Posted on

Wirtschaftliche Verluste in Europa durch klimawandelbedingte Hochwasser

In Europa stehen Überschwemmungen im Zusammenhang mit starken Schwankungen des Luftdrucks. Diese Schwankungen sind auch als Nordatlantische Oszillation bekannt. Stefan Zanardo und seine Kollegen von Risk Management Solutions in London in Großbritannien, analysierten historische Aufzeichnungen von schweren Überschwemmungen in Europa bis ins Jahr 1870.  Sie verglichen Muster des Atmosphärendrucks zum Zeitpunkt der Überschwemmungen. Wenn sich die Nordatlantische Oszillation im positiven Zustand befindet, treibt ein starkes Tiefdrucksystem in Island Wind und Sturm in ganz Nordeuropa an. Umgekehrt macht sie im negativen Zustand Südeuropa feuchter als sonst. Normalerweise treten Hochwasser in Nordeuropa auf. Sie verursachen den größten Schaden, wenn die Nordatlantische Oszillation im Winter positiv war. Zudem muss bereits ausreichend Regen gefallen sein, um den Boden mit Wasser zu sättigen. Die Luftdruckentwicklung in Europa kann sich mit dem künftigen Klimawandel ändern, und die öffentlichen Verwaltungen sollten dies bei der Bewertung des Hochwasserrisikos in einer Region berücksichtigen, so die Wissenschaftler.

Das ist wichtig, weil in Europa Hochwasser häufig für den Verlust von Menschenleben, für  erhebliche Sachschäden, Betriebsunterbrechungen verantwortlich sind. Durch die Klimaerwärmung wird sich diese Situation weiter verschlechtern. Die Risikoverteilung wird sich ebenfalls verändern. Das häufige Auftreten katastrophaler Hochwasserereignisse in den letzten Jahren hat ein starkes Interesse an diesem Problem sowohl im öffentlichen als auch im privaten Sektor ausgelöst. Im öffentlichen  Sektor wurde daran gearbeitet, Frühwarnsysteme zu verbessern. Diese Frühwarnsysteme haben in der Tat einen wirtschaftlichen Nutzen. Darüber hinaus wurden in den europäischen Ländern verschiedene Strategien zur Risikominimierung umgesetzt. Dazu zählen staatliche Eingriffe in den Hochwasserschutz, Massnamhen zur Erhöhung des Risikobewusstseins, sowie Risikotransfer durch eine bessere Verbreitung von Hochwasserversicherungen. Die Bekämpfung der Ursache, nämlich der globalen Erwärmung, hingt dagegen noch stark hinter den Erfordernissen hinterher.

Zusammenhänge zwischen großräumigen Klimamustern, insbesondere der Nordatlantischen Oszillation, und Extremereignissen im Wasserkreislauf auf dem europäischen Kontinent wurden seit langem bekannt. Wie sich dieser Zusammenhang auf wirtschaftliche Risiken durch Hochwasserverluste auswirkt, wurde jedoch noch untersucht. Die zunehmende Hochwasserbelastung und alarmierende Klimawandel-Szenarien sorgen für wachsende Besorgnis über zukünftige wirtschaftliche Verluste durch Hochwasser. Zwar is bekannt, dass klimatische Muster auch meteorologische Ereignisse steuern. Es ist aber nicht immer klar, ob sich diese Verbindung auf das Auftreten von Hochwasserereignissen und die damit verbundenen wirtschaftlichen Verluste auswirkt. In Ihrer Studie zeigen die Forscher, dass tatsächlich ein signifikanter Zusammenhang zwischen der Nordatlantischen Oszillation und den Überschwemmungsverlusten besteht. Dazu verwendeten die Forscher aktuelle Daten aus Hochwasserdatenbanken sowie Katastrophenmodelle. Solche Modelle ermöglichen die Quantifizierung der wirtschaftlichen Verluste, die letztendlich durch die Nordatlantischen Oszillation verursacht werden. Diese Verluste variieren stark zwischen den Staaten der Nordatlantischen Oszillation.

Die Studie zeigt, dass die Nordatlantische Oszillation die durchschnittlichen Verluste auf lange Sicht gut vorhersagen kann. Auf der Grundlage der jüngsten Entwicklung der Vorhersagbarkeit der Nordatlantischen Oszillation argumentieren die Forscher, dass insbesondere die zeitlichen Schwankungen des Hochwasserrisikos, verursacht durch Klimaoszillationen, vorhergesagt werden können.  Das kann helfen, frühzeitig Gegenmaßnahmen zu ergreifen. Dadurch können Schäden durch Hochwasser vermidnert werden. Während die Wissenschaftler ihre Vorhersagen für die Nordatlantischen Oszillation verbessern, wird die Gesellschaft sich besser auf zukünftige Überschwemmungen vorbereiten können.

