür geeigneten Gasdiffusionsschichten erreicht werden. Verschiedener Arten von hydrophoben Materialien für die Anode und hydrophilen für die Kathode können so die gesamte Kraftstoffzellenleistung verbessern. Polyethylen-Tetrafluorethylen (PTFE)-Kopolymermembranen, wie Nafion™, haben eine hohe Wasserdurchlässigkeit. Diese Eigenschaft unterstützt den Wasserabfluß um so die Anodenüberflutung zu verhindern. Gleichzeitig wird so die Austrocknung der Kathode verhindert. Das Entwerfen einer geeigneten Mikrostruktur oder eine Veränderung des Ionomergehalts innerhalb der KKS könnte dem zuträglich sein. Insgesamt würde dadurch die Zelleistung und -handhabung verbessert.
Eine aktuelle Veröffentlichung in der Fachzeitschrift Cell Reports Physical Science hat sich mit diesem Thema auseinandergesetzt. Die vorgestellte Studie hat untersucht, wie mehrschichtiges KKS-Design mit der Gradientenkapillarkraft den Wasserhaushalt der Brennstoffzelle beeinflußt, um das Wasserbilanzproblem der Anoden zu lösen. Für den Zweck der Studie wurden Platin auf Kohlenstoff und Platin-Ruthenium auf Kohlenstoff als Anodenkatalysatoren ausgewählt. Ruthenium erhöht die Wasserstoffoxidationsreaktionsaktivität und besitzt auch vorteilhafte strukturelle Eigenschaften. Wassermanagement und Leistung der Brennstoffzellen sollten von der Struktur der AKS beeinflußt werden.
Mikrostrukturanalyse der AKS
Die AKS, bestehend aus verschiedenen Schichten von Pt / C und PtRu / C und einer gemischten Version mit einer ähnlichen Dicke von etwa 9 bis 10 μm wurden mit energierer dispergierender Röntgenspektroskopie (engl. EDX) analysiert.
PT / C AKS hatte Poren von weniger als 150 nm, während Poren von PtRu / C zwischen 300-400 nm groß waren. Die gemischte AKS hatte eine Porengröße <200 nm.
Die Forscher kamen zu dem Schluß, daß PT / C und PtRu / C AKS eine stratifizierte Porengrößenverteilung in Form eines Gradienten über die Anionenaustauschermembran und die Gasdiffusionsschicht aufwiesen. Die gemischte AKS hatte jedoch über die gesamte MEA eine homogene Porenstruktur.
Feuchtigkeits-Adsorption und Desorptionsverhalten von AKS
Um die Feuchtigkeitsadsorption und -desorption zu untersuchen, wurde die Änderung des Feuchtigkeitsgehalts des Brennstoffzellens in bezug auf verschiedene relative Luftfeuchtigkeit geprüft.
Es wurde beobachtet, daß sich der Feuchtigkeitsgehaltspegel mit anstieg der relativen Luftfeuchtigkeit von 20% auf 80% ebenfalls um bis zu 50% erhöhte.
Mit länger anhaltenden relativen Luftfeuchtigkeit von 80% begann sich der Feuchtigkeitsgehalt von Pt / PtRu und PtRu / Pt AKS zu verringern. Dies war der Beweis für das selbstregulierende Wassermanagement.
Die Desorption kam bei einer relativen Luftfeuchtigkeit von 60% zu stande. Der Wassergehalt in der AKS zeigte in jeder relativen Feuchtigkeitseinstellung eine schnelle Adsorption und langsame Freisetzung.
Die physikalische Anpassung des Wasserverhaltens wurde in PtRu / Pt-AKS beobachtet. Dies wurde auf Gradientennanoporen zurückgeführt die den Wassertransport förderten, wenn Reaktionswasser in den AKS erzeugt wurde. Dieses Verhalten würde den Betrieb von Brennstoffzellen bei hoher Stromdichte erleichtern.
Brennstoffzellenleistung mit modifizierter AKS
Um den strukturellen Effekt auf das Wassermanagement während des Betriebs zu beurteilen, wurde die Leistung der Brennstoffzellen bei unterschiedlicher relativer Luftfeuchtigkeit und Temperatur untersucht.
Mit zunehmender relativer Luftfeuchtigkeit von 40% auf 80% wurde auch eine Erhöhung der maximalen Leistungsdichte beobachtet, während die Temperatur bei 50°C konstant blieb. Dies war auf eine höhere ionische Leitfähigkeit bei hoher Membranhydratation zurückzuführen.
Bei relativer Luftfeuchtigkeit von 100% verringerte sich jedoch eine maximale Leistungsdichte der Pt / PtRu-MEA und der gemischten MEA. Bei der invertierten MEA-Version mit PtRu / Pt wurde ein Anstieg auf 243 mW / cm² beobachtet. Dies deutete an, daß die Feuchtigkeitsdesorptionsfähigkeit der PtRu / Pt-MEA den Stofftransport während des Brennstoffzellenbetriebs förderte.
Bei einer Temperatur von 60°C und 100% relativer Luftfeuchtigkeit erreichte die PtRu / Pt-Brennstoffzelle eine maximale Leistungsdichte mit 252 mW / cm².
Für PtRu / Pt-MEA wurde auch ein Haltbarkeitstest durchgeführt. Dieser zeigte, daß nach einem Dauerbetrieb von mehr als 16 Stunden bei 100 mA / cm² der Spannungsabfall lediglich <4% betrug.
Schlußfolgerungen
Durch die Untersuchung wurde deutlich, daß die PtRu / Pt-AKS mit seiner homogenen Schicht eine bessere Selbstregulierung in bezug auf Brennstoffzellen-Wassermanagement hatte. Die Nanoporenstruktur der Katalysatorschicht ermöglichte es, Wasser durch Kapillarkräfte zu transportieren. Überschüssiges Wasser der Anode konnte in Richtung der Kathode transportiert werden, wo es bei der Reaktion half oder es wurde über die Gasdiffusionsschicht entfernt, um eine Überflutung der Anode zu verhindern. Darüber hinaus zeigte diese Katalysatorschicht aus PtRu / Pt auch allgemein bessere Leistungsdaten.
Bei Frontis Energy glauben wir, daß die Forschungsergebnisse Probleme beim Wassermanagement in den Brennstoffzellen lösen könnten. Da es sich um ein passives Steuerungssystem handelt, das durch interne Designmodifikationen der Brennstoffzellen chrakterisiert ist, könnten komplizierte externe Systeme ersetzt oder ergänzt werden. Die Studie hilft sicherlich bei der automatisierten Steuerung von Brennstoffzellen, da die Ergebnisse sie intelligenter machen könnten.
Trotz des allgemeinen Glaubens ist sehr wenig über die Struktur von Wasser- und Grenzflächenwechselwirkungen bekannt. Grenzflächenwasser, das auf der Oberfläche von hydrophilen Materialien adsorbiert ist, wird sowohl von Wasseroberflächen- als auch von Wasser-Wasser-Wechselwirkungen gebildet. Man weiß, daß sich das Grenzflächenwasser vom Wasser in großen Mengen unterscheidet und gelöste und Mikrokügelchen ausschließen kann, und somit wird es als Ausschlußzone (AZ) bezeichnet. Es ist bekannt, daß AZ-Wasser einen höheren Brechungsindex, Viskosität und Lichtadsorption bei 270 nm hat. Die Ladungstrennung wird auch durch Wechselwirkungen an der Wasseroberfläche verursacht. Zum Beispiel hat die Wasser-AZ in der Nähe von Nafion™ Membranen ein elektrisches Potenzial von −200 mV.
