Veröffentlicht am

Richtlinien für einen globalen CO2-Haushalt

Zahlreiche Untersuchungen haben während des letzten Jahrzehnts gezeigt, daß die globale Erwärmung in etwa proportional zur CO2-Konzentration in unserer Atmosphäre ist. Auf diese Weise läßt sich unser verbleibende Kohlenstoffhaushalt abschätzen. Das ist die Gesamtmenge des vom Menschen produzierten Kohlendioxids, die noch in die Atmosphäre abgegeben werden kann, bevor ein festgelegter globaler Temperaturgrenzwert erreicht wird. Auf diesen Grenzwert haben sich die Nationen der Welt im Pariser Abkommen 2015 geeinigt. Er soll 1,5°C nicht überschreiten, und in jedem Fall weit unter 2,0°C liegen. Es wurden jedoch zahlreiche Schätzungen für das verbleibende CO2 gemacht, was sich negativ auf die politische Entscheidungsfindung auswirkt. Jetzt hat eine internationale Forschergruppe von ausgewiesenen Klimaexperten eine Richtlinie für die Errechnung des globalen CO2-Haushalts im renomierten Fachmagazin Nature veröffentlicht. Die Forscher schlagen vor, daß die Anwendung dieser Richtlinie dazu beitragen soll, die teils gravierenden Unterschiede bei der Abschätzung des CO2-Haushalts auszugleichen, und die Unsicherheiten in Forschung und Politik zu verringern.

Seit dem fünften Bericht des Zwischenstaatlichen Gremiums für Klimawandel (IPCC) hat das Konzept eines CO2-Haushalts als Instrument zur Ausrichtung der Klimapolitik an Bedeutung gewonnen. In einer Reihe von Studien aus den letzten zehn Jahren wurde geklärt, warum der Anstieg der globalen Durchschnittstemperatur in etwa proportional zur Gesamtmenge der CO2-Emissionen ist, die seit der industriellen Revolution durch menschliche Aktivitäten verursacht wurden. Dabei zitiert die Forschergruppe zahlreiche veröffentlichte Belege. Diese Literatur hat es Wissenschaftlern ermöglicht, den linearen Zusammenhang zwischen Erwärmung und CO2-Emissionen als transiente Klimareaktion auf kumulierte CO2-Emissionen (TCRE) zu definieren. Die Brillianz dieses Konzepts wird deutlich, die man erkennt, daß die Reaktion des komplexen Systems Erde auf unsere CO2-Emissionen durch eine ungefähr lineare Beziehung dargestellt werden kann. In jüngster Zeit wurden jedoch zusätzliche Prozesse, die die zukünftige Erwärmung beeinflussen, in Modelle einbezogen. Dabei handelt es sich z.B. um das Auftauen des arktischen Permafrosts. Diese zusätzlichen Prozesse erhöhen die Unsicherheit. Zudem wird die globale Erwärmung nicht nur durch CO2-Emissionen verursacht. Andere Treibhausgase, wie z.B. Methan, fluorierte Gase oder Lachgas, sowie Aerosole und deren Vorstufen beeinflussen die globalen Temperaturen. Dies verkompliziert die Beziehung zwischen zukünftigem CO2 weiter.

Bei der durch CO2 verursachten Klimaerwärmung trägt jede Tonne zur Erwärmung bei, egal ob diese Tonne CO2 heute, morgen oder in der Verganganheit ausgestoßen wurde. Dies bedeutet, daß die globalen CO2-Emissionen auf das Null gesenkt werden müssen, um dann dort zu bleiben. Das heißt auch, daß unsere Emissionen umso schneller sinken müssen, je mehr wir in den kommenden Jahren emittieren. Auf Nullemission würde sich die Erwärmung zwar stabilisieren, aber nicht verschwinden oder oder sich gar umgekehren. Eine Überziehung des CO2-Haushalts müßte also später wieder durch ein Entfernen des CO2s ausgeglichen werden.  So kann z.B. die Entfernung mit Hilfe von filtern geschehen, wie wir bereits berichteten. Schlußendlich wird dies wohl der einzig verbleibende Weg sein, denn die Durchdringung unserer Energiewirtschaft mit CO2-neutralen Quellen hat sich bei 5% stabilisiert. Die Aufstellung eines Kohlenstoffhaushalts macht die Dringlichkeit deutlich. Leider sind die Angaben über die uns verbleibende Menge CO2 weit gestreut. In ihrer Richtlinie zitieren die Forscher zahlreiche Studien zur Erhaltung des 1,5°C-Ziels, die von 0 Tonnen CO2 bis zu 1.000 Gigatonnen reichen. Für das 2,0°C-Ziel reicht die Spannweite von ca. 700 Gigatonnen bis hin zu fast 2.000 Gigatonnen verbleibende CO2-Emissionen. Das Ziel der Forscher ist es, diese Unsicherheit einzuschränken, in dem sie eine klare Richtlinie vorschlagen. Das zentrale Element dieser Richtlinie ist die Gleichung zur Berechnung des verbleibenden CO2-Haushaltsrahmens:

Blim = (TlimThistTnonCO2TZEC) / TCRE − EEsfb

Dieser Rahmen sind die verbleibenden CO2-Emissionen (Blim) für die spezifische Temperaturgrenze (Tlim) als Funktion von fünf Termen, die Aspekte des geophysikalischen und gekoppelten Mensch-Umwelt-Systems darstellen: die bisherige vom Menschen verursachte Erwärmung (Thist), der Nicht-CO2-Beitrag zum zukünftigen Temperaturanstieg (TnonCO2), die Nullemissionsfestlegung (TZEC), die TCRE und eine Anpassung für Quellen aus eventuellen Rückkopplungen mit nicht erfaßten geologischen Systemen (EEsfb).

