Veröffentlicht am

Festoxidbrennstoffzellen wandeln Methan aus dem Grundwasser in Strom um

Festoxidbrennstoffzellen (FOBZ) sind hocheffiziente Stromerzeuger mit niedrigen Betriebskosten. Sie arbeiten in einem Temperaturbereich von 800 bis 1.000°C. Dies ermöglicht die interne Umwandlung von Kohlenwasserstoffen in Wasserstoff. Methan, Methanol, Benzin und andere Kohlenwasserstoffe können direkt in der Brennstoffzelle in Wasserstoff (H2) umgewandelt werden.

SOFCs bieten eine Reihe zusätzlicher Vorteile gegenüber herkömmlichen Verbrennungsmotoren oder anderen Brennstoffzellen. Zum Beispiel macht die hohe Abwärme (über 800°C) sie zu einer nützlichen Anwendung in der Industrie für die Kraft-Wärme-Kopplung. Durch kombinierte Zyklen kann ein hoher Wirkungsgrad für die Stromerzeugung erreicht werden. Aufgrund des modularen Charakters von FOBZ bieten sie außerdem eine flexible Planung der Stromerzeugungskapazität. Auf diese Weise führt die Verwendung von FOBZ zu einer weiteren Reduzierung der Kohlendioxidemission.

Der größte Vorteil von FOBZ besteht darin, daß sie mit Kohlenwasserstoffen wie Methan (CH4, Erdgas) betrieben werden können. Durch die direkte Verwendung von Methan sind keine Vorreformer erforderlich, wodurch die Komplexität, Größe und Kosten des gesamten FOBZ-Systems verringert werden.

Methan kann aus dem Zerfall organischer Abfälle auf Abfalldeponien, Trinkwasseraufbereitungsanlagen usw. gewonnen werden. Das Gas kann uch aus dem Grundwasser gewonnen werden. Methangas gelangt durch natürlich vorkommenden anaeroben Abbau organischen Materials im Untergrund oder durch Eingasen aus Lagerstätten ins Grundwasser.

Forscher der Technischen Universität Delft ging davon aus, daß das aus der Grundwasseraufbereitung gewonnene Gas auch als Brennstoff in FOBZ verwendet werden kann, und stellten ihre Hypothese auf die Probe. Sie veröffentlichten ihre Ergebnisse in der Fachzeitschrift Journal of Cleaner Production. Derzeit wird das aus der Trinkwasseraufbereitungsanlage in Spannenburg, Niederlande, gewonnene Methan entweder in die Atmosphäre freigesetzt oder abgefackelt, wodurch eine wertvolle Ressource verschwendet wird. Zudem tragen sowohl das Methan als auch das CO2 zu weiteren Treibhausgasemissionen bei.

FOBZ stellen die sauberste der derzeit gängigen Lösungen für die Umwandlung von zurückgewonnenem Methan in elektrische Energie dar. Die so gewonnene Energie kann wiederum von der Trinkwasseraufbereitungsanlage genutzt werden. Dieser Prozess verringert den Strombedarf und gleichzeitig die Treibhausgasemissionen des DWTP.

Der gesamte Prozess war in folgende Schritte unterteilt:

  1. Methan wurde zunächst dem Grundwasser entnommen: Das Grundwasser wurde aus den Tiefbrunnen direkt in ein System von Vakuumtürmen gepumpt, die 90% des gelösten Gases mit einem Nahvakuum von 0,2 bar entfernen.
  2. Die anschließende Behandlung durch Plattenbelüftung entfernten die verbliebenen 10% Methan aus dem Grundwasser.
  3. Zur Entfernung von weiterem  CO2 wurde das Wasser einer weiteren Turmbelüftung unterzigen wodurch das Wasser zusätzlich weicher wurde.

Probenahme von zurückgewonnenem Gas:

Zweihundert Mililiter des mit Methan angereicherten Gases wurden verwendet, um die Konzentration von CH4, H2, Sauerstoff (O2), Stickstoff (N2), Kohlenmonoxid (CO) und CO2 zu bestimmen.

FOBZ-Aufbau & thermodynamischer Ansatz:

Eine FOBZ-Teststation wurde verwendet, um die Experimente durchzuführen. Das methanreiche Gas wurde der Anode zugeführt und das Leerlaufpotential aufgezeichnet. Methan muss in Wasserstoff und CO umgewandelt werden, bevor in einer FOBZ effektiv Strom erzeugt werden kann.

Ergebnisse:

Die Hauptkomponenten im Probengas waren Methan und CO2 mit Konzentrationen von 71 bzw. 23 Mol-%. Zusätzlich enthielt das zurückgewonnene Gas 9 ppm Schwefelwasserstoff (H2S), was die Zellleistung einer FOBZ dauerhaft verringern kann. Schwefelwasserstoff wurde mit imprägnierter Aktivkohle wirksam entfernt (<0,1 ppm)

Die Verwendung von CH4 aus dem Grundwasser in einer FOBZ trägt dazu bei, die Treibhausgasemissionen zu verringern und die Nachhaltigkeit von Trinkwasseraufbereitungsanlagen zu verbessern. Mit dem zurückgewonnenen Methangas des Spannenburg Trinkwasseraufbereitungsanlage kann ein 915 kW SOFC-System betrieben werden. Dies kann 51,2% des gesamten Strombedarfs der Anlage decken und die Treibhausgasemissionen um 17,6% senken, was rund 1,794 Tonnen CO2 entspricht.

Die jährliche Stromerzeugung des FOBZ-Systems könnte 8 GWh betragen, was etwa 3 GWh mehr ist als die, die von einer Gasturbine oder einem Verbrennungsmotor erzeugt wird.

In Zukunft werden die Forscher Langzeittests durchführen, um den sicheren Betrieb von FOBZ, insbesondere im Hinsblick auf das Problems der Kohlenstoffablagerung, zu untersuchen. Diese Tests werden auf die FOBZ-Reihen und die Pilotanlage (im Bereich einiger kW-Systeme) ausgedehnt.

(Abbildung: Indiamart)

Quelle: https://doi.org/10.1016/j.jclepro.2021.125877 (A solid oxide fuel cell fueled by methane recovered from groundwater, 2021)

Veröffentlicht am

Mikrobielles Power-to-Gas in erschöpften Ölfeldern als Brückentechnologie zwischen erneuerbarer und fossiler Energie

Ein aufgegebenes oder unproduktives Ölfeld kann für die Methanproduktion aus CO2 mit erneuerbarer elektrischer Energie wiederverwendet werden. Man können erschöpfte Ölfelder z.B. in  Reaktoren zur Umwandlung erneuerbarer Energien in Erdgas umwandeln, und zwar in geologischen Dimensionen. Um dies zu erreichen, muß ein Ölfeld elektrisch leitend und katalytisch aktiv gemacht werden. Dan kann man darin Erdgas aus erneuerbaren Energiequellen zu erzeugen. Der Einsatz von Erdgas ist jeder Batterie aufgrund der vorhandenen Infrastruktur, des Einsatzes in Verbrennungsmotoren, der hohen Energiedichte und der Widerverwertung von CO2 überlegen. Ölfelder sind wegen ihrer der enormen Speicherkapazitäten der Produktion übertage überlegen. Sie sind bereits gut erforscht und wurden einer Umweltrisikobewertung unterzogen. Letztlich ist die mikrobielle Power-to-Gas-Technologie bereits jetzt verfügbar.

Ausgewählte Eckdaten

Gesamter Prozess (Methan als Endprodukt)

50% elektrische Effizienz

Energiedichte Methan

180 kWh / kg

Speicherkapazität eines Ölfeld

3 GWh / Tag

Lade- / Entladezyklen

Unbegrenzt

Investitionsvolumen

51.000 USD / MW

Kosten pro kWh (>5,000 h Lebensdauer)

<0,01 USD / kWh

Elektrolyt

Meerwasser

Problem

Um das Problem der Speicherung erneuerbarer Energien anzugehen, wurden Batterien als mögliche Lösung vorgeschlagen. Lithium-Ionen-Akkus haben eine maximale Energiespeicherkapazität von etwa 0,3 kWh / kg. Zur Zeit werden Li-Akkus als der beste Kompromiss zwischen Kosten und Effizienz angesehen. Dennoch sind sie immer noch zu ineffizient, um Benzin mit einer Speicherkapazität von etwa 13 kWh / kg zu ersetzen. Dies macht batteriebetriebene Autos schwerer als herkömmliche Autos. Lithium-Luft-Batterien werden als mögliche Alternative angesehen, da sie theoretische Kapazitäten von 12 kWh / kg erreichen können. Aufgrund technischer Hürden werden sie aber noch nicht auf den Straßen eingestzt.