(Foto: Wikipedia, Stefan Penninger, Schweden)

Posted on

Flüssigbrennstoff aus bio-elektrischen Reaktoren

Bei Frontis Energy haben wir viel darüber nachgedacht, wie man CO2 wiederverwerten kann. Während hochwertige Produkte wie Polymere für medizinische Anwendungen rentabler sind, ist die Nachfrage nach solchen Produkten zu gering, um CO2 in großen Mengen wiederzuverwertten. Das ist aber nötig, um die CO2-Konsentration unserer Atmosphäre auf ein vorindustrielles Niveau zu bringen. Biokraftstoffe, zum Beispiel aus Biomasse, wurden seit langem als Lösung vorgeschlagen. Leider benötigt Biomasse sie zu viel Ackerland. Zudem ist die zugrundeliegende Biochemie zu komplex, um sie in Ihrer Gesamtheit zu verstehen und so effektive Lösungen zu implementieren. Daher schlagen wir einen anderen Weg vor, um das Ziel der Dekarbonisierung unseres Planeten schnell zu erreichen. Das vorgeschlagene Verfahren beginnt mit einem gewünschten Zielkraftstoff und schlägt eine mikrobielle Vergesellschaftung vor, um diesen Kraftstoff herzustellen. In einem zweiten Schritt wird das mikrobielle Konsortium in einem bioelektrischen Reaktor (BER) untersucht.

Mögliche Biosynthesewege zur elektrosynthetischen Kraftstoffgewinnung. CO2 kann für die Herstellung von Flüssigbrennstoff auf mehreren Wegen verwendet werden. Das Endprodukt, langkettige Alkohole, kann entweder direkt als Brennstoff verwendet oder zu Kohlenwasserstoffen reduziert werden. Es werden Beispiele für Bioelektrokraftstoff-Pfade gezeigt, bei denen CO2 und Strom als Ausgangsmaterial verwendet werde. Methan, Acetat oder Butanol sind die Endprodukte. Nachfolgende Verfahren sind 1, aerobe Methanoxidation, 2, direkte Verwendung von Methan, 3 heterotrophe Phototrophen, 4, Aceton-Butanol-Gärung, 5, Biomassegewinnung, 6, Butanol als direktes Endprodukt, 7, weitere Vergärung durch Hefen zu Fuselalkoholen

Unser heutiges atmosphärische CO2-Ungleichgewicht ist die direkte Folge der Verbrennung fossiler Kohlenstoffe. Diese Realität erfordert schnelle und pragmatische Lösungen, um einen weitere CO2-Anstieg zu verhindern. Die direkte Abscheidung von CO2 aus der Luft ist schon bald rentabel. Dadurch wird die Nutzung von Ackerland für den Anbau von Treibstoff verhindert. Die Herstellung von Kraftstoff für Verbrennungsmotoren mit CO2 also Ausgangsmaterial ist kurzfristig die beste Zwischenlösung, da sich dieser Kraftstoff nahtlos in die vorhandene städtische Infrastruktur integriert. Biokraftstoffe wurden in den letzten Jahren intensiv erforscht, insbesondere auf dem neuen Gebiet der synthetischen Biologie. So verführerisch die Anwendung gentechnisch veränderter Organismen (GVO) zu sein scheint, so sind doch traditionell gezüchtete mikrobielle Stämme bereits vorhanden und somit sofort verfügbar. Unter Vermeidung von GVO, wird CO2 bereits heute in BER zur Herstellung von C1-Kraftstoffen wie Methan verwendet. BER können auch zur Herstellung von Kraftstoffvorläufern wie Ameisensäure oder Synthesegas, sowie C1+ -Verbindungen wie Acetat, 2-Oxybutyrat, Butyrat, Ethanol und Butanol eingesetzt werden. Gleichzeitig lassen sich BER gut in die städtische Infrastruktur integrieren, ohne daß kostbares Ackerland benötigt wird. Mit Ausnahme von Methan ist jedoch keiner der vorgenannten bioelektrischen Kraftstoffen (BEKS) in reiner Form leicht brennbar. Während Elektromethan eine im Handel erhältliche Alternative zu fossilem Erdgas ist, ist seine volumetrische Energiedichte von 40-80 MJ/m3 niedriger als die von Benzin mit 35-45 GJ/m3. Abgesehen davon, wird Methan als Kraftstoff von den meisten Automobilnutzern nicht gekauft. Um flüssigen Brennstoff herzustellen, müssen Kohlenstoffketten mit Alkoholen oder besser Kohlenwasserstoffen als Endprodukten verlängert werden. Zu diesem Zweck ist Synthesegas (CO + H2) eine theoretische Option und kann durch die Fischer-Tropsch-Synthese gewonnen werden. Tatsächlich sind Synthesegasvorläufer aber entweder fossile Brennstoffe (z. B. Kohle, Erdgas, Methanol) oder Biomasse. Während fossile Kraftstoffe offensichtlich nicht CO2-neutral sind, benötigt man zur Herstellung von Biomasse Ackerland. Die direkte Umwandlung von CO2 und elektrolytischen Wasserstoff in C1+ -Kraftstoffe wird wiederum durch elektroaktive Mikroben im Dunkeln katalysiert (siehe Titelbild). Dadurch wird die Konkurrenz zwischen Nahrungsmittelanbau und Kraftstoffpflanzen vermieden. Leider wurde nur bislang wenig anwendbares zu elektroaktiver Mikroben erforscht. Im Gegensatz dazu gibt es eine Vielzahl von Stoffwechselstudien über traditionelle mikrobielle Kraftstoffproduzenten. Diese Studien schlagen häufig die Verwendung von GVO oder komplexen organischen Substraten als Vorläufer vor. Bei Frontis Energy gehen wir einen anderen weg. Wir ermitteln systematisch Stoffwechselwege für die Produktion von flüssigem BEKS. Der schnellste Ansatz sollte mit einem Screening von metabolischen Datenbanken mit etablierten Methoden der metabolischen Modellierung beginnen, gefolgt von Hochdurchatztestsin BER. Da Wasserstoff das Zwischenprodukt in der Bioelektrosynthese ist, besteht die effizienteste Strategie darin, CO2 und H2 als direkte Vorläufer mit möglichst wenigen Zwischenschritten zu benutzen. Skalierbarkeit und Energieeffizienz, also wirtschaftliche Machbarkeit, sind dabei entscheident.