Bisherige Studien zeigten, daß elektromagnetische Energie Grenzflächenwasser beeinflussen kann. Infrarot (IR) Energie kann eine Vergrößerung der AZ verursachen, was zu Ladungstrennung führt. Die nun veröffentlichte Studie wurde von Wissenschaftlern der University of Washington mit IR-Licht unterschiedlicher Intensitäten und Wellenlängen durchgeführt, um zu erkunden, ob die Strahlung den Prozeß beschleunigen und Protonen in den Wasserkörper einbringen können. Die Wissenschaftler versuchten, die wässrigen Zwischenschichten zu beleuchten, um mehr über deren komplexe Natur zu erfahren.
Experimentelle Analyse
Verwendete Materialien:
Entionisiertes Wasser mit dem Widerstand von 18,2 MΩ × cm wurde mit einem Barnstead D3750 Nanopure-Diamantwassersystem gereinigt. Andere Materialien waren eine Nafion™ N117-Membran, ein Kaliumphosphatpuffer, ein pH-Farbstoff und Carboxylat-Mikrokügelchen (1 μm Durchmesser in einer 2,5% Suspension daraus)
Probenvorbereitung:
Mikrokugel-Suspensionen (Mikrokugel-zu-Wasser 1:300) und ein pH-Farbstoff (1:20) wurden dem Wasser hinzuzufügt, um die Vorgänge besser zu visualisieren.
Aufgrund der Kohlendioxidabsorption hatte das Wasser einen leicht sauren pH-Wert von 6,35 und wurde daher neutralisiert. Um den pH-Wert zu stabilisieren, wurde ein 1-molarer Kaliumphosphatpuffer von pH 7,0 aus den gleichen Volumina von 1 molaren K2HPO4– und KH2PO4-Lösungen angesetzt. Die Endkonzentration betrug 1 mM.
Eine Nafion™ -Membran von 3 × 20 mm wurde in 1 Liter entionisierten Wasser für 24 Stunden vor dem Gebrauch eingeweicht.
Bestrahlungsexperimente:
In eine Kunststoffkammer wurden 1 ml gepuffertes Wasser mitsamt dem pH-Farbstoff und den Mikrokügelchen injiziert. Die Kammer bestand aus einem Trägerglas mit einer mittigen Rille in der vertikalen Ebene der Kammer. Darin wurde die Nafion™ -Membran befestigt. Diese Anordnung wurde auf der Bühne eines invertierten Mikroskops zur Beobachtung für 10 Minuten aufgestellt.
Für die Bestrahlungsexperimente mit einer mittleren Infrarot-Wellenlänge von 3,0 μm wurden drei Nahinfrarot (NIR) LEDs unterschiedlicher Wellenlängen verwendet. Die NIR-LEDs wurde 2 mm über der Wasseroberfläche in der Kammer platziert. Das Wasser wurde mit NIR-Licht bei möglichst konstanter Emissionsleistung 5 Minuten lang bestrahlt. Die Temperatur der Wasserproben wurde mit Infrarotkameras gemessen.
Ergebnisse
Wasserzonen unterscheiden sich von Wasserkörper
Das Grenzflächenwasser nahm den Farbstoff und die Mikrokugeln auf, was darauf hindeutete, daß sich AZ-Wasser in der Nähe der Nafion™ -oberfläche bildete. Eine rote Zone mit einem pH-Wert 4 wurde außerhalb des AZ-Wassers in der Protonenzone (PZ) gebildet. Die Forscher kamen zu dem Schluß, daß sich die Protonen durch anschwellende Grenzflächenwassers ansammelten. Mit andauerndem Kontakts zwischen Nafion™ und dem Wasser verdoppelten sich die AZ und die PZ . Die Mikrokugeln drifteten mit der Zeit vom Nafion™ weg.
Stabilität der AZ-Größe und der PZ-Größe
Aus der Beobachtung wurde ersichtlich, daß AZ-Wasser nicht durch die aus Nafion™ fließende Substanz verursacht wurde. Die Forscher nahmen an, daß die eisartige Struktur von Grenzflächenwasser die Bildung der AZ und PZ verursacht. Dieses Netzwerk hexagonaler Strukturen mißt mehrere hundert Mikrometer. Zwischen den AZ-Wasserschichten kam es zu elektrostatischen Aufladungen.
Wirkung von IR-Strahlung auf AZ- und PZ-Wasser
Die Protonkonzentration im PZ-Wasser stieg mit der IR-Intensität ebenso wie die Größe der AZ und der PZ. Höhere IR-Intensitäten schwächten die Hydroxylbindungen, wodurch die AZ-Erweiterung unterstützt wurde. Die IR-Strahlung verursachte auch eine Diffusion der Carboxylat-Mikrokugeln, die sich vom IR-Lichtpunkt mit zunehmender Intensität wegbewegten.
Wirkung von NIR auf AZ- und PZ-Wasser
Die Untersuchung des Effekts von NIR auf Grenzflächenwasser kann dazu beitragen, die Lichttherapie besser zu verstehen. Rote Wellenlängen und NIR-Wellenlängen haben die Eigenschaft, tiefer in Gewebe einzudringen. Die Lichttherapie kann bei der Synthese von Adenosin-Tri-Phosphat (ATP) helfen. Da ATP die universelle biologische Währung für Zellenergie ist, könnte die Lichttherapie weitere, noch unbekannte medizinische Vorteile haben. Grenzflächenwasser könnte als Photorezeptor in der Lichttherapie wirken, da Zellen Makromoleküle und Organellen enthalten. Die Verwendung von NIR zur Feststellung eines Protonengradienten ist ein interessanter Befund und legt weitere Untersuchungen nahe.
Schlußfolgerungen
Die Untersuchung zeigte, daß sich die EZ- und PZ-Zonen in Grenzflächenwasser nach fünf Minuten stabilisierten, und daß Infrarotstrahlung die Ausdehnung und Aktivität dieser Zonen erheblich erhöhen kann. Dies ist möglicherweise auf veränderte Eigenschafteb des Wassers auf hydrophilen Materialoberflächen zurückzuführen.
IR-Strahlung kann beim Aufbau von mikrokugelfreien Zonen helfen kann − ein Phänomen, das wiederum protonenreiche Zonen erzeugt. Dies ist auch für die Ladungstrennung in Grenzflächenwasser verantwortlich. Zusammenfassend wurden einige Fragen bezüglich der Komplexität von Grenzflächenwasser, EZ- und PZ-Wasserzonen geklärt.
Ausblick
Da Forschung nie endet sind auch im Fall von IR und Grenzflächenwasser weiter Untersuchung notwendig, um die Natur von EZ und PZ im Wasser besser zu verstehen. Zum Beispiel könnte die Verwendung von NIR zur Lichttherapie unter Verwendung von Grenzflächenwasser als Photorezeptor untersucht werden. Dies könnte neue medizinische Anwendungen hervorbringen.
Literaturnachweis: https://doi.org/10.1016/j.colcom.2021.100397: Effect of infrared radiation on interfacial water at hydrophilic surfaces, Colloid and Interface Science Communications, Volumen 42, 2021, 100397
Polymerelektrolytmembran (PEM)-Brennstoffzellen haben eine hohe Leistungsdichte, niedrige Betriebstemperaturen und, wenn sie mit grünem Wasserstoff betrieben werden, keine Kohlenstoffemissionen. Ihre Herstellung dieser Polymere erfordert jedoch perfluorierte Sulfonsäure (PFSA) als Elektrolyt und als Ionomer in der Elektrode. PFSA-Membranen sind sehr teuer. Nafion® ist das führende kommerzielle PFSA-Polymer auf dem Markt. Die Herstellung ist jedoch sowohl kostspielig als auch umweltschädigend. Daher sind kostengünstige, umweltfreundliche PFSA-Polymerersatzstoffe einer der Hauptschwerpunkte gegenwärtiger Membran- und Brennstoffzellenforschung.