Term

Bedeutung

Art

Derzeitiges Verständnis

Erwärmungsgrenze Tlim Wahl der Temperaturmetriken, mit denen die globale Erwärmung, die Wahl des vorindustriellen
Bezugszeitraums und die Übereinstimmung mit den globalen Klimazielen ausgedrückt werden
Wählbar Mittel bis hoch
Vergangene menschenverursachte Erwärmung Thist Unvollständige Erfassung in Beobachtungsdatensätzen und Methoden zur Abschätzung der vom Menschen verursachten Komponente; Siehe auch Tlim Unsicherheit Mittel bis hoch
Nicht-CO2 Erwärmung TnonCO2 Die Höhe der verschiedenen Nicht-CO2-Emissionen, die mit den weltweiten Netto-Null-CO2-Emissionen übereinstimmen, hängt von den politischen Entscheidungen, aber auch vom unsicheren Erfolg ihrer Umsetzung ab Wählbare Unsicherheit Mittel
Nicht-CO2 Erwärmung TnonCO2 Klimareaktion auf Nicht-CO2-Verusacher, insbesondere in Bezug auf die Aerosolrückgewinnung und  Temperaturreduzierung aufgrund geringerer Methanemissionen Unsicherheit Niedrig bis mittel
Nullemissionsverpflichtung TZEC Vorzeichen und Ausmaß der Nullemissionsverpflichtung in dekadischen Zeitskalen für aktuelle und nahezu Null jährliche CO2-Emissionen Unsicherheit Niedrig
Transiente Klimareaktion auf
kumulierte CO2-Emissionen
TCRE Verteilung der TCRE-Unsicherheit, Linearität der TCRE zur Erhöhung und Stabilisierung der kumulativen CO2-Emissionen und Auswirkung von Temperaturmetriken auf die TCRE-Schätzung Unsicherheit Niedrig bis mittel
Transiente Klimareaktion auf
kumulierte CO2-Emissionen
TCRE Über die Spitzenerwärmung hinausgehende Unsicherheit der Linearität, Wert und Verteilung der TCRE zur  Verringerung der kumulierten CO2-Emissionen Unsicherheit Niedrig
Rükkopplungen mit nicht erfaßten
geologischen Systemen
EEsfb Dauer und Ausmaß des Auftauens von Permafrost und der Methanfreisetzung aus Feuchtgebieten und deren Darstellung in Geomodellen sowie andere mögliche Arten von Rückkopplungen Unsicherheit Sehr niedrig

In dem CO2-Haushalt ist wohl die Rückkopplungen mit nicht erfaßten geologischen Systemen (EEsfb) die größte Unsicherheit. Diese Rückkopplungsprozesse sind typischerweise mit dem Auftauen von Permafrost und der damit verbundenen langfristigen Freisetzung von CO2 und CH4 verbunden. Es wurden jedoch auch andere Rückkopplungsquellen für das Geosystem identifiziert, wie z.B. die Änderungen der CO2-Aufnahme in der Vegetation und die damit verbundene Stickstoffverfügbarkeit. Weitere Rückkopplungsprozesse involvieren die Änderungen der Oberflächenalbedo, der Wolkendecke oder von Brandbedingungen.

Es bleibt es eine Herausforderung, die Unsicherheiten im Zusammenhang mit den Schätzungen des CO2-Haushalt angemessen zu charakterisieren. In einigen Fällen ist die Ursache der Unsicherheiten ungenaue Kenntnis der zugrunde liegenden Prozesse oder mangelnde Genauigkeit der Messungen. In anderen Fällen werden Begriffe nicht einheitlich verwendet. Für eine bessere Vergleichbarkeit und Flexibilität schlagen die Forscher vor, die globalen Werte der Oberflächenlufttemperatur routinemäßig zu messen. Diese Methode liefert unveränderliche Zahlen für Modelle, Modellabläufe über gewählte Zeiträume hinweg. Detailliertere Vergleiche zwischen veröffentlichten Schätzungen den CO2-Haushalt sind derzeit schwierig, da oft die Originaldaten aus den ursprünglichen Studien fehlen. Die Forscher schlagen daher vor, diese zukünftig zusammen mit den Publikationen bereitzustellen.

Die Zerlegung des CO2-Haushalts in seine Einzelfaktoren ermöglicht es, eine Reihe vielversprechender Wege für die zukünftige Forschung zu identifizieren. Ein Forschungsbereich, der dieses Feld voranbringen könnte, ist die nähere Betrachtung der TCRE. Zukünftige Forschungen werden voraussichtlich die Bandbreite der TCRE-Schätzungen einschränken, was die Unsicherheit verringern wird. Ein weiteres vielversprechendes Forschungsgebiet ist die Untersuchung der Wechselbeziehung zwischen Einzelfaktoren und ihren verbunden Unsicherheiten, beispielsweise zwischen Unsicherheiten in Thist und TnonCO2. Dies könnte durch die Entwicklung von Methoden erreicht werden, die eine zuverlässige Abschätzung der vom Menschen verursachten Erwärmung in jüngerer Zeit ermöglichen. Klar ist auch, daß weniger komplexe Klimamodelle nützlich sind, um die Unsicherheiten weiter zu reduzieren. Gegenwärtig weist jeder Faktor des vorgestellten Rahmens seine eigenen Unsicherheiten auf, und es fehlt eine Methode, um diese Unsicherheiten formal zu kombinieren.

