
DOI: 10.13140/RG.2.2.19476.16002
Mit der sich verschärfenden globalen Trinkwasserknappheit wächst der Bedarf an praktikablen und energiesparenden Entsalzungsmethoden. Zu den potentiellen Lösungen zählen osmotische Entsalzungsverfahren wie die kapazitive Deionisierung und deren fortschrittliche Variante, die kapazitive Flußelektrodendeionisierung. Flußelektroden sind strömende Elektroden, bestehend aus in der Flüssigkeit suspendierten leitfähigen Partikeln. Sind diese Partikel elektrisch aufgeladen, verhalten sie sich wie ein Kondensator, gewinnen also kapazitive Eigenschaften.
Bei der Flußelektrodendeionisierung werden fließfähige Kohlenstoffelektroden mit Ionenaustauschermembranen kombiniert. Der Einsatz der Membranen ermöglicht eine kontinuierliche und effiziente Entsalzung. Membranen verursachen einen selektiven Transport geladener Ionen, wobei entgegengesetzt geladene Ionen (Gegenionen) durchgelassen und gleichgeladene Ionen (Koionen) zurückgehalten werden. Dieser selektive Ionentransport ist entscheidend für die gezielte Entfernung von Salzen aus dem Zulaufstrom.
Fortschritte in der Forschung haben zu Verbesserungen von Membraneigenschaften, der damit verbunden Ionenselektivität und dem Design galvanischer Zellen geführt. Dadurch konnten praxisnahe Anwendungen entwickelt werden. So wurde die Flußelektrodendeionisierung z.B. im Jahr 2023 in einer Pilotanlage auf industrielle Umsetzbarkeit getestet.
Die Optimierung der Leistung hängt stark vom Verständnis darüber ab, wie sich der Ionentransport mit unterschiedlichen Membrananordnungen verhält. Ionenaustauschmembranen spielen dabei eine zentrale Rolle bei der Steuerung des Ionentransports. Bestimmte Membrananodnungen, wie z.B. einem Membransandwich bestehend aus Anionen- und Kationenaustauschmembranen konnten die Entsalzung deutlich beschleunigen. Zwar wurden vielversprechende Ergebnisse mit einfachen Salzlösungen wie NaCl und KCl erzielt. Ein Mix aus verschärfenden Ionen, wie er natürlicherweise im Meerwasser vorkommt, ist jedoch deutlich schwieriger.
Forscher der RWTH Aachen haben kürzlich untersucht, wie unterschiedliche Anordnungen von Ionenaustauschmembranen bei der Flußelektrodendeionisierung selektive Entfernung von Ionen aus komplexen Salzgemischen – etwa mit Carbonat- und Sulfationen – beeinflussen. Die Ergebnisse wurden jetzt in der Fachzeitschrift Desalination veröffentlicht. Zwei Deionisierungsmodule mit unterschiedlicher Membrananordnung wurden analysiert. Getestet wurden Membranschichten mit der der Kationenmembran innen und der Anionenmembran außen – und umgekehrt. Beide Konfigurationen erreichten ähnliche Entsalzungleistung. Die Zeit bis zum Erreichen des stabilen Zustands variierte jedoch je nach Anordnung und Pufferkapazität der Flußelektrode.
Die getesteten Anionenaustauschmembranen zeigten eine stärkere Affinität zu Sulfationen als zu Karbonationen, was die Stabilisierung in einigen Versuchen verzögerte. Strategien wie die Reduzierung des Elektrodenvolumens und die gezielte Lenkung bestimmter Ionen entlang des Elektrodenpfads halfen, den stationären Zustand schneller zu erreichen. Diese Ergebnisse unterstreichen erneut die Bedeutung von Membranselektivität, Elektrodeneigenschaften und Systemdesign für die Leistungssteigerung der Flußelektrodendeionisierung, insbesondere bei gemischt-ionischen Wasserquellen.
Die Effektivität der Flußelektrodendeionisierung hängt nicht nur vom Erreichen des stationären Entsalzungszustands ab, sondern auch davon, wie gut Ionenselektivität und Systemanpassung gehandhabt werden. Bei Salzwasser mit mehreren Kationen und Anionen reicht die Membrananordnung allein nicht aus, um die gewünschten Entsalzungsergebnisse zu erzielen. Um diese Herausforderungen zu bewältigen, müssen Strategien wie Membranbeschichtungen oder die Modifikation der Elektrodeneigenschaften in Betracht gezogen werden.
Die Forscher gingen in Ihrer Studie auch auf die Methoden zur Auswertung ihres Ansatzes ein. Interessanterweise reicht für die Bewertung der Entsalzungsleistung die Messung der Leitfähigkeit allein nicht aus. Sie gibt zwar die Gesamtsalzkonzentration an, erfaßt aber nicht die Veränderung in der Salz-Zusammensetzung. Daher sind genauere Bewertungsmethoden erforderlich, um spezifischen Anforderungen gerecht zu werden.
Diese Fortschritte sind entscheidend für die Optimierung der Leistung der Flußelektrodendeionisierung und zur Deckung des wachsenden Bedarfs an effizienten, anpassungsfähigen Wasseraufbereitungstechnologien. Bei Frontis Energy sind wir gespannt auf zukünftige Entwicklungen in der Skalierung dieser richtungsweisenden Technologie.
Bild: Pixabay