Zunächst produziert ein elektrotropher Acetogen Acetat, das von heterotrophen Algen im darauffolgenden Schritt verwendet wird.

Das größte Problem bei der die BEKS-Produktion ist das mangelnde Wissen über Wege, die CO2 und elektrolytisches H2 verwenden. Diese Lücke besteht trotz umfangreicher Stoffwechseldatenbanken wie KEGG und KBase, wodurch die Auswahl geeigneter BEKS-Stämme einem Stochern im Nebel gleichkommt. Trotz der hohen Komplexität wurden Stoffwechselmodelle verwendet, um Wege zur Kraftstoffproduktion in Hefen und verschiedenen Prokaryoten aufzuzeigen. Trotz ihrer Unzulänglichkeiten wurden Stoffwechelatenbanken breits eingesetzt, um Artwechselwirkungen zu modellieren, z.B. mit ModelSEED / KBase (http://modelseed.org/) in einer heterotrophen Algenvergesellschaftung, mit RAVEN / KEGG oder mit COBRA. Ein erster systematischer Versuch für acetogene BEKS-Kulturen, bewies die die Verwendbarkeit von KBase für BER. Diese Forschung war eine Genomstudie der vorhandenen BEKS-Konsortien. Dieselbe Software kann auch in umgekehrt eingesetzt werden, beginnend mit dem gewünschten Brennstoff. Im Ergebnis werden dann die erforderlichen Organismen benannt. Wir beschrieben nun einige BEKS-Kulturen.

Mögliche Kombinationen für die BEKS-Produktion mit Clostridien, 3, oder heterotrophe Algen, 7. Die Weiterverarbeitung erfolt durch Hefen.

Hefen gehören zu den Mikroorganismen mit dem größten Potenzial für die Produktion von flüssigem Biokraftstoff. Bäckerhefe (Saccharomyces cerevisiae) ist das prominenteste Beispiel. Hefen sind zwar für die Ethanolfermentation bekannt, produzieren aber auch Fuselöle wie Butan, Phenyl- und Amylderivate, Aldehyde und Alkohole. Im Gegensatz zu Ethanol, das durch Zuckerfermentation gebildet wird, wird Fuselöl im Aminosäurestoffwechsel synthetisiert, gefolgt von Aldehydreduktion. Es wurden viele Enzyme identifiziert, die an der Reduktion von Aldehyden beteiligt sind, wobei Alkoholdehydrogenasen am häufigsten beobachtet werden. Die entsprechenden Reduktionsreaktionen erfordern reduziertes NADH⁠, es ist jedoch nicht bekannt, ob an Kathoden gebildetes H2 daran beteiligt sein kann.
Clostridien, beispielsweise Clostridium acetobutylicum und C. carboxidivorans, können Alkohole wie Butanol, Isopropanol, Hexanol und Ketone wie Aceton aus komplexen Substraten (Stärke, Molke, Cellulose usw.) oder aus Synthesegas herstellen. Der Clostridienstoffwechsel wurde vor einiger Zeit aufgeklärt und unterscheidet sich von Hefe. Er erfordert nicht zwangsläufig komplexe Substrate für die NAD+-Reduktion, denn es wurde gezeigt, daß Wasserstoff, Kohlenmonoxid und Kathoden Elektronen für die Alkoholproduktion abgeben können. CO2 und Wasserstoff wurden in einem GMO-Clostridium verwendet, um hohe Titer von Isobutanol herzustellen. Typische Vertreter für die Acetatproduktion aus CO2 und H2 sind C. ljungdahlii, C. aceticum und Butyribacterium methylotrophicum. Sporomusa sphaeroides produziert Acetat in BES. Clostridien dominierten auch in Mischkulturen in BER, die CO2 in Butyrat umwandelten. Sie sind daher vorrangige Ziele für eine kostengünstige Produktion von Biokraftstoffen. In Clostridien werden Alkohole über Acetyl-CoA synthetisiert. Diese Reaktion ist reversibel, wodurch Acetat als Substrat für die Biokraftstoffproduktion mit extrazellulärer Energieversorgung dienen kann. In diesem Fall wird die ATP-Synthese durch Elektronenbifurkation aus der Ethanoloxidation oder durch Atmung und Wasserstoffoxidation betrieben. Ob die Elektronenbifurkation oder Atmung mit Alkoholen oder der Ketonsynthese verknüpft sind ist nicht bekannt.
Phototrophe wie Botryococcus produzieren auch C1+ Biokraftstoffe. Sie synthetisieren eine Reihe verschiedener Kohlenwasserstoffe, darunter hochwertige Alkane und Alkene sowie Terpene. Hohe Titer wurden jedoch nur mithilfe von GVOs produziert, was in vielen Ländern aus rechtlichen Gründen ökonomisch schwer möglich ist. Darüber hinaus erfordert die Dehydratisierung / Deformylierung vom Aldehyd zum Alkan oder Alken molekularen Sauerstoff, was deren Produktion in BER unmoeglich macht, da Saurstoff bevorzugt die Kathode oxidiert. Der Olefinweg von Synechococcus hängt auch von molekularem Sauerstoff ab, wobei das Cytochrom P450 an der Fettsäuredecarboxylierung beteiligt ist. Die Anwesenheit von molekularem Sauerstoff beeinflußt die BES-Leistung auch durch den sofortigen Produktabbau. Im Gegensatz dazu zeigen unsere eigenen Vorversuche (siehe Titelfoto) und ein Korrosionsexperiment, daß Algen mit einer Kathode als Elektronendonor im Dunkeln leben können, selbst wenn geringe Mengen Sauerstoff vorhanden waren. Die an der Herstellung einiger Algenkraftstoffe beteiligten Enzyme sind zwar bekannt (wie die Deformylierung von Olefinen und Aldehyden), es ist jedoch nicht bekannt, ob diese Wege durch Wasserstoffnutzung beschritten werden können (möglicherweise über Ferredoxine). Ein solcher Zusammenhang wäre ein vielversprechender Hinweis für Kohlenwasserstoff-erzeugenden Cyanobakterien, die an Kathoden wachsen können. Unsere zukünftige Forschungen wird zeigen, ob wir hier richtig liegen.
Bei Frontis Energy glauben wir, daß eine Reihe anderer Mikroorganismen Potenzial zur BEKS-Produktion haben. Um nicht GVO zurückgreifen zu müssen, müssen BER-kompatible Mischkulturen über rechnergestützte Stoffwechselmodelle aus vorhandenen Datenbanken identifiziert werden. Mögliche Intermediate sind z.Z. unbekannt. Der Kenntnis ist aber Voraussetzung für profitable BEKS-Reaktoren.