Auch bei Frontis Energy denken wir, daß Fortschritte in diesen Bereiche unser Verständnis bei der Schätzungen des CO2-Haushalts verbessern würde. Ein systematisches Verständnis des CO2-Haushalts und ist für eine wirksame Zielsetzung und die Kommunikation der Herausforderungen beim Klimaschutze von entscheidender Bedeutung.

Veröffentlicht am

Intelligente Batterien durch künstliches Lernen

Erneuerbare Energie, z.B. Wind- und Solarenergie stehen nur intermediär zur Verfügung. Um das Ungleichgewicht zwischen Angebot und Nachfrage auszugleichen, können unter anderem Batterien von Elektrofahrzeugen aufgeladen werden und so als Energiepuffer für das Stromnetz fungieren. Autos verbringen den größten Teil ihrer Zeit im Stand und könnten ihren Strom in das Stromnetz zurückspeisen. Dies ist zwar zur Zeit noch Zukunftsmusik aber Vermarktung von Elektro- und Hybridfahrzeugen verursacht in jedem Fall eine wachsende Nachfrage nach langlebigen Batterien, sowohl für das Fahren  als auch als Netzpufferung. Methoden zur Bewertung des Batteriezustands werden dadurch zunehmend an Bedeutung an Bedeutung gewinnen.

Die lange Testdauer des Akkzustands ist ein Problem, das die rasche Entwicklung neuer Akkus behindert. Bessere Methoden zur Vorhersage der Akkulebensdauer werden daher dringend benötigt, sind jedoch äußerst schwierig zu entwickeln. Jetzt berichten Severson und ihre Kollegen im Fachjournal Nature Energy, daß künstliches Lernen bei der Erstellung von Computermodellen zur Vorhersage der Akkulebensdauer helfen kann. Dabei werden Daten aus Lade- und Entladezyklen frühen Stadien verwendet.

Normalerweise beschreibt eine Gütezahl den Gesundheitszustand eines Akkus. Diese Gütezahl quantifiziert die Fähigkeit des Akkus, Energie im Verhältnis zu seinem ursprünglichen Zustand zu speichern. Der Gesundheitszustand ist 100%, wenn der Akku neu ist und nimmt mit der Zeit ab. Das aehnelt dem Ladezustand eines Akkus. Das Abschätzen des Ladezustands einer Batterie ist wiederum wichtig, um eine sichere und korrekte Verwendung zu gewährleisten. In der Industrie oder unter Wissenschaftlern besteht jedoch kein Konsens darüber, was genau Gesundheitszustand ist oder wie es bestimmt werden sollte.

Der Gesundheitszustand eines Akkus spiegelt zwei Alterserscheinungen wider: fortschreitender Kapazitätsabfall sowie fortschreitende Impedanzerhöhung (ein anderes Maß für den elektrischen Widerstand). Schätzungen des Ladezustands eines Akkus müssen daher sowohl den Kapazitätsabfall als auch den Impedanzanstieg berücksichtigen.

Lithiumionenbatterien sind jedoch komplexe Systeme in denen sowohl Kapazitätsschwund als auch Impedanzanstieg durch mehrere wechselwirkende Prozesse hervorgerufen werden. Die meisten dieser Prozesse können nicht unabhängig voneinander untersucht werden, da sie oft parallel stattfinden. Der Gesundheitszustand kann daher nicht aus einer einzigen direkten Messung bestimmt werden. Herkömmliche Methoden zur Abschätzung des Gesundheitszustands umfassen die Untersuchung der Wechselwirkungen zwischen den Elektroden einer Batterie. Da solche Methoden oft in das System „Batterie“ direkt eingreifen, machen sie den Akku unbrauchbar, was wohl selten gewünscht ist.

Der Gesundheitszustand kann aber auch auf weniger invasive Weise mithilfe adaptive Modelle und experimentelle Techniken bestimmt. Adaptive Modelle lernen aus aufgezeichneten Akkuleistungsdaten und passen sich dabei selbst an. Sie sind nützlich, wenn keine systemspezifischen Informationen zum Akku verfügbar sind. Solche Modell eignen sich zur Diagnose der Alterungsprozessen. Das Hauptproblem besteht jedoch darin, daß sie mit experimentellen Daten trainiert werden müssen, bevor sie zur Bestimmung der aktuellen Kapazität einer Batterie verwendet werden können.

Experimentelle Techniken werden verwendet, um bestimmte physikalische Prozesse und Ausfallmechanismen zu bewerten. Dadurch kann die Geschwindigkeit des zukünftigen Kapazitätsverlusts abgeschätzt werden. Diese Methoden können jedoch keine zeitweilig auftretenden Fehler erkennen. Alternative Techniken nutzen die Geschwindigkeit der Spannungs-  oder Kapazitätsänderung (anstelle von Rohspannungs- und Stromdaten). Um die Entwicklung der Akkutechnologie zu beschleunigen, müssen noch weitere Methoden gefunden werden, mit denen die Lebensdauer der Batterien genau vorhergesagt werden kann.

Severson und ihre Kollegen haben einen umfassenden Datensatz erstellt, der die Leistung von 124 handelsüblichen Lithiumionenbatterien während ihrer Lade- und Entladezyklen umfaßt. Die Autoren verwendeten eine Vielzahl von Schnelladebedingungen mit identische Entladungen, um die Lebensdauer der Batterien zu ändern. In den Daten wurde eine breite Palette von 150 bis 2.300 Zyklen erfaßt.