Im Gegensatz dazu hat Methan eine Energiedichte von 52 MJ / kg, was 180 kWh / kg entspricht. Damit kommt das Gas gleich nach Wasserstoff mit 500 kWh / kg, ignoriert man die Kernenergie. Diese hohe Energiedichte von Methan und anderen Kohlenwasserstoffen sowie deren einfache Verwendung sind der Grund, warum sie in Verbrennungsmotoren und Strahltriebwerken eingesetzt werden. Elektroautos scheinen eine verlockende grüne Alternative zu sein. Allerdings ist die weltwiete Transportinfrastruktur auf Verbrennungsmotoren zurechtgeschnitten.

Neben der Schwierigkeit, Gewohnheiten zu ändern, benötigen Elektroautos andere begrenzte natürliche Ressourcen wie Lithium. Um alle 94 Millionen im Jahr 2017 weltweit produzierten Automobile auszurüsten, müßten jährlich 3 Megatonnen Lithiumcarbonat abgebaut werden⁠. Dies sind fast 10% der gesamten verfügbaren Lithiumressourcen von 35 Megatonnen weltweit. Obwohl Lithium und andere Metalle recycelt werden können, ist es klar, daß Batterien auf Metallbasis allein aufgrund der geringen Energiedichten von Metallen nicht die Brücke zwischen erneuerbarer Energie und traditionellen Transportmitteln schlagen werden. Dabei werden andere Energiebedürfnisse wie industrielle Stickstoffixierung, Luftfahrt oder Heizung nicht einmal berücksichtigt.

Für Deutschland mit seinem hohen Anteil an erneuerbaren Energien ist Kraftstoff für Autos nicht das einzige Problem. Da erneuerbare Energie im Norden erzeugt wird, aber viele Energieverbraucher im Süden sind gibt es ein Transportproblem. Zudem reicht die Netzlast während Spitzenproduktionszeiten häufig nicht aus, was zu Überproduktion führt. Eine bessere Energieverteilung kann durch Dezentralisierung der Produktion und durch Energiespeicherung erreicht werden. Um die Produktion zu dezentralisieren, wurden Land- und Hausbesitzer für die Installation von Photovoltaikanlagen oder Windrädern steuerlich entlohnt. Mit dem Auslaufen der steuerlichen Anreize stehen Hausbesitzer vor dem Problem der Energiespeicherung. Das bisher beste Produkt für diese Kundengruppe sind wieder Li-Akkus, aber Investitionskosten von 0,05 USD / kWh sind immer noch zu unattraktiv, insbesondere weil diese Produkte die Energie als Strom speichern, der nur für kurze Zeit genutzt werden kann und weniger effizient als natürlich ist Gas beim Heizen.

Erdgas wird heute häufig als Energiequelle verwendet. Die globale Energieinfrastruktur ist für Erdgas und andere fossile Brennstoffe ausgelegt. Die steigende Nachfrage und die begrenzten Ressourcen für diese fossilen Brennstoffe waren in den letzten Jahrzehnten die Hauptgründe für den Anstieg der Öl- und Gaspreise. Durch die jüngsten Wirtschaftskrisen und das Fracking sind diese jedoch wieder rückläufig. Der hohe Ölpreis zog damals Investoren an, Öl mithilfe von Techniken zu gewinnen, die immer teurer wurden, berücksichtigt man die Umweltrisiken, wie z.B. Tiefseebohrungen oder Teersandschürfung darstellen. Ironischerweise machte der hohe Ölpreis teure erneuerbare Energien zu einer wirtschaftlich realisierbaren Alternative und trug dazu bei, ihre Kosten zu senken. Da es jedoch schwierig ist, Gewohnheiten zu ändern und der Aufbau einer völlig neuen Infrastruktur nur für erneuerbare Energien heute wirtschaftlich nicht machbar erscheint, muß eine realistischere Lösung gefunden werden, um die globale Erwärmung zu verlangsamen.

Mikrobielles Power-to-Gas könnte eine realistische Übergangstechnologie sein, die erneuerbare Energien in die vorhandene Infrastruktur für fossile Brennstoffe integriert. Man kann mit der Technologie Gewinnschwelle in weniger als 2 Jahren erreichen, wenn bestimmte Voraussetzungen erfüllt sind. Dies wird durch die Integration von Methan aus erneuerbaren Energien in die derzeitige Infrastruktur zur Öl- und Gasförderung erreicht. Die Grundidee besteht darin, Kohlenstoff anstelle von Metallen als Energieträger zu verwenden, da er bei der Bindung an Wasserstoff eine hohe Energiedichte aufweist. Die Vorteile sind:

  • Hohe Energiedichte von 180 kWh / kg Methan
  • Geringe Investitionen aufgrund vorhandener Infrastruktur (Erdgas, Ölfeldausrüstung)
  • Kohlenstoff ist keine begrenzte Ressource
  • Geringe CO2-Emissionen durch CO2-Recycling
  • Methan ist ein Transporttreibstoff
  • Methan ist der Energieträger für das Haber-Bosch-Verfahren
  • Preiswerte Katalysatoren reduzieren die Anfangsinvestitionen
  • Niedrige Temperaturen durch Biokatalyse
  • Keine toxischen Verbindungen werden verwendet
  • Keine zusätzliche Umweltbelastung, da vorhandene Ölfelder wiederverwendet werden

Problemlösung

Methan kann durch Mikroben oder chemisch synthetisiert werden. Das Gas entsteht auf natürlichem Wege durch anaerobe (sauerstoffreie) mikrobielle Zersetzungsprozesse. Die Energie für die Biomassesynthese wird durch Sonnenlicht oder chemische Energie wie Wasserstoff bereitgestellt. Bei Methanogenen (methanproduzierende Mikroben) wird Energie gewonnen, nachdem CO2 und Wasserstoff nach einem 1-zu-4-Verhältnis verschmolzen werden:

CO2 + 4 H2 → CH4 + 2 H2O

Ohne Mikroben wird Methan durch die mit dem Nobelpreis ausgezeichnete Sabatier-Reaktion hergestellt, und es werden derzeit mehrere Versuche unternommen, es im industriellen Maßstab einzusetzen. Es ist notwendig, Wasser in Wasserstoff aufzuspalten und damit CO2 in der Gasphase zu reduzieren. Ein Hauptnachteil der Sabatier-Reaktion ist die Notwendigkeit hoher Temperaturen um 385°C. Zudem wird der Nickelkatalysator schnell verbraucht. Methanogene verwenden Eisen-Nickel-Enzyme, sogenannte Hydrogenasen, um Energie aus Wasserstoff zu gewinnen, dies jedoch bei Umgebungstemperaturen.

Zur Herstellung von abiotischem Wasserstoff wird Wasser mit Edelmetallkatalysatoren durch Elektrolyse gespalten. Mikroben spalten Wasser unter Verwendung von Hydrogenasen in umgekehrter Richtung und der erzeugte Wasserstoff wird durch Methanogene oxidiert, die im Elektrolyten oder auf Elektroden wachsen, um Methan zu erzeugen. Diese Reaktion findet im korrekten 1-zu-4-Verhältnis bei elektrischen Potentialen statt, die nahe am theoretischen Wasserstoffproduktionspotential von –410 mV liegen. Methanogene Mikroorganismen können das elektrochemische Überpotential weiter reduzieren und sparen somit Energie.

Power-to-Gas-Konzept für erschöpfte Ölfelder. Die Elektrolyse katalysiert die Wasserspaltung im Ölfeld und erzeugt Methangas und O2.