Posted on

Ammoniak als Energiespeicher #2

Kürzlich berichteten wir an dieser Stelle über Pläne australischer Unternehmer und ihrer Regierung, Ammoniak (NH3) als Energiespeicher für überschüssige Windenergie zu benutzen. Wir schlugen vor, Ammoniak und CO2 aus Abwasser in Methangas (CH4) umzuwandeln, da dieses stabiler und leichter zu transportieren ist. Das Verfahren folgt der chemischen Gleichung:

8 NH3 + 3 CO2 → 4 N2 + 3 CH4 + 6 H2O

Jetzt haben wir dazu einen wissenschaftlichen Artikel im Onlinemagazin Frontiers in Energy Research veröffentlicht. Darin zeigen wir zunächst, daß der Prozess thermodynamisch möglich ist, und zwar indem methanogene Mikroben den durch Elektrolyse gebildeten Wasserstoff (H2) aus dem Reaktiongleichgewicht entfernen. Dadurch nähern sich die Redoxpotentiale der oxidativen (N2/NH3) und der reduktiven Halbreaktionen (CO2/CH4) so weit an, daß der Prozess spontan ablaufen kann. Er benötigt nur noch einen Katalysator, der in Form von Mikroben aus dem Abwasser gewonnen wird.

Pourbaix-Diagramm der Ammoniumoxidation, Wasserstoffbildung und CO2-Reduktion. Ab pH 7 wird die an Methanogenese gekoppelte Ammoniumoxidation thermodynamisch möglich.

Dazu haben wir zunächst nach entsprechenden Mikroben gesucht. Für unsere Experimente in mikrobiellen Elektrolysezellen haben wir Mikroorganismen aus Sedimenten des Atlantischen Ozeans vor Namibia als Impfmaterial benutzt. Meeressedimente sind besonders geeignet, da diese vergleichsweise reich an Ammoniak, frei von Sauerstoff (O2) und relativ arm an organischem Kohlenstoff sind. Der Ausschluß von Sauerstoff is wichtig, da dieser normalerweise als Oxidationsmittel zur Entfernung von Ammoniak dient:

2 NH3+ + 3 O2 → 2 NO2 + 2 H+ + 2 H2O

Der Prozess ist auch als Nitrifikation bekannt und hätte eine Art elektrochemischen Kurzschluß bewirkt, da dabei die Elektronen vom Ammoniak direkt auf den Sauerstoff übertragen werden. Dadurch wäre die Anode (die positive Elektronen-akzeptierende Elektrode) umgangen worden und die Energie des Ammoniaks wäre dann im Wasser gespeichert. Die anodische Wasseroxidation verbraucht aber viel mehr Energie, als die Oxidation von Ammoniak. Zudem sind Edelmetalle zur Wasseroxidation notwendig. Ohne Sauerstoff an der Anode zu produzieren, konnten wir zeigen, daß die Oxidation von Ammonium (die gelöste Form des Ammoniaks) an die Produktion von Wasserstoff gekoppelt ist.

Oxidation von Ammonium zu Stickstoffgas ist gekoppelt an Wasserstoffproduktion in mikrobiellen Elektrolysereaktoren. Die angelegten Potentiale sind +550 mV bis +150 mV

Dabei war es wichtig, daß das elektrochemische Potential an der Anode negativer, als die +820 mV der Wasseroxidation waren. Zu diesem Zweck haben wir einen Potentiostat benutzt, der das elektrochemische Potential konstant zwischen +550 mV und +150 mV hielt. Bei all diesen Potentialen wurde an der Anode N2 und an der Kathode H2 produziert. Da die einzige Elektronenquelle in der Anodenkammer Ammonium war, konnten die Elektronen zur Wasserstoffproduktion also nur von der Ammoniumoxidation stammen. Zudem war Ammonium auch die einzige Stickstoffquelle für die Produktion von N2. Demzufolge ware die Prozesse also gekoppelt.