Anschließend analysierten die Forscher die Daten mithilfe von künstliches Lernalgorithmen und erstellten dabei Modelle, mit denen sich die Lebensdauer der Akkus zuverlässig vorhersagen lässt. Bereits nach den ersten 100 Zyklen jedes experimentell charakterisierten Akkus zeigten diese deutliche Anzeichen eines Kapazitätsschwunds. Das beste Modell konnte die Lebensdauer von etwa 91% der in der Studie untersuchten vorhersagen. Mithilfe der ersten fünf Zyklen konnten Akkus in Kategorien mit kurzer (<550 Zyklen) oder langer Lebensdauer eingeordnet werden.

Die Arbeit der Forscher zeigt, daß datengetriebene Modellierung durch künstliches Lernen ein zur Vorhersage des Gesundheitszustands von Lithiumionenbatterien ist. Die Modelle können Alterungsprozesse identifizierten, die sich in frühen Zyklen nicht in Kapazitätsdaten manifestieren. Dementsprechend ergänzt der neue Ansatz die bisheringen Vorhersagemodelle. Bei Frontis Energy sehen wir aber auch die Möglichkeit, gezielt generierte Daten mit Modellen zu kombinieren, die das Verhalten anderer komplexer dynamischer Systeme vorherzusagen.

(Foto: Wikipedia)

 

Veröffentlicht am

Grönlandeis trägt zu 25% des Meeresspiegelanstiegs bei

Kürzlich berichteten wir über den Verlust der Schneedecke in Europa. Nicht nur in Europa gibt es weniger Schnee und Eis, auch Grönlands Eisdecke schmilzt. Der Eispanzer Grönlands trägt 25% zum globalen Meeresspiegelanstieg bei. Damit ist es größte Beitrag der Kryosphäre. Der erhöhte Massenverlust des Grönlandeises während des 21. Jahrhunderts ist hauptsächlich auf den erhöhten Oberflächenwasserabfluß zurückzuführen, von dem ~93% aus der relativ kleinen Ablationszone des Eisschildrands stammen (~22% der Eisfläche). Da die Schneedecke im Sommer schmilzt, wird in der Ablationszone nacktes Gletschereis freigelegt. Blankes Eis dunkler und weniger porös ist als Schnee. Es absorbiert mehr als doppelt so viel Sonnenstrahlung und hält weniger Schmelzwasser zurück. Glattes Eis erzeugt also einen großen Anteil (~78%) des gesamten Abflusses Grönlands ins Meer, obwohl im Sommer nur ein kleiner Bereich der Eisdecke exponiert ist. Die genaue Erfassung der reduzierten Albedo und des vollen Ausmaßes von nacktem Eis in Klimamodellen ist für die Bestimmung des gegenwärtigen und zukünftigen Abflußbeitrags Grönlands zum Meeresspiegelanstieg von hoher Bedeutung.

Der Massenverlust des grönländischen Eisschildes hat in letzter Zeit aufgrund der erhöhten Oberflächenschmelze und des Abflusses zugenommen. Da Schmelze durch Oberflächenalbedo kritisch beeinflußt wird, ist das Verständnis um die Prozesse und potentielle Rückkopplungen im Zusammenhang mit der Albedo eine Voraussetzung für die genaue Vorhersage des Massenverlusts. Die so verursachte Strahlungsvariabilität in der Ablationszone ließ die Eisschicht fünfmal schneller schmelzen als bei hydrologischen und biologischen Prozessen, die ebenfalls Eis verdunkeln. In einem wärmeren Klima üben die Schwankungen der Schneegrenzen aufgrund der flacheren höhergelegenen Eisschicht eine noch größere Kontrolle auf die Schmelze aus. Diese Schwankungen hatten zur Folge, daß die im Sommer 2012, dem Rekordjahr der Schneeschmelze, die kartierte Eisfläche sich über die größte gemessene Fläche von 300.050 km2 erstreckte. Das heißt, daß nacktes Eis 16% der Eisfläche ausmachte. Die kleinste Ausdehnung des nackten Eises war 184.660 km2 und wurde im Jahr 2006 beobachtet. Dies entsprach 10% der Eisfläche ausgesetzt, also fast 40% weniger Fläche als 2012. Die beobachtete Schneedecke schwankte jedoch sehr stark und er Beobachtungszeitraum war für eine Trendeinschätzung zu kurz.

Derzeitige Klimamodelle sind in ihren Vorhersagen für Hochwasserjahre jedoch zu ungenau, was zu einer Unsicherheit bei der Schätzung des Abflußbeitrags Grönlands zum Anstieg des globalen Meeresspiegels führt. Um die Faktoren zu verstehen, die das Schmelzen beeinflussen, haben Jonathan Ryan von der Brown University in Providence, Rhode Island seine Kollegen die grönländische Schneegrenze betrachtet. In Höhen unterhalb der Schneegrenze ist das dunklere Eis nicht vom Schnee bedeckt. Diese Schneegrenze wird während der Jahreszeiten Grönlands nach oben oder nach unten verschoben. Die Forscher haben diese Landschaften zwischen 2001 bis 2017 mithilfe von Satellitenbildern kartiert. Die durchschnittliche Höhe der Schneegrenze lag am Ende des Sommers 2009 zwischen 1.330 m und im Jahr 2012 bei 1.650 m. Die Schwankungen in der Schneegrenze sind der wichtigste Faktor, wenn es darum geht wie viel Sonnenenergie die Eisplatte absorbiert. Modellierer müssen diesen Effekt berücksichtigen, um ihre Vorhersagen zu verbessern. Das Wissen darum, wie viel und wie schnell das grönländische Eis schmilzt wird uns helfen, bessere Schutzmaßnahmen einzuleiten. Bei Frontis Energy denken wir, daß der beste Schutz vor einem Anstieg des Meeresspiegels die Vermeidung und das Recyclen von CO2 sind.

