Veröffentlicht am

Gastrennung mit feuchtigkeitsbeständiger Verbundmembran

Wasserstoff (H2) ist ein leichter alternativer Kraftstoff mit hoher Energiedichte. Seine Effizienz in Bezug auf Umwelt und Wirtschaftlichkeit haengen jedoch stark von der Art der Erzeugung ab. Die Hauptprozesse der Wasserstofferzeugung sind entweder Kohlevergasung oder Dampfreformierung von Erdgas, bei denen das erzeugte Kohlendioxid (CO2) im letzten Schritt erzeugt wird. Normalerweise wird dieses CO2 in die Umwelt abgegeben. Der so erzeugte Wasserstoff basiert auf fossilen Brennstoffen und wird daher nicht als grüner Wasserstoff bezeichnet. Um den CO2-Fußabdruck zu verringern, ist das Abfangen des entstandenen CO2 erforderlich. Um jedoch grünen Wasserstoff zu erhalten, ist die Elektrolyse von Wasser mit erneuerbarer Energie erforderlich, wenngleich auch erneuerbare Energie nicht komplett CO2-frei erzeugt wird. Während des Elektrolyseverfahrens werden Wasserstoff und Sauerstoff an zwei Elektroden erzeugt (Sie können Brennstoffzellen-Handbuch herunterladen, um mehr ueber den Nutzen und den Einsatz von Wasserstoff als Energietraeger zu erfahren).

Effizientere Gasabtrennungsprozesse verbessern die Klimabilanz

Der produzierte Wasserstoff ist in keinem der genannten Fälle rein. Beispielsweise gibt es mit der Dampfmethan-Reformierungsreaktion viele Nebenproduktgase wie Kohlenmonoxid, CO2, Wasser, Stickstoff und Methangas.

Typischerweise ist der CO2-Gehalt des Wasserstoffgases bis zu 50%. Dadurch trägt die Wasserstoffproduktion zum Treibhauseffekt bei. Derzeit stammen rund 80% der CO2-Emissionen von fossilen Brennstoffen. Es wurde vorhergesagt, daß die CO2-Konzentration in der Atmosphäre im Jahr 2100 bis zu 570 ppm betragen könnte, was die globale Temperatur um etwa 1,9°C erhöhen würde.

Die traditionellen Prozesse der Gastrennung wie die Kältedestillation und Druckwechsel-Adsorption haben bestimmte Nachteile, wie z.B. einen hohen Energieverbrauch. Die Entwicklung hochwertiger und kostengünstiger Technologien zur Gastrennung ist daher ein wichtiger Zwischenschritt, um billige Wasserstoff herzustellen und gleichzeitig die CO2-Emissionen zu reduzieren.

2D-Materialien zur Gastrennung

Die Suche nach kostengünstigen alternativen Membran-Trennungsmethoden für die Wasserstoff-CO2-Trennung ist eine potenziell lukrative Forschung. Daher überrascht es nicht, daß zahlreiche Publikationen dieses Thema zum Gegenstand haben. Die verschiedenen Membranmaterialien zur Gastrennung sind z.B. Polymermembranen, nanoporösen Materialien, metallorganischen Mischverbindungen und Zeolith-Membranen. Ziel ist es, ein gutes Gleichgewicht zwischen Selektivität und Durchlässigkeit der Gastrennung zu erreichen. Beide sind wichtige Parameter für die Wasserstoffreinigung und CO2-Abscheidungsverfahren.

Eine im Fachblatt Nature Energy von Forschern des Nationalen Forschungsinstituts von Japan veröffentlichte Studie beschreibt nun eine Materialplattform als Basis für die Trennung von Wasserstoff aus feuchten Gasgemischen. Wie eingangs beschrieben kommen diese beispielsweise in Gasen aus fossile Brennstoffquellen oder der Wasserelektrolyse vor. Die Autoren zeigten, daß der Einbau von positiv geladenen Nanodiamanten in Graphenoxid (GO / ND+) zur Herstellung feuchtigkeitsabweisender Hochleistungsmembranen geeignet ist. Die Leistung der GO / ND+-Laminate zeichnete sich im Vergleich zu herkömmlichen Membranmaterialien insbesondere bei der Wasserstofftrennung aus.

Leistung neuer Membranmaterialien

Graphenoxidlaminate werden als wichtiger Schritt für die Wasserstoff-CO2-Trennung betrachtet. Sie gelten als hochdurchlässige (dreistellige Durchlässigkeit) und gleichzeitig hochselektive Membranen. Dennoch verlieren Graphenoxidfilme ihre attraktiven Trenneigenschaften und Stabilität unter Feuchtigkeit.

Nach dem Laminieren sind Graphenoxidverbindungen üblicherweise negativ geladen.  Sie können aufgrund elektrostatischer Abstoßung in feuchter Umgebung zerfallen. Um diese zu verhindern, griffen die Forscher auf das Ladungskompensationsprinzip zurück. Das heißt, die Autoren haben positiv und negativ geladene Füllstoffe als Stabilisierungsmittel eingebaut und die Membran mit unterschiedlich großen Graphenoxidflocken getestet. Diese Membranen wurden in trockener oder feuchter Umgebung auf Stabilität getestet. Gleich wurden die Trenneigenschaften Wasserstoff von CO2 oder Sauerstoff ermittelt.