Die zukünftige Herausforderung wird darin bestehen, die Methanproduktionsraten zu beschleunigen, wie dies für Hochtemperatur-Ölfeldkulturen berichtet wurde. Neben der Erhöhung der Temperatur besteht die naheliegendste Lösung darin, eine höher reaktive Oberfläche zu verwenden und beide Elektroden näher zusammenzubringen. Die Verwendung von Kohlebürsten, die schlechte Wasserstoffkatalysatoren sind, aber eine höhere Oberfläche für die mikrobielle Besiedlung bieten, ist eine Möglichkeit. Die Methanproduktion korreliert mit den mikrobiellen Zellzahlen in den Reaktoren:

Die Anzahl der Methanogene in mikrobiellen Elektrolysereaktoren korreliert mit der Elektrodenoberfläche.

Um das Problem teurer Kohlenstoff- (und auch Stahl-) Bürsten für Großanwendungen zu überwinden, könnten Gas- und Ölfelder verwendet werden. Sie bieten eine große Oberfläche und bringen in der Regel wirtschaftliche Verluste, stellen jedenfalls keine Vermögenswerte dar. Methanogene bewohnen Ölfelder, auf denen sie den letzten Schritt des anaeroben Erdölabbaus durchführen. Daher können Ölfelder im geologischen Maßstab als Bioreaktoren angesehen werden. Geologische Formationen bieten ideale Bedingungen für die Herstellung, Lagerung und Gewinnung von Methan.

Offene Fragen und mögliche Lösungen

Porenraumvolumen des Ölfeldes

Das kalifornische Ölfeld Summerland wurde bereits in der Vergangenheit aufgegeben und eingehend untersucht. Während seiner 90-jährigen Lebensdauer wurden 27 Milliarden Fässer Öl und 2,8 Milliarden m3 Methan gefördert. Diese Förderung von 3,5 Milliarden m3 hinterließ das gleiche mit Meerwasser gefüllte Porenvolumen. Nur 2% dieser Poren sind größer als 50 μm, was für das mikrobielle Wachstum erforderlich ist. Dazu nimmt man Abmessungen von 1 x 2 μm einer Methanogenzelle an. Experimente zeigten, daß der resultierende Porenraum ein Größe von ca. 70 Millionen m3 hätte und damit eine Speicherkapazität von 35.000 TW hat. Das ist viel Methan bei einer Löslichkeit von 0,74 kg Methan / m3 Meerwasser in 500 m Wassertiefe⁠. Alle deutschen Offshore-Windparks haben zusammen eine Leistung von 7.000 MW. Offensichtlich ist der begrenzende Faktor nicht die volumetrische Speicherkapazität eines Ölfeldes.

Mikrobielle Methanproduktionsraten

Aber wie schnell können Mikroben auf einem hypothetischen Ölfeld Methan produzieren? Unter optimalen Bedingungen können Methanogene, die auf Elektroden wachsen (typischerweise die Gattung Methanobacterium oder Methanobrevibacter), Methan mit einer Geschwindigkeit von 100-200 nmol / ml / Tag (also 2,2-4,5 ml / l / Tag) produzieren. Bei einer Produktionsrate von 15 J ml / Tag Methan (190 nmol / ml / Tag) hat das gesamte mikrobiell zugängliche Ölfeld (2%) eine Kapazität von 3,6 Millionen MBtu pro Jahr. Mikroben würden theoretisch 1 TWh pro Jahr für eine Methanproduktion von 3,6 Millionen MBtu verbrauchen, wenn es keine Verluste gäbe und die elektrische Energie 1:1 in Methan umgewandelt würde. Ein Stromgenerator von 121 MW würde ausreichen, um das gesamte Ölfeld mit diesen Raten zu versorgen. Alle deutschen Offshore-Windparks produzieren jedoch 7.000 MW, was bedeutet, daß unser Beispielölfeld nur 3% Überschußleistung schnell genug speciehern kann. Daher müssen die katalytische Oberfläche und die Aktivität erhöht werden, um die Methanumwandlungsraten zu beschleunigen.

Da Methanogene aus Wasserstoff Methan produzieren, kann nicht nur der für Zellen passende Porenraum von 2% genutzt werden, was zu einer Erhöhung der katalytischen Oberfläche auf fast 60% führt. Es muß ein Wasserstoffkatalysator gefunden werden, der das Methanogenwachstum nicht beschleunigt, um den pH-Wert des Reservoirs innerhalb der für das Methanogenwachstum erforderlichen Grenzen von 6 bis 8 zu halten. Dieser Wasserstoffkatalysator muß billig sein und ein Ölfeld elektrisch leitfähig machen. Eine Chemikalie, die die mikrobielle Wasserstoffkatalyse nachahmt, könnte verwendet werden. Diese hätte das Potential, ein nicht leitendes und nicht katalytisches Ölfeld in einen leitfähigen Wasserstoffkatalysator umzuwandeln. Dieser würde ausreichen, um die Methanproduktion so aufrechtzuerhalten, daß die Speicherung des gesamten deutschen Stroms von Offshore-Windparks möglich ist. Dieser Katalysator wäre zunächst inaktiv und in Wasser löslich. Um aktiv zu werden, beschichtet er mineralische Oberflächen durch Ausfällung, die durch einheimische Mikroben oder durch elektrische Polarisation ausgelöst werden kann. Die Investition würde 2,3 Mio. USD pro MW Speicherkapazität betragen (16 Mrd. USD für die gesamten 7.000 MW). Aufgrund des mikrobiellen Wachstums verbessert sich die katalytische Aktivität des Systems während des Betriebs. Die auf der Kathodenseite getätigten Investitionen würden dann nur 600 USD pro MW betragen (4,2 Mio. USD für 7.000 MW).

Anoden

Da die kathodische Seite der Reaktion als begrenzender Faktor ausgeschlossen werden kann, muss die Anode entworfen werden. Es könnten mehrere im Handel erhältliche Anoden wie gemischte Metalloxide (bis zu 750 A / m2) mit Platin auf Kohle- oder Niobanoden (Pt / C, 5–10 kA / m2) verwendet werden. Anoden auf Platinbasis sind das kostengünstigste Material auf dem Markt. Die Investitionen für Pt / C-Anoden (10%, 6 mg / cm2) belaufen sich auf 50.000 USD pro MW (350 Mio. USD für 7.000 MW). Die genaue Menge an Pt, die für die Reaktion benötigt wird, muß jedoch noch bewertet werden, da die Korrosionsrate bei 2 V Zellenspannung unbekannt ist. Ein häufig genannter Wert für die Lebensdauer von Brennstoffzellen beträgt 5.000 Stunden und wird hier zur Bestimmung der Kosten pro kWh verwendet. Für eine Lebensdauer von 5.000 Stunden liegen die Kosten pro kWh an der angestrebten Grenze von 0,01 USD, können jedoch deutlich darunter liegen, da Pt / C-Anoden wiederaufbereitet werden können und die Pt-Beladung auf 3 mg / cm2 (5%) reduziert werden kann. Alternativ können Stahlanoden (SS316, 2,5 kA / m2, 54.000 USD pro MW) verwendet werden, es ist jedoch unklar, wann Stahlanoden korrodieren. Zusammenfassend ist die anodische Seite der kostentreibende Faktor. Hoffentlich senken bessere Anoden diese Kosten in Zukunft. Bei Frontis Energy denken wir, daß die Forschung in diese Richtung gehen sollte.