(Foto: Wikipedia)

Veröffentlicht am

Flüssigbrennstoff aus bio-elektrischen Reaktoren

Bei Frontis Energy haben wir viel darüber nachgedacht, wie man CO2 wiederverwerten kann. Während hochwertige Produkte wie Polymere für medizinische Anwendungen rentabler sind, ist die Nachfrage nach solchen Produkten zu gering, um CO2 in großen Mengen wiederzuverwertten. Das ist aber nötig, um die CO2-Konsentration unserer Atmosphäre auf ein vorindustrielles Niveau zu bringen. Biokraftstoffe, zum Beispiel aus Biomasse, wurden seit langem als Lösung vorgeschlagen. Leider benötigt Biomasse sie zu viel Ackerland. Zudem ist die zugrundeliegende Biochemie zu komplex, um sie in Ihrer Gesamtheit zu verstehen und so effektive Lösungen zu implementieren. Daher schlagen wir einen anderen Weg vor, um das Ziel der Dekarbonisierung unseres Planeten schnell zu erreichen. Das vorgeschlagene Verfahren beginnt mit einem gewünschten Zielkraftstoff und schlägt eine mikrobielle Vergesellschaftung vor, um diesen Kraftstoff herzustellen. In einem zweiten Schritt wird das mikrobielle Konsortium in einem bioelektrischen Reaktor (BER) untersucht.

Mögliche Biosynthesewege zur elektrosynthetischen Kraftstoffgewinnung. CO2 kann für die Herstellung von Flüssigbrennstoff auf mehreren Wegen verwendet werden. Das Endprodukt, langkettige Alkohole, kann entweder direkt als Brennstoff verwendet oder zu Kohlenwasserstoffen reduziert werden. Es werden Beispiele für Bioelektrokraftstoff-Pfade gezeigt, bei denen CO2 und Strom als Ausgangsmaterial verwendet werde. Methan, Acetat oder Butanol sind die Endprodukte. Nachfolgende Verfahren sind 1, aerobe Methanoxidation, 2, direkte Verwendung von Methan, 3 heterotrophe Phototrophen, 4, Aceton-Butanol-Gärung, 5, Biomassegewinnung, 6, Butanol als direktes Endprodukt, 7, weitere Vergärung durch Hefen zu Fuselalkoholen

Unser heutiges atmosphärische CO2-Ungleichgewicht ist die direkte Folge der Verbrennung fossiler Kohlenstoffe. Diese Realität erfordert schnelle und pragmatische Lösungen, um einen weitere CO2-Anstieg zu verhindern. Die direkte Abscheidung von CO2 aus der Luft ist schon bald rentabel. Dadurch wird die Nutzung von Ackerland für den Anbau von Treibstoff verhindert. Die Herstellung von Kraftstoff für Verbrennungsmotoren mit CO2 also Ausgangsmaterial ist kurzfristig die beste Zwischenlösung, da sich dieser Kraftstoff nahtlos in die vorhandene städtische Infrastruktur integriert. Biokraftstoffe wurden in den letzten Jahren intensiv erforscht, insbesondere auf dem neuen Gebiet der synthetischen Biologie. So verführerisch die Anwendung gentechnisch veränderter Organismen (GVO) zu sein scheint, so sind doch traditionell gezüchtete mikrobielle Stämme bereits vorhanden und somit sofort verfügbar. Unter Vermeidung von GVO, wird CO2 bereits heute in BER zur Herstellung von C1-Kraftstoffen wie Methan verwendet. BER können auch zur Herstellung von Kraftstoffvorläufern wie Ameisensäure oder Synthesegas, sowie C1+ -Verbindungen wie Acetat, 2-Oxybutyrat, Butyrat, Ethanol und Butanol eingesetzt werden. Gleichzeitig lassen sich BER gut in die städtische Infrastruktur integrieren, ohne daß kostbares Ackerland benötigt wird. Mit Ausnahme von Methan ist jedoch keiner der vorgenannten bioelektrischen Kraftstoffen (BEKS) in reiner Form leicht brennbar. Während Elektromethan eine im Handel erhältliche Alternative zu fossilem Erdgas ist, ist seine volumetrische Energiedichte von 40-80 MJ/m3 niedriger als die von Benzin mit 35-45 GJ/m3. Abgesehen davon, wird Methan als Kraftstoff von den meisten Automobilnutzern nicht gekauft. Um flüssigen Brennstoff herzustellen, müssen Kohlenstoffketten mit Alkoholen oder besser Kohlenwasserstoffen als Endprodukten verlängert werden. Zu diesem Zweck ist Synthesegas (CO + H2) eine theoretische Option und kann durch die Fischer-Tropsch-Synthese gewonnen werden. Tatsächlich sind Synthesegasvorläufer aber entweder fossile Brennstoffe (z. B. Kohle, Erdgas, Methanol) oder Biomasse. Während fossile Kraftstoffe offensichtlich nicht CO2-neutral sind, benötigt man zur Herstellung von Biomasse Ackerland. Die direkte Umwandlung von CO2 und elektrolytischen Wasserstoff in C1+ -Kraftstoffe wird wiederum durch elektroaktive Mikroben im Dunkeln katalysiert (siehe Titelbild). Dadurch wird die Konkurrenz zwischen Nahrungsmittelanbau und Kraftstoffpflanzen vermieden. Leider wurde nur bislang wenig anwendbares zu elektroaktiver Mikroben erforscht. Im Gegensatz dazu gibt es eine Vielzahl von Stoffwechselstudien über traditionelle mikrobielle Kraftstoffproduzenten. Diese Studien schlagen häufig die Verwendung von GVO oder komplexen organischen Substraten als Vorläufer vor. Bei Frontis Energy gehen wir einen anderen weg. Wir ermitteln systematisch Stoffwechselwege für die Produktion von flüssigem BEKS. Der schnellste Ansatz sollte mit einem Screening von metabolischen Datenbanken mit etablierten Methoden der metabolischen Modellierung beginnen, gefolgt von Hochdurchatztestsin BER. Da Wasserstoff das Zwischenprodukt in der Bioelektrosynthese ist, besteht die effizienteste Strategie darin, CO2 und H2 als direkte Vorläufer mit möglichst wenigen Zwischenschritten zu benutzen. Skalierbarkeit und Energieeffizienz, also wirtschaftliche Machbarkeit, sind dabei entscheident.