/Die GO / ND+ Verbundmembranen behielten bis zu 90% ihrer Wasserstoffselektivität gegen CO2-Exposition über mehreren Zyklen und bei hoher Feuchtigkeit. Eine GO30ND+ Membran mit 30% positiv aufgeladenen Nanodiamanten war außergewöhnlich gut durchlässig für Wasserstoff mit mehr als 3.700 Gaspermeatineinheiten (GPU) bei gleichzeitig hoher Wasserstoff-CO2-Selektivität. Der Einbau von negativ geladenen Nanodiamanten hatte dagegen keine stabilisierende Wirkung. Der Forscher vermuteten große Hohlräume in den Nanodiamant-Systemen, die zum Verlust der Selektivität führen. Dieses Phänomen ist nicht ungewöhnlich in Verbundmembranen auf Polymerbasis, da dieselben durch ungünstige Grenzflächenwechselwirkungen charakterisiert sind.

Die Gastrenneigenschaften der Verbundmembranen wurden auch unter Verwendung eines äquimolaren Wasserstoff-CO2-Gemischs untersucht. Die Wasserstoffdurchlässigkeit sank um 6% und die Wasserstoff-CO2-Selektivität der GO30ND+-Membran wurde um 13% reduziert.

Der Stabilitätstest der Membranen mit nassen oder trockenen Wasserstoff-CO2 bzw. der Wasserstoff-Sauerstoff-Mischungen zeigte, daß die GO/ND+-Membranen umkehrbare Membraneigenschaften besaßen. Auf der anderen Seite überstanden reine Graphenoxidmembranen nicht einen einzigen vollständigen Zyklus. Dadurch wurden sie für beide Gase komplett durchlässig. Die Forscher erklärten das damit, daß die Vorteile von GO/ND+ Membranen verglichen mit reinen Graphenoxidmembranen durch Veränderungen der Porenstruktur wie deren Ausdehnung und Tortuosität verursacht wurden. Beide Eigenschaften können durch die Optimierung der Nanodiamantbeladung verbessert werden. Dies führt zu einer besseren Permeabilität ohne einen bemerkenswerten Verlust an Selektivität.

Die Röntgenbeugungsanalyse machte den Einbau der Nanodiamanten und ihrer Auswirkungen auf die Membranmikrostruktur deutlich. Das gesamten Porenvolumen war vergrößert, bei gleichzeitiger Reduzierung der durchschnittlichen lateralen Größe. Beides macht die Membranstruktur für den molekularen Transport besser zugänglich.

Dennoch müssen diese neuen feuchtigkeitsresistenten Membranen weiter verbessert werden, um mit heutigen industriellen Trennprozessen zu konkurrieren.

Image: Pixabay / seagul

Veröffentlicht am

Grüner Wasserstoff produziert mit Sonnenlicht und Nanopartikeln

Der Energiebedarf steigt und der Rohstoff für die Wirtschaft mit fossilen Brennstoffen nimmt ab. Darüber hinaus verschlechtert die Emission von Gasen aus dem Verbrauch fossiler Brennstoffe die Luftqualität erheblich. Die aus diesen fossilen Brennstoffen erzeugten Kohlenstoffnebenprodukte beeinflussen das Klima erheblich.

Daher besteht die Notwendigkeit, eine erneuerbare Energiequelle zu finden, die je nach Anforderung leicht hergestellt, gespeichert und verwendet werden kann. Wasserstoff kann eine vielversprechende Energieressource sein, da er eine reichlich verfügbare, ungiftige Ressource ist und leicht zum Speichern überschüssiger elektrischer Energie verwendet werden kann.

Wasserstoff erzeugt in Kombination mit Sauerstoff in einer Brennstoffzelle Strom und die Nebenprodukte sind Wasser und Wärme. Basierend auf der Methode zur Herstellung von Wasserstoff wird es in blauen Wasserstoff und grünen Wasserstoff eingeteilt. Blauer Wasserstoff wird aus fossilen Brennstoffen wie Methan, Benzin und Kohle hergestellt, während grüner Wasserstoff aus nicht fossilen Brennstoffen / Wasser erzeugt wird. Der sauberste Weg zur Herstellung von umweltfreundlichem Wasserstoff ist die Elektrolyse von Wasser, bei der Wasser elektrolysiert wird, um Wasserstoff und Sauerstoff zu trennen. Erneuerbare Energie kann als Leistungselektrolyseur zur Erzeugung von Wasserstoff aus Wasser verwendet werden. Die solarbetriebene photoelektrochemische Wasserspaltung ist eine der gängigen Methoden. Bei der photoelektrochemischen Wasserspaltung wird Wasserstoff aus Wasser unter Verwendung von Sonnenlicht erzeugt.

PEC-Zellen bestehen aus einer funktionierenden Photoelektrode und einer Gegenelektrode. Die Photoelektrode besteht aus Halbleitermaterial mit einer Bandlücke, um Sonnenlicht zu absorbieren und ein Elektron-Loch-Paar zu erzeugen. Die durch Licht erzeugten Ladungen sind für die Oxidation von Wasser und dessen Reduktion zu Wasserstoff verantwortlich. Die PEC leiden unter Geräten mit geringer Stabilität und Effizienz.

Das Forschungsteam des Instituts National de la Recherche Scientifique (INRS) hat zusammen mit Forschern des Instituts für Chemie und Prozesse für Energie, Umwelt und Gesundheit (ICPEES), einem gemeinsamen Forschungslabor der CNRS-Universität Straßburg, einen Weg zur signifikanten Verbesserung des Effizienz der Wasserdissoziation zur Erzeugung von Wasserstoff durch Entwicklung lichtempfindlicher nanostrukturierter Elektroden im Sonnenlicht.