Zusammenfassung der Kostenschätzung

Windfarm

Vorhanden

CO2 Einspritzung

Vorhanden

Erdgasförderanlagen

Vorhanden

Mikrobielles Impfmaterial

Platformabwasser

Kathode

600 MW−1 USD

Anode

50.000 MW−1 USD

Elektrolyt (Meerwasser)

Kostenlos

Zusammen (>5.000 Studen Lebensdauer)

<0,01 kWh−1 USD

Energie- und Umwandlungseffizienz

Die Gesamtzellenspannung für mikrobielle Power-to-Gas-Reaktionen variiert zwischen 0,6 und 2,0 V, abhängig von den Kathodenraten, der anodischen Korrosion und dem Vorhandensein einer Membran. Höhere Spannungen beschleunigen wiederum die Anodenkorrosion und machen Anoden zum Kostenfaktor. Mit abnehmender Spannung werden die Methanproduktionsraten langsamer, aber auch effizienter. Die Spannung hängt auch vom pH-Wert des Ölfeldes ab. Ein Ölfeld, das einer CO2-Einspritzung (enhanced oil recovery) unterzogen wurde, hat einen niedrigen pH-Wert, bietet bessere Bedingungen für die Wasserstoffproduktion, jedoch nicht für das mikrobielle Wachstum und muß mit Meerwasser neutralisiert werden. Wie oben erwähnt, schränkt das Ölfeld als Kathode das System nicht ein. Die Verwendung von Pt / C-Anoden beseitigt das Überpotentialproblem auf der Anodenseite. Daher können wir ein ideales System annehmen, das Wasser mit 1,23 V spaltet. Aufgrund von Überpotentialen von Anode und Kathode beträgt die Spannung jedoch häufig 2 V. Optimierte Kulturen und Kathoden produzieren etwa 190 nmol / ml / Tag Methan, was 0,15 J / ml / Tag entspricht, wobei die Verbrennungsenergie von 0,8 MJ / mol verwendet wird. Dieselbe Elektrolysezelle verbraucht 0,2 mW bei einer Zellenspannung von 2 V, was 0,17 J / ml / Tag entspricht. Die resultierende Energieeffizienz beträgt 91%. Die Anoden können einfache Kohlebürsten sein. Die beiden Kammern der Zelle sind durch eine Nafion ™ -Membran getrennt. Das System kann weiterhin durch Verwendung von Pt / C-Anoden und durch Vermeidung von Membranen optimiert werden.

Der Gesamtwirkungsgrad von Strom, Methan und Elektrizität hängt auch vom verbrauchsseitigen Wirkungsgrad ab, also der Effizienz bei der Methan in Strom umgewandelt wird. Solche Gaskraftwerke arbeiten häufig mit Wirkungsgraden von 40 bis 60% (Kraft-Wärme-Kopplung). Bei einer Energieeffizienz von 80% (siehe oben) wird die gesamte elektrische Energierückgewinnung mit modernen Gaskraftwerken bis zu 50% betragen. Neben dem hohen Wirkungsgrad von Gaskraftwerken sind sie auch einfach zu bauen und tragen somit zu einem besseren Wirkungsgrad des Stromnetzes bei. Kohlekraftwerke können zu Gaskraftwerken umgerüstet werden.

Erster experimenteller Ansatz

Die Umwandlungseffizienzen der Ladung (in Coulomb), die über den Stromkreis transportiert werden, liegen in diesen Systemen normalerweise zwischen 70 und 100%, abhängig vom Elektrodenmaterial. Eine weitere Effizienzbeschränkung könnte sich aus Stofftransporthemmungen ergeben. Der Stofftransport kann durch Pumpen von Elektrolyt verbessert werden, wodurch zusätzliche Kosten für das Pumpen entstehen. Da jedoch die meisten Ölfelder zur verbesserten Ölrückgewinnung einer Meerwassereinspritzung unterzogen werden, können die zusätzlichen Kosten vernachlässigbar sein. Die Gesamteffizienz muß noch in Skalierungsexperimenten ermittelt werden und hängt von den oben genannten Faktoren ab.

Der Reaktor simuliert Ölfeldbedingungen unter Verwendung von Sand als Füllmaterial unter kontinuierlichem Elektrolytfluss.

Die Kontrolle des pH-Werts ist entscheidend. Alkalische pH-Werte behindern die Wasserstoffproduktion und damit die Methanogenese erheblich. Dies kann durch eine Software behoben werden, die den pH-Wert überwacht und das Potenzial entsprechend anpasst. Die Zugabe von Säuren ist nicht erwünscht, da dies die Kosten erhöht. Die Software kann auch als Potentiostat fungieren, der dann den Methanproduktionsprozess vollständig steuert. Um den Prozess unter realistischeren Bedingungen zu testen, sollte ein Bohrkern verwendet werden.

Die Ergebnisse zeigen die Methanproduktion im Simulationsreaktor. Das Auftreten von Methan im Anodenraum war ein Ergebnis des Flusses von der Kathode zur Anode, der produziertes Methan mit sich führte.

Rentabilität des mikrobiellen Power-to-Gas-Prozesses

Das mikrobielle Power-to-Gas-Verfahren in unproduktiven Ölfeldern ist aufgrund der geringen Anlauf- und Betriebskosten allen anderen Speicherstrategien wirtschaftlich überlegen. Dies wird erreicht, weil die Hauptinvestitionen, nämlich die Installation von Öl- und Gasförderanlagen sowie erneuerbaren Kraftwerken, bereits vorhanden sind. Die restlichen Investitionen machen sich in kurzer Zeit bezahlt.

Aber wie kann der mikrobielle Power-to-Gas-Prozess die Rendite von Investitionen in erneuerbare Energien beschleunigen? Nur 8 von 28 aktiven Windparks meldeten ihre Investitionskosten. Diese 8 produzieren ungefähr die Hälfte der Gesamtleistung von 3.600 MW, was 16 Milliarden US-Dollar entspricht. Während die maximale Produktion eines Ölfeldes mit unbegrenzter Stromversorgung hypothetische 3,6 Millionen MBtu Erdgas pro Jahr ergeben würde (was einer Rendite von 13 Millionen USD pro Jahr entspräche) wird die reale Produktion durch die Erzeugung erneuerbarer Energie außerhalb der Spitzenzeiten begrenzt. Unter der Annahme, daß die maximale jährliche Methanproduktion 10% überschüssiger elektrischer Energie entspricht, können 15 Mio. USD pro Jahr durch den Verkauf von 4,3 Mio. MBtu Methan pro Jahr auf dem Markt erzeugt werden. Dies sind 15 Millionen US-Dollar, die bei Stillständen außerhalb der Spitzenzeiten nicht verloren gehen. Diese konservative Schätzung kann also dazu beitragen, die Investitionen in erneuerbare Energien früher zu kompensieren. Dies verringert auch das Investitionsrisiko, da die Investitionsberechnungen für neue Windparks zuverlässiger durchgeführt werden können.

Im Beispiel aller deutschen Windparks (7.000 MW) verdoppelt sich diese Kompensation in etwa. Unter Verwendung der 60 Millionen US-Dollar, die durch Methanverkäufe pro Jahr generiert werden, werden die Investitionen von 4 Millionen US-Dollar für den kathodischen Katalysator und die 36 Millionen US-Dollar für die Pt / C-Anoden innerhalb von weniger als zwei Jahren kompensiert. Es sind keine weiteren Investitionen erforderlich, da das Ölfeld bereits Öl und Gas gefördert hat und alle erforderlichen Installationen in einwandfreiem Zustand sind. In das Ölfeld wird Meerwasser als sekundäre Extraktionsmethode eingespritzt. Zum kathodischen Schutz von Produktionsanlagen sind elektrische Anlagen vorhanden, um mikrobielle Korrosion zu verhindern, die jedoch möglicherweise verbessert werden muß, um die jetzt höheren Leistungsdichten zu erreichen. Darüber hinaus wird CO2 aus der CO2-Einspritzung als tertiäres Verfahren zur Ölrückgewinnung verwendet. Möglicherweise muß dann nur der pH-Wert angepaßt werden.

Und dies ist nicht das Ende der Ölfeldspeicherkapazität. Theoretisch kann ein Ölfeld die gesamte Menge an erneuerbarer Energie speichern, die in einem Jahr weltweit erzeugt wird, was mehr als genug Spielraum für zukünftige Entwicklungen und die CO2-Verpressung bietet.

 

Veröffentlicht am

Abwasser ist eine global unterschätzte Resource

In unserem letzten Beitrag zur Wasserqualität in China haben wir auf eine Studie hingewiesen, die zeigt, wie sich eine verbesserte Abwasserbehandlung positiv auf die Umwelt und letztendlich auf die öffentliche Gesundheit auswirkt. Abwasserbehandlung erfordert jedoch eine ausgeklügelte und kostspielige Infrastruktur. Diese ist nicht überall verfügbar. Die Gewinnung von Ressourcen aus Abwasser kann jedoch einen Teil der Kosten ausgleichen, die durch den Bau und Betrieb von wolchen Anlagen entstehen. Die offene Frage ist, wieviele Ressourcen sind im Abwasser enthalt?