Zunächst produziert ein elektrotropher Acetogen Acetat, das von heterotrophen Algen im darauffolgenden Schritt verwendet wird.

Das größte Problem bei der die BEKS-Produktion ist das mangelnde Wissen über Wege, die CO2 und elektrolytisches H2 verwenden. Diese Lücke besteht trotz umfangreicher Stoffwechseldatenbanken wie KEGG und KBase, wodurch die Auswahl geeigneter BEKS-Stämme einem Stochern im Nebel gleichkommt. Trotz der hohen Komplexität wurden Stoffwechselmodelle verwendet, um Wege zur Kraftstoffproduktion in Hefen und verschiedenen Prokaryoten aufzuzeigen. Trotz ihrer Unzulänglichkeiten wurden Stoffwechelatenbanken breits eingesetzt, um Artwechselwirkungen zu modellieren, z.B. mit ModelSEED / KBase (http://modelseed.org/) in einer heterotrophen Algenvergesellschaftung, mit RAVEN / KEGG oder mit COBRA. Ein erster systematischer Versuch für acetogene BEKS-Kulturen, bewies die die Verwendbarkeit von KBase für BER. Diese Forschung war eine Genomstudie der vorhandenen BEKS-Konsortien. Dieselbe Software kann auch in umgekehrt eingesetzt werden, beginnend mit dem gewünschten Brennstoff. Im Ergebnis werden dann die erforderlichen Organismen benannt. Wir beschrieben nun einige BEKS-Kulturen.

Mögliche Kombinationen für die BEKS-Produktion mit Clostridien, 3, oder heterotrophe Algen, 7. Die Weiterverarbeitung erfolt durch Hefen.

Hefen gehören zu den Mikroorganismen mit dem größten Potenzial für die Produktion von flüssigem Biokraftstoff. Bäckerhefe (Saccharomyces cerevisiae) ist das prominenteste Beispiel. Hefen sind zwar für die Ethanolfermentation bekannt, produzieren aber auch Fuselöle wie Butan, Phenyl- und Amylderivate, Aldehyde und Alkohole. Im Gegensatz zu Ethanol, das durch Zuckerfermentation gebildet wird, wird Fuselöl im Aminosäurestoffwechsel synthetisiert, gefolgt von Aldehydreduktion. Es wurden viele Enzyme identifiziert, die an der Reduktion von Aldehyden beteiligt sind, wobei Alkoholdehydrogenasen am häufigsten beobachtet werden. Die entsprechenden Reduktionsreaktionen erfordern reduziertes NADH⁠, es ist jedoch nicht bekannt, ob an Kathoden gebildetes H2 daran beteiligt sein kann.
Clostridien, beispielsweise Clostridium acetobutylicum und C. carboxidivorans, können Alkohole wie Butanol, Isopropanol, Hexanol und Ketone wie Aceton aus komplexen Substraten (Stärke, Molke, Cellulose usw.) oder aus Synthesegas herstellen. Der Clostridienstoffwechsel wurde vor einiger Zeit aufgeklärt und unterscheidet sich von Hefe. Er erfordert nicht zwangsläufig komplexe Substrate für die NAD+-Reduktion, denn es wurde gezeigt, daß Wasserstoff, Kohlenmonoxid und Kathoden Elektronen für die Alkoholproduktion abgeben können. CO2 und Wasserstoff wurden in einem GMO-Clostridium verwendet, um hohe Titer von Isobutanol herzustellen. Typische Vertreter für die Acetatproduktion aus CO2 und H2 sind C. ljungdahlii, C. aceticum und Butyribacterium methylotrophicum. Sporomusa sphaeroides produziert Acetat in BES. Clostridien dominierten auch in Mischkulturen in BER, die CO2 in Butyrat umwandelten. Sie sind daher vorrangige Ziele für eine kostengünstige Produktion von Biokraftstoffen. In Clostridien werden Alkohole über Acetyl-CoA synthetisiert. Diese Reaktion ist reversibel, wodurch Acetat als Substrat für die Biokraftstoffproduktion mit extrazellulärer Energieversorgung dienen kann. In diesem Fall wird die ATP-Synthese durch Elektronenbifurkation aus der Ethanoloxidation oder durch Atmung und Wasserstoffoxidation betrieben. Ob die Elektronenbifurkation oder Atmung mit Alkoholen oder der Ketonsynthese verknüpft sind ist nicht bekannt.
Phototrophe wie Botryococcus produzieren auch C1+ Biokraftstoffe. Sie synthetisieren eine Reihe verschiedener Kohlenwasserstoffe, darunter hochwertige Alkane und Alkene sowie Terpene. Hohe Titer wurden jedoch nur mithilfe von GVOs produziert, was in vielen Ländern aus rechtlichen Gründen ökonomisch schwer möglich ist. Darüber hinaus erfordert die Dehydratisierung / Deformylierung vom Aldehyd zum Alkan oder Alken molekularen Sauerstoff, was deren Produktion in BER unmoeglich macht, da Saurstoff bevorzugt die Kathode oxidiert. Der Olefinweg von Synechococcus hängt auch von molekularem Sauerstoff ab, wobei das Cytochrom P450 an der Fettsäuredecarboxylierung beteiligt ist. Die Anwesenheit von molekularem Sauerstoff beeinflußt die BES-Leistung auch durch den sofortigen Produktabbau. Im Gegensatz dazu zeigen unsere eigenen Vorversuche (siehe Titelfoto) und ein Korrosionsexperiment, daß Algen mit einer Kathode als Elektronendonor im Dunkeln leben können, selbst wenn geringe Mengen Sauerstoff vorhanden waren. Die an der Herstellung einiger Algenkraftstoffe beteiligten Enzyme sind zwar bekannt (wie die Deformylierung von Olefinen und Aldehyden), es ist jedoch nicht bekannt, ob diese Wege durch Wasserstoffnutzung beschritten werden können (möglicherweise über Ferredoxine). Ein solcher Zusammenhang wäre ein vielversprechender Hinweis für Kohlenwasserstoff-erzeugenden Cyanobakterien, die an Kathoden wachsen können. Unsere zukünftige Forschungen wird zeigen, ob wir hier richtig liegen.
Bei Frontis Energy glauben wir, daß eine Reihe anderer Mikroorganismen Potenzial zur BEKS-Produktion haben. Um nicht GVO zurückgreifen zu müssen, müssen BER-kompatible Mischkulturen über rechnergestützte Stoffwechselmodelle aus vorhandenen Datenbanken identifiziert werden. Mögliche Intermediate sind z.Z. unbekannt. Der Kenntnis ist aber Voraussetzung für profitable BEKS-Reaktoren.