Im darauffolgenden Schritt wollten wir zeigen, daß dieser Prozess auch eine nützliche Anwendung hat. Stickstoffverbindungen kommen oft in Abwässern vor. Sie bestehen vorwiegend aus Ammonium. Es finden sich aber auch Medikamente und deren Abbauprodukte darunter. Gleichzeitig werden 1-2% der weltweit produzierten Energie im Haber-Bosch-Prozess verbraucht. Im Haber-Bosch-Prozess wird N2 der Luft entnommen, um Stickstoffdünger herzustellen. Weitere 3% unserer produzierten Energie werden dann verwendet, den so gewonnen Stickstoff wieder aus dem Abwasser zu entfernen. Diese sinnlose Energieverschwendung erzeugt 5% unserer Treibhausgase. Dabei könnte Abwasser sogar eine Energiequelle sein⁠. Tatsächlich wird ein kleiner Teil seiner Energie schon seit mehr als einem Jahrhundert als Biogas zurückgewonnen. Während der Biogasgewinnung wird organisches Material aus Klärschlamm durch mikrobiellen Gemeinschaften zersetzt und in Methan umgewandelt:

H3C−COO + H+ + H2O → CH4 + HCO3 + H+; ∆G°’ = −31 kJ/mol (CH4)

Die Reaktion erzeugt CO2 und Methan im Verhältnis von 1:1. Das CO2 im Biogas macht es nahazu wertlos. Folglich wird Biogas häufig abgeflammt. Die Entfernung von CO2 würde das Produkt enorm aufwerten und kann durch Auswaschen erreicht werden. Auch stärker reduzierte Kohlenstoffquellen können das Verhältnis vom CO2 zum CH4 verschieben. Dennoch bliebe CO2 im Biogas. Durch die Zugabe von Wasserstoff in Faultürme würde dieses Problem gelöst. Der Prozess wird als Biogasaufbereitung bezeichnet. Wasserstoff könnte durch Elektrolyse erzeugt werden:

2 H2O → 2 H2 + O2; ∆G°’ = +237 kJ/mol (H2)

Dafür wären aber, wie schon eingangs erläutert, teure Katalysatoren notwendig und der Energieverbrauch wäre höher. Der Grund ist, daß die Elektrolyse von Wasser in bei einer hohen Spannung von 1,23 V stattfindet. Eine Möglichkeit, dies zu umgehen, bestünde darin, das Wasser durch Ammonium zu ersetzen:

2 NH4+ → N2 + 2 H+ + 3 H2; ∆G°’ = +40 kJ/mol (H2)

Mit Ammonium erfolgt die Reaktion bei nur 136 mV wodurch man entsprechend viel Energie einsparen könnte. Mit geeigneten Katalysatoren könnte somit Ammonium als Reduktionsmittel für die Wasserstoffproduktion dienen. Mikroorganismen im Abwasser können solche Katalysatoren sein. Unter Auschluß von Sauerstoff werden Methanogene im Abwasser aktiv und verbrauchen den produzierten Wasserstoff:

4 H2 + HCO3 + H+ → CH4 + 3 H2O; ∆G°’ = –34 kJ/mol (H2)

Die methanogene Reaktion hält die Wasserstoffkonzentration so niedrig (üblicherweise unter 10 Pa), daß die Ammoniumoxidation spontan, also mit Energiegewinn abläuft:

8 NH4+ + 3 HCO3 → 4 N2 + 3 CH4 + 5 H+ + 9 H2O; ∆G°’ = −30 kJ/mol (CH4)

Genau dies ist die eingangs beschriebene Reaktion. Bioelektrische Methanogene wachsen an der Kathode und gehören zur Gattung Methanobacterium. Angehörige dieser Gattung sind besonders auf niedrige H2-Konzentrationen spezialisiert.

Der geringe Energiegewinn ist auf die geringe Potentialdifferenz von Eh = +33 mV der CO2-Reduktion gegenüber der Ammoniumoxidation zurückzuführen (siehe Pourbaix-Diagramm oben). Es reicht kaum aus, um die notwendige Energie von ∆G°’= +31 kJ/mol für die ADP-Phosphorylierung bereitzustellen. Darüber hinaus ist die Stickstoffbindungsenergie von Natur aus hoch, was starke Oxidationsmittel wie O2 (Nitrifikation) oder Nitrit (Anammox) erfordert.

Anstelle starker Oxidationsmittel kann eine Anode z.B. bei +500 mV die Aktivierungsenergie für die Ammoniumoxidation bereitgestellen. Allzu positive Redoxpotentiale treten jedoch in anaeroben Umgebungen natürlich nicht auf. Daher haben wir getestet ob die Ammoniumoxidation an die hydrogenotrophe Methanogenese gekoppelt werden kann, indem ein positives Elektrodenpotential ohne O2 angeboten wird. Tatsächlich konnten wir dies in unserem Artikel nachweisen und haben das Verfahren zum Patent angemeldet. Mit unserem Verfahren könnte man z.B. Ammonium profitabel aus Industrieabwässern entfernen. Er ist auch zur Energiespeicherung geeignet, wenn man z.B. Ammoniak mithilfe überschüssiger Windenergie synthetisiert.