Eine kürzlich in der Fachzeitschrift Natural Resources Forum veröffentlichte Studie versucht, diese Frage zu beantworten. Es ist die erste dieser Art, die abschätzt, wie viel Abwasser alle Städte der Erde pro Jahr produzieren. Die Menge ist enorm, wie die Autoren sagen. Derzeit fallen weltweit jährlich 380 Milliarden m³ Abwasser an. Die Autoren ließen bei ihrer Untersuchung nur 5% der städtischen Gebiete aus.

Die wichtigsten Ressourcen im Abwasser sind Energie, Nährstoffe wie Stickstoff, Kalium und Phosphor sowie das Wasser selbst. In kommunalen Kläranlagen stammen sie aus menschlichen Exkrementen. In Industrie und Landwirtschaft enthält Abwasser Überreste der Produktionsprozesse. Das Forscherteam berechnete, wie viele Nährstoffe aus kommunalen Abwässern wahrscheinlich in den globalen Abwasserstrom gelangen. Dabei errechneten sie erreichen eine Gesamtzahl von 26 Millionen Tonnen pro Jahr. Das ist fast das Achtzigfache des Gewichts des New Yorker Empire State Buildings.

Wenn man die gesamte Stickstoff-, Phosphor- und Kaliumbelastung zurückgewinnen würde, könnte man theoretisch 13% des weltweiten Düngemittelbedarfs decken. Die Forscher gingen davon aus, daß das Abwasservolumen wahrscheinlich weiter zunehmen wird, da auch die Weltbevölkerung, die Urbanisierung und der Lebensstandard zunehmen. Sie schätzen weiter, daß es im Jahr 2050 fast 50% mehr Abwasser geben wird als im Jahr 2015. Es wird notwendig sein, so viel wie möglich davon zu behandeln und die Nährstoffe in diesem Abwasser stärker zu nutzen! Wie wir in unserem vorherigen Beitrag betont haben, verursacht Abwasser immer mehr Umwelt- und Gesundheitsprobleme.

Abwasser enthält auch viel Energie. Kläranlagen in Industrieländern nutzen sie seit langem in Form von Biogas. Die meisten Kläranlagen fermentieren Klärschlamm in großen anaeroben Fermentern und produzieren daraus Methan. Infolgedessen sind einige dieser Kläranlagen jetzt energieunabhängig.

Die Autoren berechneten in ihrer Studie das Energiepotential, das im Abwasser aller Städte weltweit verborgen liegt. Grundsätzlich reicht die Energie aus, um 500 bis 600 Millionen Durchschnittsverbraucher mit Strom zu versorgen. Die einzigen Probleme sind: Abwasserbehandlung und Energietechnologie sind teuer und werden daher in nicht Schwellen- und Entwicklungsländern wenig eingesetzt. Laut den Wissenschaftlern wird sich dies ändern. Gelegentlich passiert dies bereits.

Singapur ist ein prominentes Beispiel. Dort wird das Abwasser so gründlich geklärt, daß es in das normale Wassernetz zurückgeführt wird. In Jordanien gelangt das Abwasser aus den Städten Amman und Zerqa durch ein Gefälle in die kommunale Kläranlage. Dort sind kleine Turbinen installiert, die seit ihrem Bau Energie liefern. Solche Projekte zeigen, daß eine Rückgewinnung von Ressourcen möglich ist. Sie macht die Abwasserbehandlung effizienter und kostengünstiger.

Die Frontis-Technologie basiert auf der mikrobiellen Elektrolyse, bei der viele Schritte in Kläranlagen in einem einzigen Reaktor kombiniert werden, um sowohl Nährstoffe als auch Energie zurückzugewinnen.

(Foto: Wikipedia)

Veröffentlicht am

Energiespeicherung in Dänemark

Dänemarks Stromportfolio

In unserem letzten Beitrag unserer Blogserie über Energiespeicher in Europa haben wir uns auf Italien konzentriert. Jetzt gehen wir zurück in den Norden Europas, nämlich nach Dänemark. Es überrascht nicht, daß Dänemark als Pionier der Windenergie bekannt ist. In den 1970er Jahren wurde fast ausschließlich Öl importiert, um den Energiebedarf zu decken. Die erneuerbaren Energien machen inzwischen mehr als die Hälfte des im Land erzeugten Stroms aus. Dänemark strebt bis 2035 100 Prozent erneuerbaren Strom und bis 2050 100% erneuerbaren Strom in allen Sektoren an.

Stromproduktion in Dänemark 2016

Die Nähe zu Skandinavien und zum europäischen Festland macht den Export und Import von Strom für den dänischen Systembetreiber Energinet.dk ziemlich einfach. Dies gibt Dänemark die nötige Flexibilität, um eine signifikante Durchdringung von intermittierenden Energiequellen wie Wind zu erreichen und gleichzeitig die Netzstabilität zu gewährleisten.

Obwohl die bisherigen Ergebnisse vielversprechend sind, wird es immer noch eines erheblichen Sprunges bedürfen, um zu 100 Prozent erneuerbare Energie zu gewinnen, und die offiziellen Richtlinien, nach denen Dänemark diesen Übergang steuert, müssen erst noch umgesetzt werden. Es gab jedoch Hinweise darauf, wie die endgültigen Richtlinien aussehen könnten. In ihrem Bericht  Energy Scenarios for 2020, 2035 and 2050 hat die dänische Energieagentur vier verschiedene Szenarien skizziert, um bis 2050 fossilfrei zu werden und gleichzeitig das 100%-ige Ziel für erneuerbaren Strom von 2035 zu erreichen oder Biomasse sind:

  • Windszenario − Wind als primäre Energiequelle, zusammen mit Solar-PV und Kraft-Wärme-Kopplung. Massive Elektrifizierung des Wärme- und Verkehrssektors.
  • Biomasse-Szenario − weniger Windeinsatz als im Wind-Szenario, wobei Kraft-Wärme-Kopplung Strom und Fernwärme liefert. Transport mit Biokraftstoffen.
  • Bio+ Szenario − Bestehende Kohle- und Gaserzeugung durch Bioenergie ersetzt, 50% des Stroms aus Wind. Wärme aus Biomasse und Strom (Wärmepumpen).
  • Wasserstoffszenario – Strom aus Wind, der zur Erzeugung von Wasserstoff durch Elektrolyse verwendet wird. Wasserstoff als Speichermedium für erneuerbare Energien sowie als Transportkraftstoff. Das Wasserstoffszenario würde eine massive Elektrifizierung des Wärme- und Transportsektors erfordern, während der Wind schneller eingesetzt werden müsste als das Windszenario.

Agora Energiewende und DTU Management Engineering haben postuliert, dass dieser Szenariobericht tatsächlich zeigt, dass die Umstellung des dänischen Energiesektors auf 100 Prozent erneuerbare Energien bis 2050 auf mehreren Wegen technisch machbar ist. Die dänischen Entscheidungsträger müssen jedoch vor 2020 entscheiden, ob sich das Energiesystem in ein auf Brennstoff basierendes Biomassesystem oder ein auf Strom basierendes Windenergiesystem umwandeln soll (sie müssen entscheiden, welches der vier Szenarien verfolgt werden soll).

Energiespeicher in Dänemark

Unabhängig davon, für welches energiepolitische Szenario Dänemark sich entscheidet, wird die Speicherung von Energie ein zentraler Aspekt einer erfolgreichen Energiewende sein. Derzeit sind in Dänemark drei EES-Anlagen in Betrieb, die alle elektrochemisch (Batterien) sind. Eine vierte EES-Anlage – das HyBalance-Projekt – befindet sich derzeit im Bau und wird den von Windkraftanlagen erzeugten Strom durch PEM-Elektrolyse (Protonenaustauschmembran) in Wasserstoff umwandeln.