Veröffentlicht am

Gut leben und das Klima retten

In Paris hat sich die Menschheit das Ziel gesetzt, die globale Erwärmung auf 1,5 °C zu begrenzen. Die meisten Menschen glauben, daß das durch erheblichen Einbußen bei unserer Lebensqualität erkauft werden muß. Das ist ein Grund, weshalb Klimaschutz von vielen Menschen geradeheraus abgelehnt wird. Bei Frontis Energy denken wir, daß wir das Klima schützen und gleichzeitig besser leben können. Aus gutem Grund, wie die neueste, in Nature Energy veröffentlichte, Studie einer Forschergruppe um Arnulf Grubler vom Internationalen Institut für angewandte Systemanalyse in Laxenburg, Österreich, jetzt gezeigt hat.

Die Gruppe untersuchte mithilfe von Computermodellen das Potenzial von technologischen Trends, den Energieverbrauch zu senken. Dabei gingen die Forscher unter andeem davon aus, daß die Nutzung von Car-Sharing-Diensten zunehmen wird und daß fossile Brennstoffe der Solarenergie und anderen Formen erneuerbarer Energie weichen werden. In einem solchen Szenario deutet ihr Modell darauf hin, daß der weltweite Energieverbrauch trotz Zunahme von Bevölkerung, Einkommen und Wirtschaftstätigkeit um etwa 40% sinken würde. Die Luftverschmutzung und die Nachfrage nach Biokraftstoffen würden ebenfalls sinken, was die Gesundheit und die Nahrungsmittelversorgung verbessern würde.

Im Gegensatz zu vielen früheren Einschätzungen legen die Ergebnisse der Gruppe nahe, daß Menschen den Temperaturanstieg auf 1,5 °C über dem vorindustriellen Niveau begrenzen können, ohne auf drastische Strategien zu setzen, um CO2 aus der Atmosphäre im späteren Verlauf dieses Jahrhunderts abzuziehen.

Nun kann man bezweifeln, daß der Umstieg auf Car-Sharing-Angebote tatsächlich keinen Einschnitt in der Lebensqualität bedeutet. Wir denken trotzdem, daß die individuelle Wahl der Fortbewegung gewahrt werden kann bei gleichzeitigem Klimaschutz. Die Rückgewinnung von CO2 zur Herstellung von Verbrennungkraftstoffen ist z.B. so eine Möglichkeit. Die Power-to-Gas-Technologie ist die fortschrittlichste Variante CO2-Recyclings und sollte in zukünftigen Studien sicherlich berücksichtigt werden. Ein Beispiel dafür ist die Bewertung der Power-to-Gas-Technologie durch eine schweizer Forschergruppe um Frédéric Meylan, die herausgefunden hat, daß die CO2-Bilanz mit herkömmlicher Technologie schon nach wenigen Zyklen ausgeglichen werden kann.

(Bild: Pieter Bruegel der Ältere, Das Schlaraffenland, Wikipedia)

Veröffentlicht am

Eine Landkarte für Energie aus Abfall

Den meisten Lesern unseres Blogs ist bekannt, daß Abfälle leicht in nutzbare Energie umgewandelt werden können, z.B. in Biogasanlagen. Biogas, Biowasserstoff und Biodiesel sind Biokraftstoffe, weil sie biologisch durch Mirkoorganismen oder Pflanzen produziert werden. Anlagen, die Biokraftstoffe produzieren, sind weltweit in Betrieb. Allerdings weiß niemand wo genau sich diese Biokraftstoffanlagen befinden und wo sie am wirtschaftlichsten betrieben werden können. Diese Wissenslücke behindert den Marktzugang von Biokraftstoffproduzenten.