Eine Vergleichsstudie zwischen Kobalt- und Nickeloxid-Nanopartikeln, die auf durch Anodisierung hergestellten TiO2-Nanoröhren abgeschieden wurden, wurde durchgeführt. Die TiO2-Nanoröhren wurden mit CoO- (Kobaltoxid) und NiO- (Nickeloxid) -Nanopartikeln unter Verwendung des reaktiven Pulslaser-Abscheidungsverfahrens dekoriert. Die Oberflächenbeladungen von CoO- oder NiO-Nanopartikeln wurden durch die Anzahl der Laserablationsimpulse gesteuert. Die Effizienz von CoO- und NiO-Nanopartikeln als Cokatalysatoren für die photoelektrochemische Wasserspaltung wurde durch Cyclovoltammetrie sowohl unter simuliertem Sonnenlicht als auch unter Beleuchtung mit sichtbarem Licht und durch externe Quanteneffizienzmessungen untersucht

Die gesamte Forschungsarbeit wurde in folgenden Schritten durchgeführt:

Schritte zur Verbesserung der Effizienz der Wasserstoffproduktion
Schritte zur Verbesserung der Effizienz der Wasserstoffproduktion

(Quelle: Favet et al., Solar Energy Materials and Solar Cells, 2020)

In dieser Studie wurden Kobalt (CoO) – und Nickel (NiO) -Oxide als wirksame Cokatalysatoren für die Spaltung von Wassermolekülen angesehen. Beide Cokatalysatoren verbesserten die photoelektrochemische Umwandlung von Photonen aus ultraviolettem und sichtbarem Licht.

Es wurde jedoch festgestellt, dass CoO-Nanopartikel unter Beleuchtung mit sichtbarem Licht der beste Cokatalysator sind, wobei die Photoumwandlungseffizienz fast zehnmal höher ist als bei TiO2. Die Leistung von CoO-Nanopartikeln wurde im sichtbaren Spektralbereich (λ> 400 nm) verbessert. Der mögliche Grund kann eine Folge ihrer sichtbaren Bandlücke sein, die es ihnen ermöglicht, mehr Photonen im Bereich von 400 bis 500 nm zu gewinnen und die durch Licht erzeugten Elektronen effektiv auf TiO2-Nanoröhren zu übertragen.

Bei Frontis Energy sind wir von dieser neuen Entdeckung zur Verbesserung der Wasserstoffproduktion aus Sonnenlicht begeistert und hoffen, bald eine industrielle Anwendung zu sehen.

(Bild: Engineersforum)

(Quelle: Favet et al., Solar Energy Materials and Solar Cells, 2020)

Veröffentlicht am

CO2-neutraler Straßenverkehr

Fossile Brennstoffe haben enorme soziale und wirtschaftliche Fortschritte bewirkt. Das wird unter anderem deutlich, wenn man die Zunahme des Straßenverkehrs betrachtet.  2019 wurden rund 90 Millionen Fahrzeuge produziert. Im Jahr 2000 waren es noch 60 Millionen. Es wird angenommen, daß die Anzahl der bis 2030 produzierten Fahrzeuge auf 120 Millionen anwachsen wird. Der Zugewinn an Straßenmobilität hat zweifellos positiven Einfluß auf die soziale Mobilität und das wirtschaftliche Wachstum.  Damit wird die Verkehrszunahme allerdings auch zu einem sich selbst beschleunigendem Prozess. Das Wirtschaftswachstum in den Brics-Ländern (Brasilien, Russland, Indien, China und Südafrika) ist in dieser Hinsicht besonders entscheidend. Gleichzeitig wird erwartet, daß der Anteil der Elektrofahrzeuge inklusive der Hybride ebenfalls stark zunehmen wird. Ob dies jedoch angesichts der begrenzten Lithiumvorräte realistisch ist, kann wiederum bezweifelt werden.

Im Jahr 2010 waren weltweit mehr als 1 Milliarden Autos zugelassen. Mit einer jähr;ichen Zunahme von zirka 3% waren es in Jahr 2019 schon 1,3 Milliarden. Diese emittieren jährlich rund 6,0 ​​Milliarden Tonnen CO2 (von insgesamt 33 Milliarden Tonnen weltweit) und sind damit die größte zunehmende CO2-Quelle. Die energiegebundenen CO2-Emissionen steigen generell weiter, wenngleich dieser Anstieg durch die globale Gesundheitskrise des Jahres 2020 kurz unterbrochen wurde. Hinzu kommen 20 bis 30% der Emissionen aus der Herstellung von Kraftstoffen sowie der Herstellung und Entsorgung von Fahrzeugen.

Lebenszyklusanalysen von Fahrzeugen mit unterschiedlichen Antriebskonzepten sind Gegenstand vieler Studien. Bei den CO2-Emissionen ist die Energiequelle entscheidend. Zwei Hauptentwicklungen werden heute diskutiert: die Elektrifizierung des Antriebssystems (d.h. voll und teilweise elektrifizierte Fahrzeuge) und die Elektrifizierung von Kraftstoffen (d.h. Wasserstoff und synthetische Kraftstoffe).

Bei der Herstellung synthetischer Brennstoffe wird Wasser durch Elektrolyse mit erneuerbarem Strom in Sauerstoff und Wasserstoff zerlegt. Aufgrund des zeitweisen Überangebots von erneuerbaren Strom ist diese Energie besonders günstig. Der Wasserstoff kann dann in Wasserstoffahrzeugen mit Brennstoffzellenantrieb verwendet werden. Alternativ kann CO2 mit Wasserstoff in Kohlenwasserstoffe umgewandelt und dann in herkömmlichen  Verbrennungsmotoren klimaneutral eingesetzt werden. Der Vorteil von Brennstoffzellenfahrzeugen ist deren hoher Wirkungsgrad und die niedrigen Kosten der Elektrolyse. Der Nachteil ist die fehlende Wasserstoffinfrastruktur. Eine Umrüstung von Kohlenwasserstoff auf Wasserstoff würde Billionen kosten. Die kostengüntigere Alternative wären synthetischer Kohlenwasserstoffe. Die Entwicklung steckt allerdings noch in den Kinderschuhen und die Herstellung synthetischer Kraftstoffe kann noch nicht im großen Maßstob durchgeführt werden.