Projektname

Technologie

Kapazität (kW)

Entladedauer (h)

Status

Nutzung

RISO Syslab Redox Flußbatterie Elektrochemisch Flußbatterie 15 8 In betrieb Stabilisierung erneuerbarer Energien
Vestas Lem Kær ESS Demo 1.2 MW Elektrochemisch Lithiumionakku 1.200 0.25 In betrieb Frequenzregulierung
Vestas Lem Kær ESS Demo 400 kW Elektrochemisch Lithiumionakku 400 0.25 In betrieb Frequenzregulierung
HyBalance Wasserstoffspeicher Wasserstoff Power-to-Gas 1.250 In betrieb Integration enerneuerbarer Energie
BioCat Power-to-Gas Methanspeicher Methan Power-to-Gas 1.000 Stillgelegt Netzeinspritzung & Frequenzregulierung

Das HyBalance-Projekt ist das Pilotprojekt von Power2Hydrogen, einer Arbeitsgruppe, die sich aus wichtigen Akteuren der Industrie und akademischen Forschungseinrichtungen zusammensetzt, um das große Potenzial für Wasserstoff aus Windenergie zu demonstrieren. Die Anlage wird bis zu 500 kg Wasserstoff pro Tag produzieren, der für den Transport und den Netzausgleich verwendet wird.

Bemerkenswert ist das stillgelegte BioCat Power-to-Gas-Projekt, ein Pilotprojekt, das von 2014 bis 2016 in Hvidovre, Dänemark, betrieben wurde. Das Projekt, eine gemeinsame Zusammenarbeit von Electrochaea und mehreren Industriepartnern (finanziert von Energienet.dk), war eine 1 MWe Power-to-Gas-Anlage (Methan), die gebaut wurde, um die kommerziellen Möglichkeiten von Methan Power-to-Gas zu demonstrieren. Das BioCat-Projekt war Teil des Ziels von Electrochaea, die Kommerzialisierung Ende 2016 zu erreichen. Bis Anfang 2017 wurden jedoch keine weiteren Aktualisierungen vorgenommen.

Marktausblick für Energiespeicher – Dänemark

Der Energiespeichermarkt in Dänemark wird am stärksten auf Wachstum ausgerichtet sein, wenn die Politik dem Wasserstoffszenario folgt, in dem in allen Sektoren massive Mengen Wasserstoff erzeugt werden müssen, um den Einsatz fossiler Brennstoffe zu verhindern.

Durch erneuerbare Energien erzeugte Gase (Wasserstoff, Methan) haben das Potenzial, das Stromnetz auf zwei Arten auszugleichen: Ausgleich von Angebot und Nachfrage („intelligentes Netz“) und Ausgleich durch physische Speicherung. Das Smart Grid, ein intelligentes Stromnetz, in dem Produktion und Verbrauch zentral verwaltet werden, bietet Elektrolyse-Technologien eine bedeutende Chance als kurzfristiger „Pufferspeicher“ (Sekunden bis Minuten). Die Massenspeicherung von durch erneuerbare Energien erzeugten Gasen kann als langfristige Speicherlösung (Stunden, Tage, Wochen, Monate) dienen, um die Flexibilität in einem fossilfreien Energienetz aufrechtzuerhalten (Dänische Partnerschaft für Wasserstoff- und Brennstoffzellen).

Ohne das Wasserstoffszenario wird das Potenzial für wasserstoffbasierte Energiespeicher in Dänemark begrenzt sein. In ihrem Bericht „Potenzial von Wasserstoff in Energiesystemen“ aus dem Jahr 2016 kam die Power2Hydrogen-Arbeitsgruppe zu dem Schluß, daß:

  • Wasserstoffelektrolyseure würden keine wesentliche Verbesserung der Flexibilität für die Integration erneuerbarer Energien gegenüber dem heutigen ausreichend flexiblen System bewirken.
  • Bis zum Jahr 2035 wurde mit der Zunahme der Windproduktion der Schluss gezogen, dass Wasserstoffelektrolyseure tatsächlich die Systemflexibilität verbessern und eine noch umfassendere Penetration der Windenergie in das System ermöglichen würden.

Das Potenzial für durch erneuerbare Energien erzeugte Gase in Demark ist extrem hoch. Es ist sehr wahrscheinlich, dass Power-to-Gas-Systeme der Dreh- und Angelpunkt der Energiewende in Dänemark sein werden. Kurzfristig scheint es wenig Möglichkeiten zu geben, mittel- bis langfristig wird es jedoch umfangreiche Möglichkeiten geben, wenn sich die offizielle Energiewende auf das Wasserstoffszenario oder eine ähnliche Politik auf der Basis erneuerbarer Gase konzentriert.

(Jon Martin, 2019)

Veröffentlicht am

Richtlinien für einen globalen CO2-Haushalt

Zahlreiche Untersuchungen haben während des letzten Jahrzehnts gezeigt, daß die globale Erwärmung in etwa proportional zur CO2-Konzentration in unserer Atmosphäre ist. Auf diese Weise läßt sich unser verbleibende Kohlenstoffhaushalt abschätzen. Das ist die Gesamtmenge des vom Menschen produzierten Kohlendioxids, die noch in die Atmosphäre abgegeben werden kann, bevor ein festgelegter globaler Temperaturgrenzwert erreicht wird. Auf diesen Grenzwert haben sich die Nationen der Welt im Pariser Abkommen 2015 geeinigt. Er soll 1,5°C nicht überschreiten, und in jedem Fall weit unter 2,0°C liegen. Es wurden jedoch zahlreiche Schätzungen für das verbleibende CO2 gemacht, was sich negativ auf die politische Entscheidungsfindung auswirkt. Jetzt hat eine internationale Forschergruppe von ausgewiesenen Klimaexperten eine Richtlinie für die Errechnung des globalen CO2-Haushalts im renomierten Fachmagazin Nature veröffentlicht. Die Forscher schlagen vor, daß die Anwendung dieser Richtlinie dazu beitragen soll, die teils gravierenden Unterschiede bei der Abschätzung des CO2-Haushalts auszugleichen, und die Unsicherheiten in Forschung und Politik zu verringern.

Seit dem fünften Bericht des Zwischenstaatlichen Gremiums für Klimawandel (IPCC) hat das Konzept eines CO2-Haushalts als Instrument zur Ausrichtung der Klimapolitik an Bedeutung gewonnen. In einer Reihe von Studien aus den letzten zehn Jahren wurde geklärt, warum der Anstieg der globalen Durchschnittstemperatur in etwa proportional zur Gesamtmenge der CO2-Emissionen ist, die seit der industriellen Revolution durch menschliche Aktivitäten verursacht wurden. Dabei zitiert die Forschergruppe zahlreiche veröffentlichte Belege. Diese Literatur hat es Wissenschaftlern ermöglicht, den linearen Zusammenhang zwischen Erwärmung und CO2-Emissionen als transiente Klimareaktion auf kumulierte CO2-Emissionen (TCRE) zu definieren. Die Brillianz dieses Konzepts wird deutlich, die man erkennt, daß die Reaktion des komplexen Systems Erde auf unsere CO2-Emissionen durch eine ungefähr lineare Beziehung dargestellt werden kann. In jüngster Zeit wurden jedoch zusätzliche Prozesse, die die zukünftige Erwärmung beeinflussen, in Modelle einbezogen. Dabei handelt es sich z.B. um das Auftauen des arktischen Permafrosts. Diese zusätzlichen Prozesse erhöhen die Unsicherheit. Zudem wird die globale Erwärmung nicht nur durch CO2-Emissionen verursacht. Andere Treibhausgase, wie z.B. Methan, fluorierte Gase oder Lachgas, sowie Aerosole und deren Vorstufen beeinflussen die globalen Temperaturen. Dies verkompliziert die Beziehung zwischen zukünftigem CO2 weiter.