Posted on

Korrosion

Korrosion ist der chemische Angriff auf Werkstoffe, der, wenn nicht gestoppt, schließlich zu deren Zerstörung führt. Korrosion wird durch Elektrolyte, Gase, Lösungen oder Schmelzen verursacht. Korrosion tritt in verschiedenen Formen auf, abhängig von dem korrodierenden Werkstoffe und dem Korrosionsmittel. Auf Metallen, zum Beispiel Eisen, ist seine sichtbarste Rost, in Form von Löchern bzw. Oberflächenkorrosion. Kristalline Korrosion von Metallen folgt Korngrenzen auf Oberflächen. Korrosion wird stark beschleunigt, wenn der korrodierende Werkstoff in elektrolytischem Kontakt mit einem edleren Material steht. Ist dieser elektrolytische Kontakt eine flüssige oder feuchte Substanz, wird die Korrosion weiter beschleunigt. Der Grund ist, daß das korrodierende Material als Anode (Lokalelement) einer galvanischen Zelle wirkt. Mechanische Beanspruchung kann ebenfalls die Korrosion beschleunigen.

Eine einfache galvanische Zelle. Das Metall auf der linken Seite fungiert als Anode und wird in Metallionen (M+) aufgelöst. An der Kathode wird Wasser in Wasserstoffgas umgewandelt.

Korrosionsschutz wird erreicht, indem der anfällige Werkstoff mit korrosionsbeständigen Film überzogen wird. Eine solche Beschichtung kann ein anderes Metall (Verzinken oder Verchromen), sowie Glasur (Emaille) sein. Schutzfarbe ist eine weit verbreitete Maßnahme und wird durch Zugabe von Pigmenten (Mennige, Bleiweiß) oder organischen Substanzen erreicht. Enge Plastikfolie wird ebenfalls verwendet. Eisen wird durch Vehüttung zu Edelstahl geschützt. Dabei werden u.a. Kohle, Chrom, Nickel usw. hinzugefügt.

Die Opferanode ist kein sich auflösendes Metall, sondern organisches Material. Mikroben zerstören diese organischen Stoffe und produzieren CO2

Wenn der Werkstoff permanent Wasser ausgesetzt ist, wird häufig sogenannter kathodischer Schutz ein gesetzt. Um kathodischen Schutz zu erreichen, wird der anfällige Werkstoff mit Opferanoden (Stäben oder Platten) verbunden, die sich im Laufe der Zeit auflösen. Alternativ wird oft Gleichstrom verwendet. Unsere zum Patent angemeldete Lösung stellt eine mikrobielle Anode zur Verfügung, die organisches Material im Boden oder in der Kanalisation als Opferanode verwendet. Statt das Metall aufzulösen, wird organische Substanz von Mikroben abgebaut.

Wenn ein Potentiostat zu der galvanischen Zelle hinzugefügt wird, kann der kathodische Schutz auf das geschützte Material oder die organischen Stoffe zugeschnitten werden.

Neben Metallen können auch natürliche Stoffe (Holz, Seide) und künstliche Polymere (Kunststoffe, Gummi) korrodieren. Weichholz ist im Allgemeinen widerstandsfähiger als Hartholz. Schwache Säuren schädigen Holz normalerweise nicht. Der Korrosionsschutz von Holz wird jedoch durch Anstreichen oder Tränken mit Schutzmitteln erreicht. Künstliche Polymere korrodieren selten so schnell wie Metalle, und wenn sie dies tun, wird zum Zeitpunkt ihrer Synthese ein Schutzmittel in die Polymerformel eingemischt.

Posted on

Windenergie

Windkraft ist die Umwandlung von Windenergie in mechanische oder elektrische Energie. Windkraftanlagen erzeugen elektrische Energie und Windmühlen erzeugen mechanische Energie. Windpumpen werden als Wasserpumpen oder Entwässerung eingezetzt. Windsegel teiben Segelboote an und helfen beim Lenken.

Die Windkraft ist seit ihrer ersten Verwendung in Segelschiffen weit verbreitet. Seit mehr als 2.000 Jahren werden Windräder als mechanische Energiequelle genutzt. 1887 wurde die erste Umwandlung der mechanischen Energie einer Windmühle in elektrische Energie in Schottland von James Blythe durchgeführt. Windenergie ist sauberer, sicherer und und sehr oft auch günstiger als fossile Kraftstoffe. Aus diesem Grund ist die Windenergieerzeugung eine der am schnellsten wachsenden erneuerbaren Ressourcen der Welt. So wurde z.B. im Jahr 2015 38% der erneuerbaren Energie in der EU sowie den USA durch Windanlagen erzeugt.

EU-weiter Verbrauch von erneuerbaren Energieen. WSH ist der Gesamtanteil erneuerbarer Energie am eurpäischen Energiemarkt. „Hydro“ ist der Anteil an Wasserkraft an erneuerbaren Energieen

Windparks sind Gruppen von Windturbinen, die zusammenarbeiten, um zusammen große Mengen an elektrischer Energie zu erzeugen. Es gibt zwei Arten von Windparks, Onshore- und Offshorewindparks. Mit konstantem und zuverlässig starkem Wind liefern Offshore-Windparks eine gleichmäßig große Menge an Energie. Die Kosten für den Bau dieser Offshore-Windparks können jedoch nicht mit denen der Onshore-Windparks konkurrieren.

Erzeugung erneuerbarer Energie in den USA und Kanada.

 

Posted on

Wasserkraft

Wasserkraft ist Elektrizität, die durch die Bewegung von Wasser erzeugt wird.