Wasserstoff und synthetische Kraftstoffe sind eine notwendige Ergänzung zur Elektromobilität, insbesondere für den Fern- und Lastentransport. Die weit verbreitete Ansicht, daß der geringe Wirkungsgrad von Verbrennungsmotoren diese Kraftstoffe uninteressant macht, ignoriert die Möglichkeit, mit ihnen Energie zu speichern, zu transportieren, sowie für den Flug- und Schiffsverkehr Klimaneutralität zu ermöglichen. Wenn man die CO2-Emissionen von Elektromotoren und elektrifizierten Kraftstoffen vergleicht, wird deutlich, daß diese hauptsächlich von der CO2-Belastung des verwendeten Stroms abhängen.

Synthetische Kraftstoffquellen

Die Herstellung von synthetischem Kraftstoff erfordert erneuerbaren Strom, Wasser und CO2. Zwar sind die technischen Abläufe sind bekannt. Die ersten industriellen Großanlagen sind allerdings erst in der Planungsphase. Pilotprojekte, wie das der kanadischen Firma Carbon Engineering haben jedoch die technische machbarkeit der Skalierung gezeigt. Die Erzeugungskosten hängen hauptsächlich von der Größe der Anlage und dem Strompreis ab, der sich aus den örtlichen Bedingungen, der Gestaltung des Strommarkts und dem Anteil erneuerbaren Stroms ergibt.

Die dezentrale Herstellung dieser Kraftstoffe bringt neben der Klimaneutralität auch einen geopolitischen Zugewinn. Da CO2 und erneuerbare Energie − im Gegensatz zu Lithium − allgemein zugängliche Resourcen sind, werden die Nutzer dieser Technologie unabhängig von Energieimporten. Bei Frontis Energy denken wir, daß dies starke Argumente für synthetische Kraftstoffe sind.

(Photo: Pixabay / BarbeeAnne)

Veröffentlicht am

Schneller photoelektrischer Wasserstoff

Das Erreichen hoher Stromdichten bei gleichzeitig hoher Energieeffizienz ist eine der größten Herausforderungen bei der Verbesserung photoelektrochemischer Geräte. Höhere Stromdichten beschleunigen die Erzeugung von Wasserstoff und anderer elektrochemischer Brennstoffe.

Jetzt wurde ein kompaktes solarbetriebenes Gerät zur Wasserstofferzeugung entwickelt, das den Brennstoff in Rekordgeschwindigkeit erzeugt. Die Autoren um Saurabh Tembhurne beschreiben ein Konzept im Fachblatt Nature Energy, das es ermöglicht, konzentrierte Sonneneinstrahlung (bis zu 474 kW/m²) durch thermische Integration, Stofftransportoptimierung und bessere Elektronik zwischen Photoabsorber und Elektrokatalysator zu verwenden.

Die Forschungsgruppe der Eidgenössischen Technischen Hochschule in Lausanne (EPFL) errechnete die Zunahme der maximalen Wirkungsgrade, die theoretisch möglich sind. Danach überprüften sie die errechneten Werte experimentell unter Verwendung eines Photoabsorbers und eines Elektrokatalysators auf Iridium-Rutheniumoxid-Platin-Basis. Der Elektrokatalysator erreichte eine Stromdichte von mehr als 0,88 A/cm², wobei der erechneten Wirkungsgrad für die Umwandlung von Sonnenenenergie in Wasserstof mehr als 15% betrug. Das System war unter verschiedenen Bedingungen für mehr als zwei Stunden stabil. Als nächtes wollen die Forscher ihr System skalieren.

Der produzierte Wasserstoff kann in Brennstoffzellen zur Stromerzeugung verwendet werden weshalb sich das entwickelte System zur Energierspeicherung eignet. Die mit Wasserstoff betriebene Stromerzeugung gibt nur reines Wasser ab, die saubere und schnelle Erzeugung von Wasserstoff ist jedoch eine Herausforderung. Bei der photoelektrischen Methode werden Materialien verwendet, die denen von Solarmodulen ähneln. Die Elektrolyte basierten in dem neuen System auf Wasser, wobei auch Ammoniak denkbar wäre. Sonnenlicht, das auf diese Materialien fällt, löst eine Reaktion aus, bei der Wasser in Sauerstoff und Wasserstoff gespalten wird. Bisher konnten alle photoelektrischen Methoden jedoch nicht im industriellen Maßstab eingesetzt werden.

2 H2O → 2 H2 + O2; ∆G°’ = +237 kJ/mol (H2)

Das neu entwickelte System nahm mehr als das 400-fachen der Sonnenenergie auf, die normalerweise auf eine bestimmte Erdoberfläche fällt. Dazu benutzten die Forscher Hochleistungslampen, um die notwendige „Sonnenenergie“ bereitzustellen. Bestehende Solaranlagen konzentrieren die Sonnenenergie mithilfe von Spiegeln oder Linsen in ähnlichem Maße. Die Abwärme wird verwendet, um die Reaktionsgeschwindigkeit zu erhöhen.