Bei der durch CO2 verursachten Klimaerwärmung trägt jede Tonne zur Erwärmung bei, egal ob diese Tonne CO2 heute, morgen oder in der Verganganheit ausgestoßen wurde. Dies bedeutet, daß die globalen CO2-Emissionen auf das Null gesenkt werden müssen, um dann dort zu bleiben. Das heißt auch, daß unsere Emissionen umso schneller sinken müssen, je mehr wir in den kommenden Jahren emittieren. Auf Nullemission würde sich die Erwärmung zwar stabilisieren, aber nicht verschwinden oder oder sich gar umgekehren. Eine Überziehung des CO2-Haushalts müßte also später wieder durch ein Entfernen des CO2s ausgeglichen werden.  So kann z.B. die Entfernung mit Hilfe von filtern geschehen, wie wir bereits berichteten. Schlußendlich wird dies wohl der einzig verbleibende Weg sein, denn die Durchdringung unserer Energiewirtschaft mit CO2-neutralen Quellen hat sich bei 5% stabilisiert. Die Aufstellung eines Kohlenstoffhaushalts macht die Dringlichkeit deutlich. Leider sind die Angaben über die uns verbleibende Menge CO2 weit gestreut. In ihrer Richtlinie zitieren die Forscher zahlreiche Studien zur Erhaltung des 1,5°C-Ziels, die von 0 Tonnen CO2 bis zu 1.000 Gigatonnen reichen. Für das 2,0°C-Ziel reicht die Spannweite von ca. 700 Gigatonnen bis hin zu fast 2.000 Gigatonnen verbleibende CO2-Emissionen. Das Ziel der Forscher ist es, diese Unsicherheit einzuschränken, in dem sie eine klare Richtlinie vorschlagen. Das zentrale Element dieser Richtlinie ist die Gleichung zur Berechnung des verbleibenden CO2-Haushaltsrahmens:

Blim = (TlimThistTnonCO2TZEC) / TCRE − EEsfb

Dieser Rahmen sind die verbleibenden CO2-Emissionen (Blim) für die spezifische Temperaturgrenze (Tlim) als Funktion von fünf Termen, die Aspekte des geophysikalischen und gekoppelten Mensch-Umwelt-Systems darstellen: die bisherige vom Menschen verursachte Erwärmung (Thist), der Nicht-CO2-Beitrag zum zukünftigen Temperaturanstieg (TnonCO2), die Nullemissionsfestlegung (TZEC), die TCRE und eine Anpassung für Quellen aus eventuellen Rückkopplungen mit nicht erfaßten geologischen Systemen (EEsfb).

Term

Bedeutung

Art

Derzeitiges Verständnis

Erwärmungsgrenze Tlim Wahl der Temperaturmetriken, mit denen die globale Erwärmung, die Wahl des vorindustriellen
Bezugszeitraums und die Übereinstimmung mit den globalen Klimazielen ausgedrückt werden
Wählbar Mittel bis hoch
Vergangene menschenverursachte Erwärmung Thist Unvollständige Erfassung in Beobachtungsdatensätzen und Methoden zur Abschätzung der vom Menschen verursachten Komponente; Siehe auch Tlim Unsicherheit Mittel bis hoch
Nicht-CO2 Erwärmung TnonCO2 Die Höhe der verschiedenen Nicht-CO2-Emissionen, die mit den weltweiten Netto-Null-CO2-Emissionen übereinstimmen, hängt von den politischen Entscheidungen, aber auch vom unsicheren Erfolg ihrer Umsetzung ab Wählbare Unsicherheit Mittel
Nicht-CO2 Erwärmung TnonCO2 Klimareaktion auf Nicht-CO2-Verusacher, insbesondere in Bezug auf die Aerosolrückgewinnung und  Temperaturreduzierung aufgrund geringerer Methanemissionen Unsicherheit Niedrig bis mittel
Nullemissionsverpflichtung TZEC Vorzeichen und Ausmaß der Nullemissionsverpflichtung in dekadischen Zeitskalen für aktuelle und nahezu Null jährliche CO2-Emissionen Unsicherheit Niedrig
Transiente Klimareaktion auf
kumulierte CO2-Emissionen
TCRE Verteilung der TCRE-Unsicherheit, Linearität der TCRE zur Erhöhung und Stabilisierung der kumulativen CO2-Emissionen und Auswirkung von Temperaturmetriken auf die TCRE-Schätzung Unsicherheit Niedrig bis mittel
Transiente Klimareaktion auf
kumulierte CO2-Emissionen
TCRE Über die Spitzenerwärmung hinausgehende Unsicherheit der Linearität, Wert und Verteilung der TCRE zur  Verringerung der kumulierten CO2-Emissionen Unsicherheit Niedrig
Rükkopplungen mit nicht erfaßten
geologischen Systemen
EEsfb Dauer und Ausmaß des Auftauens von Permafrost und der Methanfreisetzung aus Feuchtgebieten und deren Darstellung in Geomodellen sowie andere mögliche Arten von Rückkopplungen Unsicherheit Sehr niedrig

In dem CO2-Haushalt ist wohl die Rückkopplungen mit nicht erfaßten geologischen Systemen (EEsfb) die größte Unsicherheit. Diese Rückkopplungsprozesse sind typischerweise mit dem Auftauen von Permafrost und der damit verbundenen langfristigen Freisetzung von CO2 und CH4 verbunden. Es wurden jedoch auch andere Rückkopplungsquellen für das Geosystem identifiziert, wie z.B. die Änderungen der CO2-Aufnahme in der Vegetation und die damit verbundene Stickstoffverfügbarkeit. Weitere Rückkopplungsprozesse involvieren die Änderungen der Oberflächenalbedo, der Wolkendecke oder von Brandbedingungen.

Es bleibt es eine Herausforderung, die Unsicherheiten im Zusammenhang mit den Schätzungen des CO2-Haushalt angemessen zu charakterisieren. In einigen Fällen ist die Ursache der Unsicherheiten ungenaue Kenntnis der zugrunde liegenden Prozesse oder mangelnde Genauigkeit der Messungen. In anderen Fällen werden Begriffe nicht einheitlich verwendet. Für eine bessere Vergleichbarkeit und Flexibilität schlagen die Forscher vor, die globalen Werte der Oberflächenlufttemperatur routinemäßig zu messen. Diese Methode liefert unveränderliche Zahlen für Modelle, Modellabläufe über gewählte Zeiträume hinweg. Detailliertere Vergleiche zwischen veröffentlichten Schätzungen den CO2-Haushalt sind derzeit schwierig, da oft die Originaldaten aus den ursprünglichen Studien fehlen. Die Forscher schlagen daher vor, diese zukünftig zusammen mit den Publikationen bereitzustellen.

Die Zerlegung des CO2-Haushalts in seine Einzelfaktoren ermöglicht es, eine Reihe vielversprechender Wege für die zukünftige Forschung zu identifizieren. Ein Forschungsbereich, der dieses Feld voranbringen könnte, ist die nähere Betrachtung der TCRE. Zukünftige Forschungen werden voraussichtlich die Bandbreite der TCRE-Schätzungen einschränken, was die Unsicherheit verringern wird. Ein weiteres vielversprechendes Forschungsgebiet ist die Untersuchung der Wechselbeziehung zwischen Einzelfaktoren und ihren verbunden Unsicherheiten, beispielsweise zwischen Unsicherheiten in Thist und TnonCO2. Dies könnte durch die Entwicklung von Methoden erreicht werden, die eine zuverlässige Abschätzung der vom Menschen verursachten Erwärmung in jüngerer Zeit ermöglichen. Klar ist auch, daß weniger komplexe Klimamodelle nützlich sind, um die Unsicherheiten weiter zu reduzieren. Gegenwärtig weist jeder Faktor des vorgestellten Rahmens seine eigenen Unsicherheiten auf, und es fehlt eine Methode, um diese Unsicherheiten formal zu kombinieren.

Auch bei Frontis Energy denken wir, daß Fortschritte in diesen Bereiche unser Verständnis bei der Schätzungen des CO2-Haushalts verbessern würde. Ein systematisches Verständnis des CO2-Haushalts und ist für eine wirksame Zielsetzung und die Kommunikation der Herausforderungen beim Klimaschutze von entscheidender Bedeutung.

Veröffentlicht am

Ammoniak als Energiespeicher #2

Kürzlich berichteten wir an dieser Stelle über Pläne australischer Unternehmer und ihrer Regierung, Ammoniak (NH3) als Energiespeicher für überschüssige Windenergie zu benutzen. Wir schlugen vor, Ammoniak und CO2 aus Abwasser in Methangas (CH4) umzuwandeln, da dieses stabiler und leichter zu transportieren ist. Das Verfahren folgt der chemischen Gleichung:

8 NH3 + 3 CO2 → 4 N2 + 3 CH4 + 6 H2O

Jetzt haben wir dazu einen wissenschaftlichen Artikel im Onlinemagazin Frontiers in Energy Research veröffentlicht. Darin zeigen wir zunächst, daß der Prozess thermodynamisch möglich ist, und zwar indem methanogene Mikroben den durch Elektrolyse gebildeten Wasserstoff (H2) aus dem Reaktiongleichgewicht entfernen. Dadurch nähern sich die Redoxpotentiale der oxidativen (N2/NH3) und der reduktiven Halbreaktionen (CO2/CH4) so weit an, daß der Prozess spontan ablaufen kann. Er benötigt nur noch einen Katalysator, der in Form von Mikroben aus dem Abwasser gewonnen wird.