Forscher der Texas A&M University untersuchten zusammen mit dem Unternehmen Kraton Performance Polymers Inc deren NEXAR™-Polymermembranen in Wasserstoffbrennstoffzellen hinsichtlich ihrer Ionenaustauschkapazität. NEXAR™-Polymermembranen sind im Handel erhältliche sulfonierte Pentablock-Terpolymere. Die forscher veröffentlichten die Ergebnisse im Journal of Membrane Science. Frühere Studien zeigten, daß eine Änderung der Ionenaustauschkapazität, bedingt durch den Sulfonierungsgrad von NEXAR™-Membranen, die Morphologie im Nanomaßstab verändern und die mechanischen Eigenschaften erheblich beeinflussen kann. Dies kann die Leistung der Brennstoffzelle begünstigen. Daher kann dieses Polymer als Membranalternative zu Nafion® in Brennstoffzellen verwendet werden.
Versuchsdurchführung
Bei den untersuchte Materialien handelte es sich um drei verschiedene Varianten des Polymers wurden jeweils mit unterschiedlichen Ionenaustauschkapazitäten (IECs: 2,0, 1,5 und 1,0 meq/g), die als NEXAR™ -2.0, NEXAR™ -1.5 und NEXAR™ -1.0 bezeichnet wurden.
Die NEXAR™ -Membranen wurden hergestellt, indem die NEXAR™-Lösungen unter bei Raumtemperatur und -druck maschinell auf einen silikonbeschichteten Mylar-PET-Film gegossen wurden. Zur Messung der mechanischen Eigenschaften und der Leitfähigkeit wurden zwei verschiedene Größen hergestellt.
Die mechanischen Eigenschaften NEXAR™-Membranen wurden mit verschiedenen Größen getestet: 25 × 0,5 mm und 30 × 10 mm.
Herkömmliche Nafion®-Elektroden wurden als Kontrollen untersucht.
NEXAR™ -Elektroden wurden auf zwei Arten für die Studie hergestellt, jede mit einer anderen Zusammensetzung.
Die Elektrodenprofile wurden mithilfe von Rasterelektronenmikroskopie (REM) charakterisiert.
Membranelektrodenanordnung (MEA) der Brennstoffzelle wurden hergestellt, indem die Membran zwischen zwei katalysatorbeschichteten Gasdiffusionsschichten (Anode und Kathode) angeordnet und heißgepreßt wurde. Die gesamte Brennstoffzellenanordnung bestand aus einer MEA, zwei Dichtungen und zwei Durchflußplatten, die zwischen Kupferstromkollektoren angeordnet waren. Zusammengehalten wurde die MEA von verschraubten Endplatten. Leistungstests wurden unter Umgebungsdruck mit gesättigten Anoden- und Kathodenströmungsraten (100% relative Luftfeuchtigkeit) von 0,43 l/min Wasserstoff bzw. 1,02 l/min Sauerstoff durchgeführt.
Elektrochemische Impedanzspektroskopie (EIR) wurde nach den Brennstoffzellentests durchgeführt um die Elektroden elektrochemisch zu charakterisieren.
Ergebnisse
NEXAR™ -2.0 und NEXAR™ -1.5 hatten bei allen Temperaturen eine ähnliche Protonenleitfähigkeit. Das deutet darauf hin, daß die Protonenleitfähigkeit limitiert war. Im Gegensatz dazu wiesen NEXAR™ -Membranen im Vergleich zu Nafion® NR-212-Membranen eine ausreichende Protonenleitfähigkeit auf. Entsprechen wiesen die Wasserstoffbrennstoffzellen eine ähnlich hohe Leistungsdichte auf.
NEXAR™-2.0- und NEXAR™ -1.5-Membranen (mit Nafion® als Ionomer) zeigten jedoch nicht unter allen Brennstoffzellenbetriebsbedingungen (Temperatur, Druck, Spannung und Luftfeuchtigkeit) die erwartete Brennstoffzellenleistung. Überraschenderweise zeigte die NEXAR ™-1.0-Membran (mit Nafion® als Ionomer) eine vergleichbare Brennstoffzellenleistung unter allen Betriebsbedingungen, sowie mit Nafion® vergleichbare Leistungsdichten. Das deutet darauf hin, daß NEXAR™ -1.0 eine Alternative zu Nafion® in Wasserstoffbrennstoffzellen sein könnte.
Während des Brennstoffzellenbetriebs war das Membranionomer NEXAR™ -1.0 thermisch und mechanisch stabil. Diese Ergebnisse wurden durch die Ergebnisse der Leistungsdichte gestützt. Die MEAs mit NEXAR ™ -1.0-Membranionomeren wiesen eine bessere Leistung auf als alle anderen MEAs.
Aus den oben genannten Ergebnissen wurde deutlich, daß die NEXAR™ -1.0-Variante der optimale Anwärter war, um aktuelle PFSA-Polymere nach dem Stand der Technik zu ersetzen.
Um den Einfluß des NEXAR™ -1.0-Ionomers auf die Brennstoffzellenleistung zu verstehen, wurde die Zusammensetzung der Ionomer- und Lösungsmittelgemischverhältnisse in der Katalysatortinte modifiziert. Die Ergebnisse legen nahe, daß sich NEXAR™ -1.0 als Ionomer ähnlich wie Nafion®-Ionomere in Brennstoffzellenelektroden verhält.
Die REM-Analyse legte nahe, daß die Menge an Ionomer einen deutlichen Einfluß auf die Bindung des Ionomers an die Katalysatorteilchen und folglich auf die Morphologie der Katalysatorschicht hat. Das optimale Katalysator-Ionomer-Verhältnis war 2/1 für das Pt / C-Ionomer unter Verwendung von NEXAR™ -1.0 in Brennstoffzellenelektroden.
Schlussfolgerungen
Letztendlich ist NEXAR™ -1.0 aufgrund seiner hohen Leitfähigkeit eine denkbare kommerziell praktikable und umweltfreundliche Alternative zu Nafion® r in PEM-Brennstoffzellen. Alternative Zusammensetzungen könnten die Eigenschaften des Polymers weiter verbessern. Ziel ist es, die Innenwiderstände der Brennstoffzelle zu minimieren, um so mit Leistung von Nafion®-Membranen entsprechen.
Insgesamt zeigten Nafion® / Nafion®-MEAs unter Berücksichtigung der Gesamtleistung immer noch die höchste Brennstoffzellenleistung. Aber alternative Polymerzusammensetzungen auf Kohlenwasserstoffbasis für das NEXAR™ -Polymer könnten ein zukünftiges nicht fluoriertes Polymer als Nafion®-Ersatz für PEM-Brennstoffzellen darstellen.
Weitere Analysen sind erforderlich, um möglicherweise eine genaue Annäherung an die Variante des NEXAR™ -Polymers zu erhalten. Zukünftige Forschungsarbeiten konzentrieren sich auf die Untersuchung von Varianten der Ionenaustauschkapazitäten im Bereich von beispielsweise 1 meq / g bis 1,5 meq / g. Derzeit kann jedoch gesagt werden, daß das NEXAR™ -Polymer als praktikabler Ersatz für eine nicht fluorierte Membran vielversprechend ist. Möglicherweise kann weitere Forschung mit anderen physikalischen Varianten sowie chemischen Modifikationen des Materials einen Durchbruch bringen.