Das Team sagt voraus, daß das Testgerät mit einer Grundfläche von etwa 5 cm in sechs Sonnenstunden schätzungsweise 47 Liter Wasserstoffgas produzieren kann. Dies ist die höchste Rate pro Flächeneinheit für solche solarbetriebenen elektrochemischen Systeme. Bei Frontis Energy hoffen wir, dieses System schon bald testen und anbieten zu können.

(Foto: Wikipedia)

Veröffentlicht am

Flüssigbrennstoff aus bio-elektrischen Reaktoren

Bei Frontis Energy haben wir viel darüber nachgedacht, wie man CO2 wiederverwerten kann. Während hochwertige Produkte wie Polymere für medizinische Anwendungen rentabler sind, ist die Nachfrage nach solchen Produkten zu gering, um CO2 in großen Mengen wiederzuverwertten. Das ist aber nötig, um die CO2-Konsentration unserer Atmosphäre auf ein vorindustrielles Niveau zu bringen. Biokraftstoffe, zum Beispiel aus Biomasse, wurden seit langem als Lösung vorgeschlagen. Leider benötigt Biomasse sie zu viel Ackerland. Zudem ist die zugrundeliegende Biochemie zu komplex, um sie in Ihrer Gesamtheit zu verstehen und so effektive Lösungen zu implementieren. Daher schlagen wir einen anderen Weg vor, um das Ziel der Dekarbonisierung unseres Planeten schnell zu erreichen. Das vorgeschlagene Verfahren beginnt mit einem gewünschten Zielkraftstoff und schlägt eine mikrobielle Vergesellschaftung vor, um diesen Kraftstoff herzustellen. In einem zweiten Schritt wird das mikrobielle Konsortium in einem bioelektrischen Reaktor (BER) untersucht.

Mögliche Biosynthesewege zur elektrosynthetischen Kraftstoffgewinnung. CO2 kann für die Herstellung von Flüssigbrennstoff auf mehreren Wegen verwendet werden. Das Endprodukt, langkettige Alkohole, kann entweder direkt als Brennstoff verwendet oder zu Kohlenwasserstoffen reduziert werden. Es werden Beispiele für Bioelektrokraftstoff-Pfade gezeigt, bei denen CO2 und Strom als Ausgangsmaterial verwendet werde. Methan, Acetat oder Butanol sind die Endprodukte. Nachfolgende Verfahren sind 1, aerobe Methanoxidation, 2, direkte Verwendung von Methan, 3 heterotrophe Phototrophen, 4, Aceton-Butanol-Gärung, 5, Biomassegewinnung, 6, Butanol als direktes Endprodukt, 7, weitere Vergärung durch Hefen zu Fuselalkoholen

Unser heutiges atmosphärische CO2-Ungleichgewicht ist die direkte Folge der Verbrennung fossiler Kohlenstoffe. Diese Realität erfordert schnelle und pragmatische Lösungen, um einen weitere CO2-Anstieg zu verhindern. Die direkte Abscheidung von CO2 aus der Luft ist schon bald rentabel. Dadurch wird die Nutzung von Ackerland für den Anbau von Treibstoff verhindert. Die Herstellung von Kraftstoff für Verbrennungsmotoren mit CO2 also Ausgangsmaterial ist kurzfristig die beste Zwischenlösung, da sich dieser Kraftstoff nahtlos in die vorhandene städtische Infrastruktur integriert. Biokraftstoffe wurden in den letzten Jahren intensiv erforscht, insbesondere auf dem neuen Gebiet der synthetischen Biologie. So verführerisch die Anwendung gentechnisch veränderter Organismen (GVO) zu sein scheint, so sind doch traditionell gezüchtete mikrobielle Stämme bereits vorhanden und somit sofort verfügbar. Unter Vermeidung von GVO, wird CO2 bereits heute in BER zur Herstellung von C1-Kraftstoffen wie Methan verwendet. BER können auch zur Herstellung von Kraftstoffvorläufern wie Ameisensäure oder Synthesegas, sowie C1+ -Verbindungen wie Acetat, 2-Oxybutyrat, Butyrat, Ethanol und Butanol eingesetzt werden. Gleichzeitig lassen sich BER gut in die städtische Infrastruktur integrieren, ohne daß kostbares Ackerland benötigt wird. Mit Ausnahme von Methan ist jedoch keiner der vorgenannten bioelektrischen Kraftstoffen (BEKS) in reiner Form leicht brennbar. Während Elektromethan eine im Handel erhältliche Alternative zu fossilem Erdgas ist, ist seine volumetrische Energiedichte von 40-80 MJ/m3 niedriger als die von Benzin mit 35-45 GJ/m3. Abgesehen davon, wird Methan als Kraftstoff von den meisten Automobilnutzern nicht gekauft. Um flüssigen Brennstoff herzustellen, müssen Kohlenstoffketten mit Alkoholen oder besser Kohlenwasserstoffen als Endprodukten verlängert werden. Zu diesem Zweck ist Synthesegas (CO + H2) eine theoretische Option und kann durch die Fischer-Tropsch-Synthese gewonnen werden. Tatsächlich sind Synthesegasvorläufer aber entweder fossile Brennstoffe (z. B. Kohle, Erdgas, Methanol) oder Biomasse. Während fossile Kraftstoffe offensichtlich nicht CO2-neutral sind, benötigt man zur Herstellung von Biomasse Ackerland. Die direkte Umwandlung von CO2 und elektrolytischen Wasserstoff in C1+ -Kraftstoffe wird wiederum durch elektroaktive Mikroben im Dunkeln katalysiert (siehe Titelbild). Dadurch wird die Konkurrenz zwischen Nahrungsmittelanbau und Kraftstoffpflanzen vermieden. Leider wurde nur bislang wenig anwendbares zu elektroaktiver Mikroben erforscht. Im Gegensatz dazu gibt es eine Vielzahl von Stoffwechselstudien über traditionelle mikrobielle Kraftstoffproduzenten. Diese Studien schlagen häufig die Verwendung von GVO oder komplexen organischen Substraten als Vorläufer vor. Bei Frontis Energy gehen wir einen anderen weg. Wir ermitteln systematisch Stoffwechselwege für die Produktion von flüssigem BEKS. Der schnellste Ansatz sollte mit einem Screening von metabolischen Datenbanken mit etablierten Methoden der metabolischen Modellierung beginnen, gefolgt von Hochdurchatztestsin BER. Da Wasserstoff das Zwischenprodukt in der Bioelektrosynthese ist, besteht die effizienteste Strategie darin, CO2 und H2 als direkte Vorläufer mit möglichst wenigen Zwischenschritten zu benutzen. Skalierbarkeit und Energieeffizienz, also wirtschaftliche Machbarkeit, sind dabei entscheident.