Im späten 19. Jahrhundert wurde Wasserkraft zu einer großtechnisch funktionierenden Methode zur Stromerzeugung. Gewässer mit hohen Fallhöhen, wie z.B. Gerbirgsbäche oder -flüsse, sowie starke Strömungen sind die besten Kandidaten für die Erzeugung von Strom aus Wasserkraft. Der Strom liefert beträchtliche Energie, die genutzt wird, indem Wasser ein Turbine zum Rotiern dringt und dadurch mechanische Energie erzeugt. Wenn diese Turbine an einen elektrischen Generator angeschlossen wird, wird mechanische Energie in elektrische Energie umgewandelt. Die Niagarafälle und der Hoover-Staudamm sind zwei Beispiele für Elektrizität, die auf diese Weise produziert wird.

Wasserkraft liefert etwa 20% des weltweiten Stroms.

Die Wasserkraft hat in jüngster Zeit an Popularität gewonnen. Die Weltbank nannte sie eine praktikable Lösung, um mit dem wachsenden Energiebedarf Schritt zu halten bei gleichzeitiger Vermeidung von CO2−Emissionen.

(Foto: Vince Mig)

Posted on

Solarenergie

Überraschenderweise ist Solarenergie tatsächlich einer Form der Kernenergie. Unsere Sonne setzt thermische Energie frei, die für das Leben auf der Erde essentiell ist. Diese thermische Energie ist das Ergebnis der Kernfusion des Wasserstoffs im Kern der Sonne. Wenn sich zwei Wasserstoffisotope vereinigen, geben sie ein Heliumatom, ein freiwerdendes Neutron und eine beträchtliche Menge an Strahlungsenergie ab. Während diese Lichtstrahlen zwischen 10.000 und 170.000 Jahren benötigen, um von ihrem Kern aus die Oberfläche der Sonne zu erreichen, benötigen sie nur etwa 8 Minuten, um die Erde zu erreichen, wo sie uns Licht und Wärme und Energie für Sonnenkollektoren liefern.

Solartechnologie wandelt Sonnenlicht in Elektrizität um, entweder direkt mit Photovoltaik (PV) oder indirekt mit Solarthermieanlagen.

Solarthermieanlagen verwenden Linsen oder Spiegel, um eine große Fläche von Sonnenlicht in einen kleinen Strahl zu fokussieren. Auf diese Weise wird die Sonnenergie gebündelt und in Wärme umgewandelt. Durch Hinzufügen einer Dampfturbine wird dieser sogenannte Solarthermie in elektrische Energie umgewandelt. Seit 2014 nutzt Spanien mit einer Gesamtkapazität von 2 GW die größten Solarthermieanlage weltweit.

Die Photovoltaik arbeitet unter Ausnutzung des photovoltaischen Effekts, der die Erzeugung von elektrischem Strom in einem photoelektrischen Material nach Belichtung bewirkt. Der photovoltaische Effekt steht in direktem Zusammenhang mit dem photoelektrischen Effekt, ist jedoch nicht mit diesem zu verwechseln. Der photoelektrische Effekt ist das Phänomen, dass Elektronen von einem gegebenen Metall freigesetzt werden, wenn das gegebene Metall Licht ausgesetzt wird. Die Photovoltaik wurde anfangs und auch heute noch genutzt, um kleine und mittelgroße Anwendungen zu betreiben, vom Taschenrechner mit einer einzigen Solarzelle bis hin zu netzfernen Häusern, die von einer Photovoltaikanlage angetrieben werden. Sie sind eine wichtige und relativ kostengünstige Quelle für elektrische Energie, z.B. wenn die Netzleistung unzureichend ist oder die Netzanbindung zu teuer bzw. nicht verfügbar ist.

Posted on

Brennstoffzellen

Brennstoffzellen sind eine spezielle Art von galvanischen Zellen. Sie können mit festem, flüssigem oder gasförmigem Brennstoff betrieben werden. Die elektrochemische Oxidation des Brennstoffs ist mit Energiegewinn gekoppelt, der in Form von Elektrizität – im Gegensatz zur Wärme während der chemischen Oxidation – aufgenommen wird. Daher sind Brennstoffzellen direkte Energiewandler mit hoher Effizienz. Die meisten Brennstoffzellen erreichen eine Energieumwandlungseffizienz von 70-90%. Wenn die Umwandlung 100% beträgt, wird keine Abwärme erzeugt. Dieser ideale Fall der Energieumwandlung wird als „kalte Verbrennung“ bezeichnet, die 1955 von Justi & Winsel erstmals demonstriert wurde. Der Brennstoff für diesen Prozess ist Wasserstoffgas, H2. Es tritt in eine poröse Nickelröhre (Gasdiffusionselektrode) ein, wo es in Protonen und Elektronen dissoziiert wird gemäß:

H2 → 2 H+ + 2 e

Wasserstoff (H2 ) und Sauerstoff (O2 ) werden in die Brennstoffzelle gepumpt, wo sie durch zwei Elektroden und das Elektrolyt zu Wasser verbrannt werden.