Quelle: https://doi.org/10.1016/j.memsci.2021.119330: Sulfonated pentablock terpolymers as membranes and ionomers in hydrogen fuel cells, Journal of Membrane Science, 2021, 119330
Brennstoffzellen gehören zu den effizientesten und saubersten alternativen Energiequellen. Sie haben das Potential, Stromerzeuger auf Basis fossiler Brennstoffe zu ersetzen. Insbesondere Protonenaustauschmembran-Brennstoffzellen (PAMBZ) sind aufgrund ihrer hohen Leistungsdichte und Effizienz bei niedrigen Betriebstemperaturen (ca. 60–80°C) vielversprechende Energieumwandler für zahlreiche Anwendung im Transportsektor, als Energiespeicher oder zur Stromerzeugung in entlegenen Regionen. PAMBZ könnten zu einem der saubersten Energieträger werden. Dies liegt daran, dass Wasser das Endprodukt solcher Energieumwandlungssysteme ist. Derzeit werden in diesen Brennstoffzellen hauptsächlich Nafion™ -Membranen als Wasserstoffbarrieren verwendet, die für ihre Robustheit bekannt sind.
Eine ausreichende Versorgung mit Wasserstoff ist für die Anwendung von PAMBZ-Systemen von entscheidender Bedeutung. Derzeit sind teure Hochdrucktanks (70 MPa) für die Wasserstoffspeicherung der neueste Stand der Technik. Neben den Kosten gibt es auch noch andere Nachteile wie die mangelnde Beweglichkeit und Sicherheit. Um diese Probleme anzugehen, wurden alternative Wasserstoffspeichermaterialien eingehend untersucht. Beispielsweise können Metallhydride und organische Hydridmaterialien Wasserstoff durch kovalente Bindung fixieren und freisetzen.
Jetzt haben Dr. Junpei Miyake und Kollegen von der Universität von Yamanashi, Japan, ein wiederaufladbares PAMBZ-System (RCFC) vorgeschlagen, das ausschließlich aus Polymeren besteht. Die Arbeit wurde in Nature Communications Chemistryveröffentlicht. Die Strategie der Forscher bestand darin, eine Polymerfolie zur Wasserstoffspeicher (HSP, ein organisches Festkörperhydrid) als Wasserstoffspeichermedium in der Brennstoffzelle anzubringen. Mit diesem Ansatz wurden die Probleme wie Toxizität, Entflammbarkeit und Flüchtigkeit sowie Bedenken in Bezug auf andere Komponenten wie Kraftstoffbehälter, Pumpen und den Verdampfer gelöst. Die HSP-Struktur basiert auf Fluorenol / Fluorenon-Gruppen, die als Wasserstoffspeicher dienen.
Um die Leistung ihrer wiederaufladbaren HSP-basierten Brennstoffzelle zu testen, brachten die Wissenschaftler die HSP-Folie an der Membranelektrode der anodischen Katalysatorschicht an. Gleichzeitig wurde die Kathodenseite wie bei regulären PAMBZ betrieben. Die Forscher berichteten ebenfalls, daß auch ein Iridiumkatalysator auf die Innenseite der HSP-Folie angebracht wurde. Dadurch wurden die Freisetzung und Fixierung des Wasserstoffs verbessert.
Zur Leistungsbeschreibung wurden der Brennstoffzellenbetrieb an sich, die Zyklusleistung und Haltbarkeit über mehrere Zyklen von je sechs Schritten getestet. Zuerst wurde die HSP-Folie für zwei Stunden mit Wasserstoff beladen. Darauf folgten eine Stickstoffgasspülung, um den überschüssigen Wasserstoff von der Anode zu entfernen. Nach dem Erhitzen der Zelle auf 80°C, wurde der Wasserstoff aus der HSP-Folie freigestzt. Zusammen mit dem der Kathodenseite zugeführten Sauerstoff erzeugte die Brennstoffzelle konstanten elektrischen Strom.
Die Forschergruppe zeigte, daß die HSP-Folie in 20, 30, 60 bzw. 360 Minuten respektive 20%, 33%, 51% oder 96% des gesamten fixierten Wasserstoffgases freisetzte. Die Temperatur betrug 80°C in Gegenwart des Iridiumkatalysators. Der Iridiumkatalysator konnte auch bis zu 58 Mol-% Wasserstoff absorbieren, was jedoch erheblich niedriger war als der im HSP gespeicherte Wasserstoff. Die maximale Betriebszeit betrug ca. 10,2 s / mgHSP (ca. 509 s für 50 mg HSP) bei einer konstanten Stromdichte von 1 mA / cm2. Die RCFCs erreichten eine Zyklisierbarkeit von mindestens 50 Zyklen. Darüber hinaus erwies sich die Verwendung einer gasundurchlässigen sulfonierten Polyphenylenmembran (SPP-QP, eine weitere PEM) als gute Strategie zur Verlängerung der Operationszeit der RCFC.
Zu den vorteilhaften Merkmalen des beschriebenen RCFC-Systems gehören seine verbessere Sicherheit, seine einfachere Handhabung und sein geringeres Gewicht. Diese Merkmale eignen sich beispielsweise perfekt für mobile Anwendungen in Brennstoffzellenfahrzeugen. Um wirtschaftlich einsetzbar zu sein, müssen jedoch die Wasserstoffspeicherkapazität und -kinetik (H2-Freisetzungs- / Fixierungsreaktionen) sowie die Katalysatorstabilität des RCFC-Systems weiter verbessert werden.
Um dem weltweiten Bedarf an sauberen Energiequellen gerecht zu werden, stößt die durch umgekehrte Elektrodialyse (UED) gewonnene Energie mit Salzgehaltsgradienten in den letzten Jahren auf großes Interesse. Darüber hinaus wird Solelösung aus der Meerwasserentsalzung derzeit als Abfall betrachtet. Dank seines hohen Salzgehalts kann es jedoch als wertvolle Ressource für die UED genutzt werden. Die UED ist eine technische Anpassung der osmotischen Energieproduktion der Natur, bei der Ionen über die Zellmembran fließen, um die universelle biologische Währung ATP zu produzieren. Diese Energie wird auch durch die UED-Technologie gewonnen.
Mehr denn je besteht Bedarf an nachhaltigen und umweltfreundlichen technologischen Lösungen, um mit der ständig wachsenden Nachfrage nach sauberem Wasser und sauberer Energie Schritt zu halten. Die traditionelle lineare Art der Energieproduktion ist nicht nachhaltig und der neue Ansatz der Kreislaufwirtschaft hat einen Platz gefunden, an dem Abfälle als wertvolle Ressource für einen anderen Prozess betrachtet werden können. In dieser Hinsicht ist die umgekehrte Elektrodialyse eine vielversprechende elektromembranbasierte Technologie zur Erzeugung von Strom aus konzentrierten Lösungen durch Ernte der freien Gibbs-Energie zum Mischen der Lösungen mit unterschiedlichem Salzgehalt. Insbesondere in Entsalzungsanlagen hergestellte Solelösungen, die derzeit als Abfall betrachtet werden, können als konzentrierte Ströme im RED-Stapel verwendet werden.