Wenigstens für die Vereinigten Staaten − den größten Markt für Biokraftstoffe − gibt es nun eine Landkarte. Eine Forscherguppe des Pacific Northwest National Laboratory (PNNL) und des National Renewable Energy Laboratory (NREL) hat nun eine detaillierte Analyse des Potenzials für Energie aus Abfällen in den USA im Fachmagazin Renewable und Sustainable Energy Reviews veröffentlicht.

Dabei konzentriete sich die Gruppe auf flüssige Biokraftstoffe, die aus Klärschlämmen durch das Fischer-Tropsch-Verfahren gewonnen werden können. Das industrielle Verfahren wurde ursprünglich in Nazi-Deutschland zur Kohleverflüssigung eingesetzt, kann aber auch auf andere organische Materialien, wie z.B. Biomasse, angewendet werden. Das resultierende Öl ähnelt Erdöl, enthält aber auch geringe Mengen an Sauerstoff und Wasser. Dabei können Nährstoffe, wie Phosphat zurückgewonnen werden.

Die Forschergruppe koppelte die besten verfügbaren Informationen zu diesen organischen Abfällen aus einer bestehenden Datenbank mit Computermodellen, um die Mengen und die beste geografische Verteilung der potenziellen Produktion von flüssigen Biokraftstoff abzuschätzen. Die Ergebnisse deuten darauf hin, daß die Vereinigten Staaten jährlich mehr als 20 Milliarden Liter flüssigen Biokraftstoff produzieren könnten.

Zudem fand die Gruppe heraus, daß das Potenzial für flüssigen Biokraftstoff aus Klärschlamm öffentlicher Kläranlagen 4 Milliarden Liter pro Jahr beträgt. Diese Ressource wurde im ganzen Land verbreitet gefunden − mit einer hohen Dichte an Standorten in den östlichen Vereinigten Staaten, sowie in den größten Städten. Tierdung hat ein Potenzial für 10 Milliarden Liter flüssigen Biokraftstoff pro Jahr. Besonders im Mittleren Westen befinden sich die größten unerschlossenen Ressourcen.

Das Potenzial für flüssigen Biokraftstoff aus Lebensmittelabfällen folgt ebenfalls der Bevölkerungsdichte. Für Ballungsräume wie Los Angeles, Seattle, Las Vegas, New York usw. wird geschätzt, daß deren Abfälle mehr als 3 Milliarden Liter pro Jahr produzieren könnte. Allerdings hatten Lebensmittelreste auch die niedrigste Umwandlungseffizienz. Dies ist auch die größte Kritik am Fischer-Tropsch-Verfahren. Anlagen zur Produktion von signifikanten Mengen Flüssigkraftstoff sind bedeutend größer, als herkömmliche Raffinerien, verbrauchen viel Energie und produzieren mehr CO2, als sie einsparen.

Bessere Verfahren zur Biomasseverflüssigung und eine effizientere Verwertung von Biomasse bleiben also nach wie vor eine Herausforderung für Industrie und Wissenschaft.

(Foto: Wikipedia)

Veröffentlicht am

CO2 Netto und Brutto − photosynthetische Betriebswirtschaft mit Algen

Daß Algen nicht nur CO2 speichern, sondern auch freisetzen, ist manchen Interessierten sicherlich bekannt. Bis jetzt unbekannt war allerdings, daß Algen durch die Klimaerwärmung sogar zusätzliches CO2 freisetzen können. Das fanden jetzt der Algenforscher Chao Song und seine Kollegen von der University of Georgia in Athens, GA heraus.

Wie die Forscher im Fachblatt Nature Geoscience publizierten, beschleunigt sich der Stoffwechsel von Algen durch höhere Wassertemperaturen in großen Flüssen. Das könnte dazu führen, daß einige Flüsse mehr CO2 freisetzen als bisher, wodurch sich die Erderwärmung noch weiter beschleunigen könnte. Zwar würde sich auch die Photosyntheserate in Flußalgen erhöhen, doch Pflanzen an den Ufern der Flüsse wären noch schneller. Der mikrobielle Abbau des Pflanzenmaterials würde das so fixierte CO2 sofort wieder freisetzen. Das heißt, konkurrierende Mikroorganismen würden die Flußalgen überwachsen oder die Algen müßten ihren Stoffwechsel der Konkurrenz anpassen − was auch tun.

Um den Nettoeffekt solcher Veränderungen zu berechnen, überwachten die Wissenschaftler die Temperatur, den gelösten Sauerstoffgehalt und andere Parameter in weltweit 70 Flüssen. Dann benutzten sie die Daten für ihre Computermodelle. Diese Modelle deuten darauf hin, daß im Laufe der Zeit die steigenden Photosyntheseraten in einigen Flüssen nicht mit dem Pflanzenwachstum Schritt halten und zu einer Freisetzung von CO2 führen könnten. Diese Nettoerhöhung von 24% des aus Flüssen freigesetzten CO2 könnte im globalen Maßstab einen zusätzlichen Temperaturanstieg von 1 °C bedeuten.

Dem Computermodell fehlen allerdings noch einige Daten. So wurden z.B. die Sedimentierungsraten nicht mit in Betracht gezogen. Außerdem wachsen nicht an allen Ufern Pflanzen. Viele Flußläufe passieren nur spärlich bewachsenes Gebiet. Wie immer ist also mehr Forschung nötig, um bessere Antworten zu erhalten.

(Foto: Wikipedia)