Zunächst produziert ein elektrotropher Acetogen Acetat, das von heterotrophen Algen im darauffolgenden Schritt verwendet wird.

Das größte Problem bei der die BEKS-Produktion ist das mangelnde Wissen über Wege, die CO2 und elektrolytisches H2 verwenden. Diese Lücke besteht trotz umfangreicher Stoffwechseldatenbanken wie KEGG und KBase, wodurch die Auswahl geeigneter BEKS-Stämme einem Stochern im Nebel gleichkommt. Trotz der hohen Komplexität wurden Stoffwechselmodelle verwendet, um Wege zur Kraftstoffproduktion in Hefen und verschiedenen Prokaryoten aufzuzeigen. Trotz ihrer Unzulänglichkeiten wurden Stoffwechelatenbanken breits eingesetzt, um Artwechselwirkungen zu modellieren, z.B. mit ModelSEED / KBase (http://modelseed.org/) in einer heterotrophen Algenvergesellschaftung, mit RAVEN / KEGG oder mit COBRA. Ein erster systematischer Versuch für acetogene BEKS-Kulturen, bewies die die Verwendbarkeit von KBase für BER. Diese Forschung war eine Genomstudie der vorhandenen BEKS-Konsortien. Dieselbe Software kann auch in umgekehrt eingesetzt werden, beginnend mit dem gewünschten Brennstoff. Im Ergebnis werden dann die erforderlichen Organismen benannt. Wir beschrieben nun einige BEKS-Kulturen.

Mögliche Kombinationen für die BEKS-Produktion mit Clostridien, 3, oder heterotrophe Algen, 7. Die Weiterverarbeitung erfolt durch Hefen.

Hefen gehören zu den Mikroorganismen mit dem größten Potenzial für die Produktion von flüssigem Biokraftstoff. Bäckerhefe (Saccharomyces cerevisiae) ist das prominenteste Beispiel. Hefen sind zwar für die Ethanolfermentation bekannt, produzieren aber auch Fuselöle wie Butan, Phenyl- und Amylderivate, Aldehyde und Alkohole. Im Gegensatz zu Ethanol, das durch Zuckerfermentation gebildet wird, wird Fuselöl im Aminosäurestoffwechsel synthetisiert, gefolgt von Aldehydreduktion. Es wurden viele Enzyme identifiziert, die an der Reduktion von Aldehyden beteiligt sind, wobei Alkoholdehydrogenasen am häufigsten beobachtet werden. Die entsprechenden Reduktionsreaktionen erfordern reduziertes NADH⁠, es ist jedoch nicht bekannt, ob an Kathoden gebildetes H2 daran beteiligt sein kann.
Clostridien, beispielsweise Clostridium acetobutylicum und C. carboxidivorans, können Alkohole wie Butanol, Isopropanol, Hexanol und Ketone wie Aceton aus komplexen Substraten (Stärke, Molke, Cellulose usw.) oder aus Synthesegas herstellen. Der Clostridienstoffwechsel wurde vor einiger Zeit aufgeklärt und unterscheidet sich von Hefe. Er erfordert nicht zwangsläufig komplexe Substrate für die NAD+-Reduktion, denn es wurde gezeigt, daß Wasserstoff, Kohlenmonoxid und Kathoden Elektronen für die Alkoholproduktion abgeben können. CO2 und Wasserstoff wurden in einem GMO-Clostridium verwendet, um hohe Titer von Isobutanol herzustellen. Typische Vertreter für die Acetatproduktion aus CO2 und H2 sind C. ljungdahlii, C. aceticum und Butyribacterium methylotrophicum. Sporomusa sphaeroides produziert Acetat in BES. Clostridien dominierten auch in Mischkulturen in BER, die CO2 in Butyrat umwandelten. Sie sind daher vorrangige Ziele für eine kostengünstige Produktion von Biokraftstoffen. In Clostridien werden Alkohole über Acetyl-CoA synthetisiert. Diese Reaktion ist reversibel, wodurch Acetat als Substrat für die Biokraftstoffproduktion mit extrazellulärer Energieversorgung dienen kann. In diesem Fall wird die ATP-Synthese durch Elektronenbifurkation aus der Ethanoloxidation oder durch Atmung und Wasserstoffoxidation betrieben. Ob die Elektronenbifurkation oder Atmung mit Alkoholen oder der Ketonsynthese verknüpft sind ist nicht bekannt.
Phototrophe wie Botryococcus produzieren auch C1+ Biokraftstoffe. Sie synthetisieren eine Reihe verschiedener Kohlenwasserstoffe, darunter hochwertige Alkane und Alkene sowie Terpene. Hohe Titer wurden jedoch nur mithilfe von GVOs produziert, was in vielen Ländern aus rechtlichen Gründen ökonomisch schwer möglich ist. Darüber hinaus erfordert die Dehydratisierung / Deformylierung vom Aldehyd zum Alkan oder Alken molekularen Sauerstoff, was deren Produktion in BER unmoeglich macht, da Saurstoff bevorzugt die Kathode oxidiert. Der Olefinweg von Synechococcus hängt auch von molekularem Sauerstoff ab, wobei das Cytochrom P450 an der Fettsäuredecarboxylierung beteiligt ist. Die Anwesenheit von molekularem Sauerstoff beeinflußt die BES-Leistung auch durch den sofortigen Produktabbau. Im Gegensatz dazu zeigen unsere eigenen Vorversuche (siehe Titelfoto) und ein Korrosionsexperiment, daß Algen mit einer Kathode als Elektronendonor im Dunkeln leben können, selbst wenn geringe Mengen Sauerstoff vorhanden waren. Die an der Herstellung einiger Algenkraftstoffe beteiligten Enzyme sind zwar bekannt (wie die Deformylierung von Olefinen und Aldehyden), es ist jedoch nicht bekannt, ob diese Wege durch Wasserstoffnutzung beschritten werden können (möglicherweise über Ferredoxine). Ein solcher Zusammenhang wäre ein vielversprechender Hinweis für Kohlenwasserstoff-erzeugenden Cyanobakterien, die an Kathoden wachsen können. Unsere zukünftige Forschungen wird zeigen, ob wir hier richtig liegen.
Bei Frontis Energy glauben wir, daß eine Reihe anderer Mikroorganismen Potenzial zur BEKS-Produktion haben. Um nicht GVO zurückgreifen zu müssen, müssen BER-kompatible Mischkulturen über rechnergestützte Stoffwechselmodelle aus vorhandenen Datenbanken identifiziert werden. Mögliche Intermediate sind z.Z. unbekannt. Der Kenntnis ist aber Voraussetzung für profitable BEKS-Reaktoren.