Avci et al. der Universität von Kalabrien haben kürzlich ihre Lösung für die Entsorgung von Sole mit UED-Stack veröffentlicht. Sie haben erkannt, dass zur Maximierung der erzeugten Leistung die hohe Permselektivität und Ionenleitfähigkeit von Membrankomponenten in UED wesentlich sind. Obwohl Nafion™-Membranen zu den bekanntesten kommerziellen Kationenaustauschmembranlösungen für elektrochemische Anwendungen gehören, wurden keine Untersuchungen zur Verwendung für RED-Prozesse durchgeführt. Dies war der erste gemeldete UED-Stapel mit Nafion™-Membranen.
Eine typische UED-Einheit ähnelt einer Elektrodialyseeinheit (ED), bei der es sich um eine kommerzialisierte Technologie handelt. ED verwendet eine Beschickungslösung und elektrische Energie, während Konzentrat und Verdünnung getrennt erzeugt werden. Im Gegensatz dazu verwendet UED konzentrierte und verdünnte Lösungen, die kontrolliert miteinander gemischt werden, um spontan elektrische Energie zu erzeugen. In einem UED-Stapel wiederholen sich UED-Zellen, die aus alternierenden Kationen- und Anionenaustauschermembranen bestehen, die für Anionen und Kationen selektiv sind. Der Salzgradient über jeder Ionenaustauschermembran erzeugt eine Spannungsdifferenz, die die treibende Kraft für den Prozess ist. Die Ionenaustauschermembranen sind eine der wichtigsten Komponenten eines UED-Stapels. Die Leistung von Nafion™-Membranen (Nafion™ 117 und Nafion™ 115) wurde unter Bedingungen eines hohen Salzgehaltsgradienten für die mögliche Anwendung in UED bewertet. Um die natürlichen Umgebungen des UED-Betriebs zu simulieren, wurden NaCl-Lösung sowie Mehrkomponenten-NaCl + MgCl2 getestet.
Die Bruttoleistungsdichte unter hohem Salzgehaltsgradienten und die Wirkung von Mg2+ auf die Effizienz bei der Energieumwandlung wurden in Einzelzellen-UED unter Verwendung von Nafion™ 117, Nafion™ 115, CMX und Fuji-CEM-80050 als Kationenaustauschermembranen bewertet. Zwei kommerzielle Kationenaustauschermembranen – CMX und Fuji-CEM 80050, die häufig für UED-Anwendungen verwendet werden, haben als Vergleich gedient.
Die Ergebnisse zeigen, dass unter der Bedingung von 0,5 M / 4,0 M NaCl-Lösungen das höchste Pd,max unter Verwendung einer Nafion™ -Membran erreicht wurde. Dieses Ergebnis wird auf ihre hervorragende Permselektivität im Vergleich zu anderen CEMs zurückgeführt. In Gegenwart von Mg2+ -Ionen wurde Pd,max eine Reduktion von 17 und 20% für Nafion™ 115 bzw. Nafion™ 117 aufgezeichnet. Beide Membranen behielten ihren geringen Widerstand bei; Unter dieser Bedingung wurde jedoch ein Verlust an Permselektivität gemessen. Es wurde jedoch berichtet, dass Nafion™ -Membranen andere kommerzielle Membranen wie CMX und Fuji-CEM-80050 für die UED-Anwendung übertrafen.
Ein aufgegebenes oder unproduktives Ölfeld kann für die Methanproduktion aus CO2 mit erneuerbarer elektrischer Energie wiederverwendet werden. Man können erschöpfte Ölfelder z.B. in Reaktoren zur Umwandlung erneuerbarer Energien in Erdgas umwandeln, und zwar in geologischen Dimensionen. Um dies zu erreichen, muß ein Ölfeld elektrisch leitend und katalytisch aktiv gemacht werden. Dan kann man darin Erdgas aus erneuerbaren Energiequellen zu erzeugen. Der Einsatz von Erdgas ist jeder Batterie aufgrund der vorhandenen Infrastruktur, des Einsatzes in Verbrennungsmotoren, der hohen Energiedichte und der Widerverwertung von CO2 überlegen. Ölfelder sind wegen ihrer der enormen Speicherkapazitäten der Produktion übertage überlegen. Sie sind bereits gut erforscht und wurden einer Umweltrisikobewertung unterzogen. Letztlich ist die mikrobielle Power-to-Gas-Technologie bereits jetzt verfügbar.
Ausgewählte Eckdaten
Gesamter Prozess (Methan als Endprodukt)
50% elektrische Effizienz
Energiedichte Methan
180 kWh / kg
Speicherkapazität eines Ölfeld
3 GWh / Tag
Lade- / Entladezyklen
Unbegrenzt
Investitionsvolumen
51.000 USD / MW
Kosten pro kWh (>5,000 h Lebensdauer)
<0,01 USD / kWh
Elektrolyt
Meerwasser
Problem
Um das Problem der Speicherung erneuerbarer Energien anzugehen, wurden Batterien als mögliche Lösung vorgeschlagen. Lithium-Ionen-Akkus haben eine maximale Energiespeicherkapazität von etwa 0,3 kWh / kg. Zur Zeit werden Li-Akkus als der beste Kompromiss zwischen Kosten und Effizienz angesehen. Dennoch sind sie immer noch zu ineffizient, um Benzin mit einer Speicherkapazität von etwa 13 kWh / kg zu ersetzen. Dies macht batteriebetriebene Autos schwerer als herkömmliche Autos. Lithium-Luft-Batterien werden als mögliche Alternative angesehen, da sie theoretische Kapazitäten von 12 kWh / kg erreichen können. Aufgrund technischer Hürden werden sie aber noch nicht auf den Straßen eingestzt.
Im Gegensatz dazu hat Methan eine Energiedichte von 52 MJ / kg, was 180 kWh / kg entspricht. Damit kommt das Gas gleich nach Wasserstoff mit 500 kWh / kg, ignoriert man die Kernenergie. Diese hohe Energiedichte von Methan und anderen Kohlenwasserstoffen sowie deren einfache Verwendung sind der Grund, warum sie in Verbrennungsmotoren und Strahltriebwerken eingesetzt werden. Elektroautos scheinen eine verlockende grüne Alternative zu sein. Allerdings ist die weltwiete Transportinfrastruktur auf Verbrennungsmotoren zurechtgeschnitten.
Neben der Schwierigkeit, Gewohnheiten zu ändern, benötigen Elektroautos andere begrenzte natürliche Ressourcen wie Lithium. Um alle 94 Millionen im Jahr 2017 weltweit produzierten Automobile auszurüsten, müßten jährlich 3 Megatonnen Lithiumcarbonat abgebaut werden. Dies sind fast 10% der gesamten verfügbaren Lithiumressourcen von 35 Megatonnen weltweit. Obwohl Lithium und andere Metalle recycelt werden können, ist es klar, daß Batterien auf Metallbasis allein aufgrund der geringen Energiedichten von Metallen nicht die Brücke zwischen erneuerbarer Energie und traditionellen Transportmitteln schlagen werden. Dabei werden andere Energiebedürfnisse wie industrielle Stickstoffixierung, Luftfahrt oder Heizung nicht einmal berücksichtigt.
Für Deutschland mit seinem hohen Anteil an erneuerbaren Energien ist Kraftstoff für Autos nicht das einzige Problem. Da erneuerbare Energie im Norden erzeugt wird, aber viele Energieverbraucher im Süden sind gibt es ein Transportproblem. Zudem reicht die Netzlast während Spitzenproduktionszeiten häufig nicht aus, was zu Überproduktion führt. Eine bessere Energieverteilung kann durch Dezentralisierung der Produktion und durch Energiespeicherung erreicht werden. Um die Produktion zu dezentralisieren, wurden Land- und Hausbesitzer für die Installation von Photovoltaikanlagen oder Windrädern steuerlich entlohnt. Mit dem Auslaufen der steuerlichen Anreize stehen Hausbesitzer vor dem Problem der Energiespeicherung. Das bisher beste Produkt für diese Kundengruppe sind wieder Li-Akkus, aber Investitionskosten von 0,05 USD / kWh sind immer noch zu unattraktiv, insbesondere weil diese Produkte die Energie als Strom speichern, der nur für kurze Zeit genutzt werden kann und weniger effizient als natürlich ist Gas beim Heizen.