Pourbaix-Diagramm der Ammoniumoxidation, Wasserstoffbildung und CO2-Reduktion. Ab pH 7 wird die an Methanogenese gekoppelte Ammoniumoxidation thermodynamisch möglich.

Dazu haben wir zunächst nach entsprechenden Mikroben gesucht. Für unsere Experimente in mikrobiellen Elektrolysezellen haben wir Mikroorganismen aus Sedimenten des Atlantischen Ozeans vor Namibia als Impfmaterial benutzt. Meeressedimente sind besonders geeignet, da diese vergleichsweise reich an Ammoniak, frei von Sauerstoff (O2) und relativ arm an organischem Kohlenstoff sind. Der Ausschluß von Sauerstoff is wichtig, da dieser normalerweise als Oxidationsmittel zur Entfernung von Ammoniak dient:

2 NH3+ + 3 O2 → 2 NO2 + 2 H+ + 2 H2O

Der Prozess ist auch als Nitrifikation bekannt und hätte eine Art elektrochemischen Kurzschluß bewirkt, da dabei die Elektronen vom Ammoniak direkt auf den Sauerstoff übertragen werden. Dadurch wäre die Anode (die positive Elektronen-akzeptierende Elektrode) umgangen worden und die Energie des Ammoniaks wäre dann im Wasser gespeichert. Die anodische Wasseroxidation verbraucht aber viel mehr Energie, als die Oxidation von Ammoniak. Zudem sind Edelmetalle zur Wasseroxidation notwendig. Ohne Sauerstoff an der Anode zu produzieren, konnten wir zeigen, daß die Oxidation von Ammonium (die gelöste Form des Ammoniaks) an die Produktion von Wasserstoff gekoppelt ist.

Oxidation von Ammonium zu Stickstoffgas ist gekoppelt an Wasserstoffproduktion in mikrobiellen Elektrolysereaktoren. Die angelegten Potentiale sind +550 mV bis +150 mV

Dabei war es wichtig, daß das elektrochemische Potential an der Anode negativer, als die +820 mV der Wasseroxidation waren. Zu diesem Zweck haben wir einen Potentiostat benutzt, der das elektrochemische Potential konstant zwischen +550 mV und +150 mV hielt. Bei all diesen Potentialen wurde an der Anode N2 und an der Kathode H2 produziert. Da die einzige Elektronenquelle in der Anodenkammer Ammonium war, konnten die Elektronen zur Wasserstoffproduktion also nur von der Ammoniumoxidation stammen. Zudem war Ammonium auch die einzige Stickstoffquelle für die Produktion von N2. Demzufolge ware die Prozesse also gekoppelt.

Im darauffolgenden Schritt wollten wir zeigen, daß dieser Prozess auch eine nützliche Anwendung hat. Stickstoffverbindungen kommen oft in Abwässern vor. Sie bestehen vorwiegend aus Ammonium. Es finden sich aber auch Medikamente und deren Abbauprodukte darunter. Gleichzeitig werden 1-2% der weltweit produzierten Energie im Haber-Bosch-Prozess verbraucht. Im Haber-Bosch-Prozess wird N2 der Luft entnommen, um Stickstoffdünger herzustellen. Weitere 3% unserer produzierten Energie werden dann verwendet, den so gewonnen Stickstoff wieder aus dem Abwasser zu entfernen. Diese sinnlose Energieverschwendung erzeugt 5% unserer Treibhausgase. Dabei könnte Abwasser sogar eine Energiequelle sein⁠. Tatsächlich wird ein kleiner Teil seiner Energie schon seit mehr als einem Jahrhundert als Biogas zurückgewonnen. Während der Biogasgewinnung wird organisches Material aus Klärschlamm durch mikrobiellen Gemeinschaften zersetzt und in Methan umgewandelt:

H3C−COO + H+ + H2O → CH4 + HCO3 + H+; ∆G°’ = −31 kJ/mol (CH4)

Die Reaktion erzeugt CO2 und Methan im Verhältnis von 1:1. Das CO2 im Biogas macht es nahazu wertlos. Folglich wird Biogas häufig abgeflammt. Die Entfernung von CO2 würde das Produkt enorm aufwerten und kann durch Auswaschen erreicht werden. Auch stärker reduzierte Kohlenstoffquellen können das Verhältnis vom CO2 zum CH4 verschieben. Dennoch bliebe CO2 im Biogas. Durch die Zugabe von Wasserstoff in Faultürme würde dieses Problem gelöst. Der Prozess wird als Biogasaufbereitung bezeichnet. Wasserstoff könnte durch Elektrolyse erzeugt werden:

2 H2O → 2 H2 + O2; ∆G°’ = +237 kJ/mol (H2)

Dafür wären aber, wie schon eingangs erläutert, teure Katalysatoren notwendig und der Energieverbrauch wäre höher. Der Grund ist, daß die Elektrolyse von Wasser in bei einer hohen Spannung von 1,23 V stattfindet. Eine Möglichkeit, dies zu umgehen, bestünde darin, das Wasser durch Ammonium zu ersetzen:

2 NH4+ → N2 + 2 H+ + 3 H2; ∆G°’ = +40 kJ/mol (H2)

Mit Ammonium erfolgt die Reaktion bei nur 136 mV wodurch man entsprechend viel Energie einsparen könnte. Mit geeigneten Katalysatoren könnte somit Ammonium als Reduktionsmittel für die Wasserstoffproduktion dienen. Mikroorganismen im Abwasser können solche Katalysatoren sein. Unter Auschluß von Sauerstoff werden Methanogene im Abwasser aktiv und verbrauchen den produzierten Wasserstoff:

4 H2 + HCO3 + H+ → CH4 + 3 H2O; ∆G°’ = –34 kJ/mol (H2)

Die methanogene Reaktion hält die Wasserstoffkonzentration so niedrig (üblicherweise unter 10 Pa), daß die Ammoniumoxidation spontan, also mit Energiegewinn abläuft:

8 NH4+ + 3 HCO3 → 4 N2 + 3 CH4 + 5 H+ + 9 H2O; ∆G°’ = −30 kJ/mol (CH4)

Genau dies ist die eingangs beschriebene Reaktion. Bioelektrische Methanogene wachsen an der Kathode und gehören zur Gattung Methanobacterium. Angehörige dieser Gattung sind besonders auf niedrige H2-Konzentrationen spezialisiert.

Der geringe Energiegewinn ist auf die geringe Potentialdifferenz von Eh = +33 mV der CO2-Reduktion gegenüber der Ammoniumoxidation zurückzuführen (siehe Pourbaix-Diagramm oben). Es reicht kaum aus, um die notwendige Energie von ∆G°’= +31 kJ/mol für die ADP-Phosphorylierung bereitzustellen. Darüber hinaus ist die Stickstoffbindungsenergie von Natur aus hoch, was starke Oxidationsmittel wie O2 (Nitrifikation) oder Nitrit (Anammox) erfordert.

Anstelle starker Oxidationsmittel kann eine Anode z.B. bei +500 mV die Aktivierungsenergie für die Ammoniumoxidation bereitgestellen. Allzu positive Redoxpotentiale treten jedoch in anaeroben Umgebungen natürlich nicht auf. Daher haben wir getestet ob die Ammoniumoxidation an die hydrogenotrophe Methanogenese gekoppelt werden kann, indem ein positives Elektrodenpotential ohne O2 angeboten wird. Tatsächlich konnten wir dies in unserem Artikel nachweisen und haben das Verfahren zum Patent angemeldet. Mit unserem Verfahren könnte man z.B. Ammonium profitabel aus Industrieabwässern entfernen. Er ist auch zur Energiespeicherung geeignet, wenn man z.B. Ammoniak mithilfe überschüssiger Windenergie synthetisiert.