Veröffentlicht am

Ammoniak als Energiespeicher #2

Kürzlich berichteten wir an dieser Stelle über Pläne australischer Unternehmer und ihrer Regierung, Ammoniak (NH3) als Energiespeicher für überschüssige Windenergie zu benutzen. Wir schlugen vor, Ammoniak und CO2 aus Abwasser in Methangas (CH4) umzuwandeln, da dieses stabiler und leichter zu transportieren ist. Das Verfahren folgt der chemischen Gleichung:

8 NH3 + 3 CO2 → 4 N2 + 3 CH4 + 6 H2O

Jetzt haben wir dazu einen wissenschaftlichen Artikel im Onlinemagazin Frontiers in Energy Research veröffentlicht. Darin zeigen wir zunächst, daß der Prozess thermodynamisch möglich ist, und zwar indem methanogene Mikroben den durch Elektrolyse gebildeten Wasserstoff (H2) aus dem Reaktiongleichgewicht entfernen. Dadurch nähern sich die Redoxpotentiale der oxidativen (N2/NH3) und der reduktiven Halbreaktionen (CO2/CH4) so weit an, daß der Prozess spontan ablaufen kann. Er benötigt nur noch einen Katalysator, der in Form von Mikroben aus dem Abwasser gewonnen wird.

Pourbaix-Diagramm der Ammoniumoxidation, Wasserstoffbildung und CO2-Reduktion. Ab pH 7 wird die an Methanogenese gekoppelte Ammoniumoxidation thermodynamisch möglich.

Dazu haben wir zunächst nach entsprechenden Mikroben gesucht. Für unsere Experimente in mikrobiellen Elektrolysezellen haben wir Mikroorganismen aus Sedimenten des Atlantischen Ozeans vor Namibia als Impfmaterial benutzt. Meeressedimente sind besonders geeignet, da diese vergleichsweise reich an Ammoniak, frei von Sauerstoff (O2) und relativ arm an organischem Kohlenstoff sind. Der Ausschluß von Sauerstoff is wichtig, da dieser normalerweise als Oxidationsmittel zur Entfernung von Ammoniak dient:

2 NH3+ + 3 O2 → 2 NO2 + 2 H+ + 2 H2O

Der Prozess ist auch als Nitrifikation bekannt und hätte eine Art elektrochemischen Kurzschluß bewirkt, da dabei die Elektronen vom Ammoniak direkt auf den Sauerstoff übertragen werden. Dadurch wäre die Anode (die positive Elektronen-akzeptierende Elektrode) umgangen worden und die Energie des Ammoniaks wäre dann im Wasser gespeichert. Die anodische Wasseroxidation verbraucht aber viel mehr Energie, als die Oxidation von Ammoniak. Zudem sind Edelmetalle zur Wasseroxidation notwendig. Ohne Sauerstoff an der Anode zu produzieren, konnten wir zeigen, daß die Oxidation von Ammonium (die gelöste Form des Ammoniaks) an die Produktion von Wasserstoff gekoppelt ist.

Oxidation von Ammonium zu Stickstoffgas ist gekoppelt an Wasserstoffproduktion in mikrobiellen Elektrolysereaktoren. Die angelegten Potentiale sind +550 mV bis +150 mV

Dabei war es wichtig, daß das elektrochemische Potential an der Anode negativer, als die +820 mV der Wasseroxidation waren. Zu diesem Zweck haben wir einen Potentiostat benutzt, der das elektrochemische Potential konstant zwischen +550 mV und +150 mV hielt. Bei all diesen Potentialen wurde an der Anode N2 und an der Kathode H2 produziert. Da die einzige Elektronenquelle in der Anodenkammer Ammonium war, konnten die Elektronen zur Wasserstoffproduktion also nur von der Ammoniumoxidation stammen. Zudem war Ammonium auch die einzige Stickstoffquelle für die Produktion von N2. Demzufolge ware die Prozesse also gekoppelt.