Erdgas wird heute häufig als Energiequelle verwendet. Die globale Energieinfrastruktur ist für Erdgas und andere fossile Brennstoffe ausgelegt. Die steigende Nachfrage und die begrenzten Ressourcen für diese fossilen Brennstoffe waren in den letzten Jahrzehnten die Hauptgründe für den Anstieg der Öl- und Gaspreise. Durch die jüngsten Wirtschaftskrisen und das Fracking sind diese jedoch wieder rückläufig. Der hohe Ölpreis zog damals Investoren an, Öl mithilfe von Techniken zu gewinnen, die immer teurer wurden, berücksichtigt man die Umweltrisiken, wie z.B. Tiefseebohrungen oder Teersandschürfung darstellen. Ironischerweise machte der hohe Ölpreis teure erneuerbare Energien zu einer wirtschaftlich realisierbaren Alternative und trug dazu bei, ihre Kosten zu senken. Da es jedoch schwierig ist, Gewohnheiten zu ändern und der Aufbau einer völlig neuen Infrastruktur nur für erneuerbare Energien heute wirtschaftlich nicht machbar erscheint, muß eine realistischere Lösung gefunden werden, um die globale Erwärmung zu verlangsamen.
Mikrobielles Power-to-Gas könnte eine realistische Übergangstechnologie sein, die erneuerbare Energien in die vorhandene Infrastruktur für fossile Brennstoffe integriert. Man kann mit der Technologie Gewinnschwelle in weniger als 2 Jahren erreichen, wenn bestimmte Voraussetzungen erfüllt sind. Dies wird durch die Integration von Methan aus erneuerbaren Energien in die derzeitige Infrastruktur zur Öl- und Gasförderung erreicht. Die Grundidee besteht darin, Kohlenstoff anstelle von Metallen als Energieträger zu verwenden, da er bei der Bindung an Wasserstoff eine hohe Energiedichte aufweist. Die Vorteile sind:
Hohe Energiedichte von 180 kWh / kg Methan
Geringe Investitionen aufgrund vorhandener Infrastruktur (Erdgas, Ölfeldausrüstung)
Kohlenstoff ist keine begrenzte Ressource
Geringe CO2-Emissionen durch CO2-Recycling
Methan ist ein Transporttreibstoff
Methan ist der Energieträger für das Haber-Bosch-Verfahren
Preiswerte Katalysatoren reduzieren die Anfangsinvestitionen
Niedrige Temperaturen durch Biokatalyse
Keine toxischen Verbindungen werden verwendet
Keine zusätzliche Umweltbelastung, da vorhandene Ölfelder wiederverwendet werden
Problemlösung
Methan kann durch Mikroben oder chemisch synthetisiert werden. Das Gas entsteht auf natürlichem Wege durch anaerobe (sauerstoffreie) mikrobielle Zersetzungsprozesse. Die Energie für die Biomassesynthese wird durch Sonnenlicht oder chemische Energie wie Wasserstoff bereitgestellt. Bei Methanogenen (methanproduzierende Mikroben) wird Energie gewonnen, nachdem CO2 und Wasserstoff nach einem 1-zu-4-Verhältnis verschmolzen werden:
CO2 + 4 H2 → CH4 + 2 H2O
Ohne Mikroben wird Methan durch die mit dem Nobelpreis ausgezeichnete Sabatier-Reaktion hergestellt, und es werden derzeit mehrere Versuche unternommen, es im industriellen Maßstab einzusetzen. Es ist notwendig, Wasser in Wasserstoff aufzuspalten und damit CO2 in der Gasphase zu reduzieren. Ein Hauptnachteil der Sabatier-Reaktion ist die Notwendigkeit hoher Temperaturen um 385°C. Zudem wird der Nickelkatalysator schnell verbraucht. Methanogene verwenden Eisen-Nickel-Enzyme, sogenannte Hydrogenasen, um Energie aus Wasserstoff zu gewinnen, dies jedoch bei Umgebungstemperaturen.
Die zukünftige Herausforderung wird darin bestehen, die Methanproduktionsraten zu beschleunigen, wie dies für Hochtemperatur-Ölfeldkulturen berichtet wurde. Neben der Erhöhung der Temperatur besteht die naheliegendste Lösung darin, eine höher reaktive Oberfläche zu verwenden und beide Elektroden näher zusammenzubringen. Die Verwendung von Kohlebürsten, die schlechte Wasserstoffkatalysatoren sind, aber eine höhere Oberfläche für die mikrobielle Besiedlung bieten, ist eine Möglichkeit. Die Methanproduktion korreliert mit den mikrobiellen Zellzahlen in den Reaktoren:
Um das Problem teurer Kohlenstoff- (und auch Stahl-) Bürsten für Großanwendungen zu überwinden, könnten Gas- und Ölfelder verwendet werden. Sie bieten eine große Oberfläche und bringen in der Regel wirtschaftliche Verluste, stellen jedenfalls keine Vermögenswerte dar. Methanogene bewohnen Ölfelder, auf denen sie den letzten Schritt des anaeroben Erdölabbaus durchführen. Daher können Ölfelder im geologischen Maßstab als Bioreaktoren angesehen werden. Geologische Formationen bieten ideale Bedingungen für die Herstellung, Lagerung und Gewinnung von Methan.
Offene Fragen und mögliche Lösungen
Porenraumvolumen des Ölfeldes
Das kalifornische Ölfeld Summerland wurde bereits in der Vergangenheit aufgegeben und eingehend untersucht. Während seiner 90-jährigen Lebensdauer wurden 27 Milliarden Fässer Öl und 2,8 Milliarden m3 Methan gefördert. Diese Förderung von 3,5 Milliarden m3 hinterließ das gleiche mit Meerwasser gefüllte Porenvolumen. Nur 2% dieser Poren sind größer als 50 μm, was für das mikrobielle Wachstum erforderlich ist. Dazu nimmt man Abmessungen von 1 x 2 μm einer Methanogenzelle an. Experimente zeigten, daß der resultierende Porenraum ein Größe von ca. 70 Millionen m3 hätte und damit eine Speicherkapazität von 35.000 TW hat. Das ist viel Methan bei einer Löslichkeit von 0,74 kg Methan / m3 Meerwasser in 500 m Wassertiefe.Alle deutschen Offshore-Windparks haben zusammen eine Leistung von 7.000 MW. Offensichtlich ist der begrenzende Faktor nicht die volumetrische Speicherkapazität eines Ölfeldes.
Mikrobielle Methanproduktionsraten
Aber wie schnell können Mikroben auf einem hypothetischen Ölfeld Methan produzieren? Unter optimalen Bedingungen können Methanogene, die auf Elektroden wachsen (typischerweise die Gattung Methanobacterium oder Methanobrevibacter), Methan mit einer Geschwindigkeit von 100-200 nmol / ml / Tag (also 2,2-4,5 ml / l / Tag) produzieren. Bei einer Produktionsrate von 15 J ml / Tag Methan (190 nmol / ml / Tag) hat das gesamte mikrobiell zugängliche Ölfeld (2%) eine Kapazität von 3,6 Millionen MBtu pro Jahr. Mikroben würden theoretisch 1 TWh pro Jahr für eine Methanproduktion von 3,6 Millionen MBtu verbrauchen, wenn es keine Verluste gäbe und die elektrische Energie 1:1 in Methan umgewandelt würde. Ein Stromgenerator von 121 MW würde ausreichen, um das gesamte Ölfeld mit diesen Raten zu versorgen. Alle deutschen Offshore-Windparks produzieren jedoch 7.000 MW, was bedeutet, daß unser Beispielölfeld nur 3% Überschußleistung schnell genug speciehern kann. Daher müssen die katalytische Oberfläche und die Aktivität erhöht werden, um die Methanumwandlungsraten zu beschleunigen.
Da Methanogene aus Wasserstoff Methan produzieren, kann nicht nur der für Zellen passende Porenraum von 2% genutzt werden, was zu einer Erhöhung der katalytischen Oberfläche auf fast 60% führt. Es muß ein Wasserstoffkatalysator gefunden werden, der das Methanogenwachstum nicht beschleunigt, um den pH-Wert des Reservoirs innerhalb der für das Methanogenwachstum erforderlichen Grenzen von 6 bis 8 zu halten. Dieser Wasserstoffkatalysator muß billig sein und ein Ölfeld elektrisch leitfähig machen. Eine Chemikalie, die die mikrobielle Wasserstoffkatalyse nachahmt, könnte verwendet werden. Diese hätte das Potential, ein nicht leitendes und nicht katalytisches Ölfeld in einen leitfähigen Wasserstoffkatalysator umzuwandeln. Dieser würde ausreichen, um die Methanproduktion so aufrechtzuerhalten, daß die Speicherung des gesamten deutschen Stroms von Offshore-Windparks möglich ist. Dieser Katalysator wäre zunächst inaktiv und in Wasser löslich. Um aktiv zu werden, beschichtet er mineralische Oberflächen durch Ausfällung, die durch einheimische Mikroben oder durch elektrische Polarisation ausgelöst werden kann. Die Investition würde 2,3 Mio. USD pro MW Speicherkapazität betragen (16 Mrd. USD für die gesamten 7.000 MW). Aufgrund des mikrobiellen Wachstums verbessert sich die katalytische Aktivität des Systems während des Betriebs. Die auf der Kathodenseite getätigten Investitionen würden dann nur 600 USD pro MW betragen (4,2 Mio. USD für 7.000 MW).
Anoden
Da die kathodische Seite der Reaktion als begrenzender Faktor ausgeschlossen werden kann, muss die Anode entworfen werden. Es könnten mehrere im Handel erhältliche Anoden wie gemischte Metalloxide (bis zu 750 A / m2) mit Platin auf Kohle- oder Niobanoden (Pt / C, 5–10 kA / m2) verwendet werden. Anoden auf Platinbasis sind das kostengünstigste Material auf dem Markt. Die Investitionen für Pt / C-Anoden (10%, 6 mg / cm2) belaufen sich auf 50.000 USD pro MW (350 Mio. USD für 7.000 MW). Die genaue Menge an Pt, die für die Reaktion benötigt wird, muß jedoch noch bewertet werden, da die Korrosionsrate bei 2 V Zellenspannung unbekannt ist. Ein häufig genannter Wert für die Lebensdauer von Brennstoffzellen beträgt 5.000 Stunden und wird hier zur Bestimmung der Kosten pro kWh verwendet. Für eine Lebensdauer von 5.000 Stunden liegen die Kosten pro kWh an der angestrebten Grenze von 0,01 USD, können jedoch deutlich darunter liegen, da Pt / C-Anoden wiederaufbereitet werden können und die Pt-Beladung auf 3 mg / cm2 (5%) reduziert werden kann. Alternativ können Stahlanoden (SS316, 2,5 kA / m2, 54.000 USD pro MW) verwendet werden, es ist jedoch unklar, wann Stahlanoden korrodieren. Zusammenfassend ist die anodische Seite der kostentreibende Faktor. Hoffentlich senken bessere Anoden diese Kosten in Zukunft. Bei Frontis Energy denken wir, daß die Forschung in diese Richtung gehen sollte.
Zusammenfassung der Kostenschätzung
Windfarm
Vorhanden
CO2 Einspritzung
Vorhanden
Erdgasförderanlagen
Vorhanden
Mikrobielles Impfmaterial
Platformabwasser
Kathode
600 MW−1 USD
Anode
50.000 MW−1 USD
Elektrolyt (Meerwasser)
Kostenlos
Zusammen (>5.000 Studen Lebensdauer)
<0,01 kWh−1 USD
Energie- und Umwandlungseffizienz
Die Gesamtzellenspannung für mikrobielle Power-to-Gas-Reaktionen variiert zwischen 0,6 und 2,0 V, abhängig von den Kathodenraten, der anodischen Korrosion und dem Vorhandensein einer Membran. Höhere Spannungen beschleunigen wiederum die Anodenkorrosion und machen Anoden zum Kostenfaktor. Mit abnehmender Spannung werden die Methanproduktionsraten langsamer, aber auch effizienter. Die Spannung hängt auch vom pH-Wert des Ölfeldes ab. Ein Ölfeld, das einer CO2-Einspritzung (enhanced oil recovery) unterzogen wurde, hat einen niedrigen pH-Wert, bietet bessere Bedingungen für die Wasserstoffproduktion, jedoch nicht für das mikrobielle Wachstum und muß mit Meerwasser neutralisiert werden. Wie oben erwähnt, schränkt das Ölfeld als Kathode das System nicht ein. Die Verwendung von Pt / C-Anoden beseitigt das Überpotentialproblem auf der Anodenseite. Daher können wir ein ideales System annehmen, das Wasser mit 1,23 V spaltet. Aufgrund von Überpotentialen von Anode und Kathode beträgt die Spannung jedoch häufig 2 V. Optimierte Kulturen und Kathoden produzieren etwa 190 nmol / ml / Tag Methan, was 0,15 J / ml / Tag entspricht, wobei die Verbrennungsenergie von 0,8 MJ / mol verwendet wird. Dieselbe Elektrolysezelle verbraucht 0,2 mW bei einer Zellenspannung von 2 V, was 0,17 J / ml / Tag entspricht. Die resultierende Energieeffizienz beträgt 91%. Die Anoden können einfache Kohlebürsten sein. Die beiden Kammern der Zelle sind durch eine Nafion ™ -Membran getrennt. Das System kann weiterhin durch Verwendung von Pt / C-Anoden und durch Vermeidung von Membranen optimiert werden.
Der Gesamtwirkungsgrad von Strom, Methan und Elektrizität hängt auch vom verbrauchsseitigen Wirkungsgrad ab, also der Effizienz bei der Methan in Strom umgewandelt wird. Solche Gaskraftwerke arbeiten häufig mit Wirkungsgraden von 40 bis 60% (Kraft-Wärme-Kopplung). Bei einer Energieeffizienz von 80% (siehe oben) wird die gesamte elektrische Energierückgewinnung mit modernen Gaskraftwerken bis zu 50% betragen. Neben dem hohen Wirkungsgrad von Gaskraftwerken sind sie auch einfach zu bauen und tragen somit zu einem besseren Wirkungsgrad des Stromnetzes bei. Kohlekraftwerke können zu Gaskraftwerken umgerüstet werden.