Im darauffolgenden Schritt wollten wir zeigen, daß dieser Prozess auch eine nützliche Anwendung hat. Stickstoffverbindungen kommen oft in Abwässern vor. Sie bestehen vorwiegend aus Ammonium. Es finden sich aber auch Medikamente und deren Abbauprodukte darunter. Gleichzeitig werden 1-2% der weltweit produzierten Energie im Haber-Bosch-Prozess verbraucht. Im Haber-Bosch-Prozess wird N2 der Luft entnommen, um Stickstoffdünger herzustellen. Weitere 3% unserer produzierten Energie werden dann verwendet, den so gewonnen Stickstoff wieder aus dem Abwasser zu entfernen. Diese sinnlose Energieverschwendung erzeugt 5% unserer Treibhausgase. Dabei könnte Abwasser sogar eine Energiequelle sein⁠. Tatsächlich wird ein kleiner Teil seiner Energie schon seit mehr als einem Jahrhundert als Biogas zurückgewonnen. Während der Biogasgewinnung wird organisches Material aus Klärschlamm durch mikrobiellen Gemeinschaften zersetzt und in Methan umgewandelt:

H3C−COO + H+ + H2O → CH4 + HCO3 + H+; ∆G°’ = −31 kJ/mol (CH4)

Die Reaktion erzeugt CO2 und Methan im Verhältnis von 1:1. Das CO2 im Biogas macht es nahazu wertlos. Folglich wird Biogas häufig abgeflammt. Die Entfernung von CO2 würde das Produkt enorm aufwerten und kann durch Auswaschen erreicht werden. Auch stärker reduzierte Kohlenstoffquellen können das Verhältnis vom CO2 zum CH4 verschieben. Dennoch bliebe CO2 im Biogas. Durch die Zugabe von Wasserstoff in Faultürme würde dieses Problem gelöst. Der Prozess wird als Biogasaufbereitung bezeichnet. Wasserstoff könnte durch Elektrolyse erzeugt werden:

2 H2O → 2 H2 + O2; ∆G°’ = +237 kJ/mol (H2)

Dafür wären aber, wie schon eingangs erläutert, teure Katalysatoren notwendig und der Energieverbrauch wäre höher. Der Grund ist, daß die Elektrolyse von Wasser in bei einer hohen Spannung von 1,23 V stattfindet. Eine Möglichkeit, dies zu umgehen, bestünde darin, das Wasser durch Ammonium zu ersetzen:

2 NH4+ → N2 + 2 H+ + 3 H2; ∆G°’ = +40 kJ/mol (H2)

Mit Ammonium erfolgt die Reaktion bei nur 136 mV wodurch man entsprechend viel Energie einsparen könnte. Mit geeigneten Katalysatoren könnte somit Ammonium als Reduktionsmittel für die Wasserstoffproduktion dienen. Mikroorganismen im Abwasser können solche Katalysatoren sein. Unter Auschluß von Sauerstoff werden Methanogene im Abwasser aktiv und verbrauchen den produzierten Wasserstoff:

4 H2 + HCO3 + H+ → CH4 + 3 H2O; ∆G°’ = –34 kJ/mol (H2)

Die methanogene Reaktion hält die Wasserstoffkonzentration so niedrig (üblicherweise unter 10 Pa), daß die Ammoniumoxidation spontan, also mit Energiegewinn abläuft:

8 NH4+ + 3 HCO3 → 4 N2 + 3 CH4 + 5 H+ + 9 H2O; ∆G°’ = −30 kJ/mol (CH4)

Genau dies ist die eingangs beschriebene Reaktion. Bioelektrische Methanogene wachsen an der Kathode und gehören zur Gattung Methanobacterium. Angehörige dieser Gattung sind besonders auf niedrige H2-Konzentrationen spezialisiert.

Der geringe Energiegewinn ist auf die geringe Potentialdifferenz von Eh = +33 mV der CO2-Reduktion gegenüber der Ammoniumoxidation zurückzuführen (siehe Pourbaix-Diagramm oben). Es reicht kaum aus, um die notwendige Energie von ∆G°’= +31 kJ/mol für die ADP-Phosphorylierung bereitzustellen. Darüber hinaus ist die Stickstoffbindungsenergie von Natur aus hoch, was starke Oxidationsmittel wie O2 (Nitrifikation) oder Nitrit (Anammox) erfordert.

Anstelle starker Oxidationsmittel kann eine Anode z.B. bei +500 mV die Aktivierungsenergie für die Ammoniumoxidation bereitgestellen. Allzu positive Redoxpotentiale treten jedoch in anaeroben Umgebungen natürlich nicht auf. Daher haben wir getestet ob die Ammoniumoxidation an die hydrogenotrophe Methanogenese gekoppelt werden kann, indem ein positives Elektrodenpotential ohne O2 angeboten wird. Tatsächlich konnten wir dies in unserem Artikel nachweisen und haben das Verfahren zum Patent angemeldet. Mit unserem Verfahren könnte man z.B. Ammonium profitabel aus Industrieabwässern entfernen. Er ist auch zur Energiespeicherung geeignet, wenn man z.B. Ammoniak mithilfe überschüssiger Windenergie synthetisiert.