Erster experimenteller Ansatz
Die Umwandlungseffizienzen der Ladung (in Coulomb), die über den Stromkreis transportiert werden, liegen in diesen Systemen normalerweise zwischen 70 und 100%, abhängig vom Elektrodenmaterial. Eine weitere Effizienzbeschränkung könnte sich aus Stofftransporthemmungen ergeben. Der Stofftransport kann durch Pumpen von Elektrolyt verbessert werden, wodurch zusätzliche Kosten für das Pumpen entstehen. Da jedoch die meisten Ölfelder zur verbesserten Ölrückgewinnung einer Meerwassereinspritzung unterzogen werden, können die zusätzlichen Kosten vernachlässigbar sein. Die Gesamteffizienz muß noch in Skalierungsexperimenten ermittelt werden und hängt von den oben genannten Faktoren ab.
Die Kontrolle des pH-Werts ist entscheidend. Alkalische pH-Werte behindern die Wasserstoffproduktion und damit die Methanogenese erheblich. Dies kann durch eine Software behoben werden, die den pH-Wert überwacht und das Potenzial entsprechend anpasst. Die Zugabe von Säuren ist nicht erwünscht, da dies die Kosten erhöht. Die Software kann auch als Potentiostat fungieren, der dann den Methanproduktionsprozess vollständig steuert. Um den Prozess unter realistischeren Bedingungen zu testen, sollte ein Bohrkern verwendet werden.
Rentabilität des mikrobiellen Power-to-Gas-Prozesses
Das mikrobielle Power-to-Gas-Verfahren in unproduktiven Ölfeldern ist aufgrund der geringen Anlauf- und Betriebskosten allen anderen Speicherstrategien wirtschaftlich überlegen. Dies wird erreicht, weil die Hauptinvestitionen, nämlich die Installation von Öl- und Gasförderanlagen sowie erneuerbaren Kraftwerken, bereits vorhanden sind. Die restlichen Investitionen machen sich in kurzer Zeit bezahlt.
Aber wie kann der mikrobielle Power-to-Gas-Prozess die Rendite von Investitionen in erneuerbare Energien beschleunigen? Nur 8 von 28 aktiven Windparks meldeten ihre Investitionskosten. Diese 8 produzieren ungefähr die Hälfte der Gesamtleistung von 3.600 MW, was 16 Milliarden US-Dollar entspricht. Während die maximale Produktion eines Ölfeldes mit unbegrenzter Stromversorgung hypothetische 3,6 Millionen MBtu Erdgas pro Jahr ergeben würde (was einer Rendite von 13 Millionen USD pro Jahr entspräche) wird die reale Produktion durch die Erzeugung erneuerbarer Energie außerhalb der Spitzenzeiten begrenzt. Unter der Annahme, daß die maximale jährliche Methanproduktion 10% überschüssiger elektrischer Energie entspricht, können 15 Mio. USD pro Jahr durch den Verkauf von 4,3 Mio. MBtu Methan pro Jahr auf dem Markt erzeugt werden. Dies sind 15 Millionen US-Dollar, die bei Stillständen außerhalb der Spitzenzeiten nicht verloren gehen. Diese konservative Schätzung kann also dazu beitragen, die Investitionen in erneuerbare Energien früher zu kompensieren. Dies verringert auch das Investitionsrisiko, da die Investitionsberechnungen für neue Windparks zuverlässiger durchgeführt werden können.
Im Beispiel aller deutschen Windparks (7.000 MW) verdoppelt sich diese Kompensation in etwa. Unter Verwendung der 60 Millionen US-Dollar, die durch Methanverkäufe pro Jahr generiert werden, werden die Investitionen von 4 Millionen US-Dollar für den kathodischen Katalysator und die 36 Millionen US-Dollar für die Pt / C-Anoden innerhalb von weniger als zwei Jahren kompensiert. Es sind keine weiteren Investitionen erforderlich, da das Ölfeld bereits Öl und Gas gefördert hat und alle erforderlichen Installationen in einwandfreiem Zustand sind. In das Ölfeld wird Meerwasser als sekundäre Extraktionsmethode eingespritzt. Zum kathodischen Schutz von Produktionsanlagen sind elektrische Anlagen vorhanden, um mikrobielle Korrosion zu verhindern, die jedoch möglicherweise verbessert werden muß, um die jetzt höheren Leistungsdichten zu erreichen. Darüber hinaus wird CO2 aus der CO2-Einspritzung als tertiäres Verfahren zur Ölrückgewinnung verwendet. Möglicherweise muß dann nur der pH-Wert angepaßt werden.
Und dies ist nicht das Ende der Ölfeldspeicherkapazität. Theoretisch kann ein Ölfeld die gesamte Menge an erneuerbarer Energie speichern, die in einem Jahr weltweit erzeugt wird, was mehr als genug Spielraum für zukünftige Entwicklungen und die CO2-Verpressung bietet.
Biologische Systeme können durch Kanäle in ihren Membranen den Wasserfluß steuern. Das hat viele Vorteile, wie z.B. wenn Zellen den osmotischen Druck regulieren müssen. Auch künstliche Systeme, z.B. in der Wasserbehandlung oder in elektrochemischen Zellen, könnten davon profitieren. Jetzt hat eine Gruppe von Materialforschern um Dr. Zhou an der Universität Manchester im Vereinigten Königreich eine Membran entwickelt, die den Wasserfluß elektrisch schalten kann.
Wie die Forscher im Fachmagazin Nature berichteten, wurde eine mehrschichtige Membran aus Silber, Graphen und Gold hergestellt, die bei einer Spannung von mehr als 2 V Kanäle öffnet, die Wasser fast ohne Behinderung durch die Membran durchleiten. Der Effekt ist reversibel. Dazu benutzten die Wissenschaftler die Eigenschaft von Graphen, einen einstellbaren Filter oder eine perfekte Barriere für Flüssigkeiten und Gasen zu bilden. Die Forscher haben dabei eine kostengünstige Form von Graphen (Graphenoxid) verwendet. Diese neue „intelligente“ Membranen haben gezeigt, daß sie eine präzise Steuerung des Wasserflusses durch Verwendung eines elektrischen Stroms möglich ist. Die Membranen können sogar verwendet werden, um den Wasserfluß bei Bedarf vollständig zu blockieren.
Zur Herstellung der Membran hat die Forschergruppe leitende Filamente in die elektrisch isolierende Graphenoxidmembran eingebettet. Ein elektrischer Strom, der durch diese Nanofilamente geleitet wurde, erzeugte ein starkes elektrisches Feld, das die Wassermoleküle ionisiert und somit den Wassertransport durch die Graphenkapillaren in der Membran steuert.
Bei Frontis Energy sind wir begeistert von dieser neuen Technologie und können uns schon viele Anwendungsgebiete vorstellen. Diese Forschung ermöglicht es, die Wasserpermeation von der ultraschnellen Durchdringung bis zur vollständigen Blockierung präzise zu steuern. Die Entwicklung intelligenter Membranen, die eine präzise und reversible Kontrolle der molekularen Durchdringung durch externe Stimuli ermöglichen, wäre für viele Bereiche der Wirtschaft und Forschung von großem Interesse. Diese Membranen könnten z.B. in Elektrolysezellen oder in der Medizin Anwendung finden. Künstlicher biologischer Systeme, wie z.B. Gewebetransplantate ermöglichen zahlreiche medizinische Anwendungen.
Das delikate Material bestehend aus Graphen, Gold und Silber ist zwar noch zu teuer und nicht so widerstandsfähig wie unsere Nafion™-Membranen, dafür kann man sie aber ein- und wieder ausschalten. Wir bleiben gespannt.
Sie müssen angemeldet sein, um einen Kommentar zu veröffentlichen.