Während der Desorption setzt jedes H-Atom ein Proton (H+ ) und ein Elektron (e ) frei. Das Elektron wird auf die Elektrode, Anode genannt, und das Proton in den Elektrolyten entladen. Als Ergebnis des Dissoziationsprozesses wird die Anode negativ geladen. Auf der zweiten Elektrode, Kathode genannt, wird dann Sauerstoffgas O2 mit dem Elektron geladen und in O2- -Ionen umgewandelt. Die Kathode wird positiv geladen. Beide Elektroden sind in Elektrolyten eingetaucht, in den meisten Fällen eine Kaliumhydroxid, KOH, Lösung von Wasser. Im Elektrolyt sind Kationen (H+ ) und Anionen (O2-) bilden Wasser durch chemische Fusion. Theoretisch beträgt der Wirkungsgrad 92%, begleitet von geringer Abwärme – im Gegensatz zur normalen Verbrennung, bei der Wärme von ~ 3.000ºC erzeugt wird.

2 H2 + O2 → H2O

Unlike heat power generators, fuel cells achieve high direct energy conversion efficiency because they avoid the additional step of heat generation. Besides shortcutting heat generation, fuel cells operate without mechanical parts and emit no noise, flue gas, or radioactivity, which puts them in focus of future developments. Due to their high energy efficiency and the high energy density of hydrogen, fuel cells are ideal for electric vehicles. In space flight, fuel cells were first used during Apollo Program between 1968 and 1972, in the Skylab Project 1973, the Apollo-Soyus Program, the Space Shuttle Program, and on board the International Space Station. There, they provide the electrical power for tools and water treatment. One benefit is that the final product of cold combustion in fuel cells is that water is the final product which is used by astronauts on their missions.

Es gibt verschiedene Arten von Brennstoffzellen, aber alle haben gemeinsam, dass sie aus Elektroden für die Brennstoff- und O2 -Aktivierung und elektrolytischen Leitern zwischen diesen Elektroden bestehen. Neuere Variationen von Brennstoffzellen umfassen Methanbrennstoffzellen und mikrobielle Brennstoffzellen. Aufgrund der hohen Aktivierungsenergie von Methan arbeiten Methanbrennstoffzellen üblicherweise bei hohen Temperaturen unter Verwendung von Festelektrolyten. Mikrobielle Brennstoffzellen verwenden Mikroben als anodischen Katalysator und organisches Material in Wasser als Brennstoff. Dies macht sie ideal für die Abwasserbehandlung.

Posted on

Bioenergie

Bioenergie ist erneuerbare Energie, die aus Biomasse gewonnen wird. Biomasse ist organisches Material, das von lebenden oder toten Organismen stammt. Jede Art von Biomasse wurde einmal mithilfe von Sonnenlicht in chemische Energie umgewandelt und dann gespeichert.

Das bedeutet auch, daß Biomasse direkt verbrannt werden kann. Biokraftstoffe können aus Biomasse in fester, flüssiger oder gasförmiger Form hergestellt werden. Biostrom ist sowohl die direkte Nutzung von Biomasse als auch die Umwandlung von Biomasse in Öle, Biogas oder andere Brennstoffe zur Stromerzeugung.

Holz, das verbrannt wird, um Feuer zu machen, ist ein weiteres Beispiel für Biomasse. Holz ist der weltweit am meisten verbreitete Biokraftstoff. Ethanol ist ebenfalls ein populärer Biokraftstoff. Er wird durch Fermentation von Zuckern erzeugt. Der Prozess ist der selbe wie bei der alkoholischen Gärung zur Herstellung von Bier oder Wein.

Die Verbrennung von Biomasse erzeugt zwar ungefähr die gleiche Menge an CO2 wie die fossiler Brennstoffe, da Biokraftstoffe jedoch in heutiger Zeit gebildet wurden, wird durch ihre Verbrennung kein zusätzliches CO2 in die Atmosphäre abgegeben. Biokraftstoffe können auch als Kraftstoffadditive eingesetzt werden, um die CO2-Emissionen Benzinpreise zu senken. Es gibt aber auch Fahrzeuge, die vorwiegend von Biokraftstoffen angetrieben werden. Bioethanol ist in den USA und Brasilien weit verbreitet, während Biodiesel vorwiegend in der Europäische Union produziert wird.

Posted on

Leistungsfähigere bioelektrische Reaktoren durch Nanomaterialien

Seit Professor Potters Entdeckung der Fähigkeit von Mikroben, organische Moleküle mithilfe von mikrobiellen Brennstoffzellen (MBZ) elektrische Energie umzuwandeln (Potter MC, 1911, Proc Roy Soc Lond Ser B 84: 260–276), wurde viel Forschung betrieben um deren Leistung zu verbessern. Leider hat dies nicht zu einer wirtschaftlich sinnvollen Technologie geführt. MFCs schafften es nie aus den Klassenräumen heraus. Durch die jüngsten Fortschritte bei der Entwicklung von Nanomaterialien könnte sich das jetzt ändern.

Der Fokus der Entwicklung von Nanomaterialien in bioelektrischen Reaktoren lag gewöhnlich auf Elektroden, Membranen und den Elektrolyten mit deren nahezu unerschöpflichen Möglichkeiten, leistungsfähige Verbundstoffe herzustellen. Die Vorteile solcher Materialien sind ihre große Oberfläche, Kosteneinsparungen und Skalierbarkeit. All dies ist erforderlich, um bioelektrischen Reaktoren erfolgreich zu kommerzialisieren. Die großtechnische kommerzielle Anwendung könnte die Abwasserbehandlung sein. In unserer kürzlich veröffentlichten Literaturstudie haben wir herausgefunden, dass es keinen gemeinsamen Benchmark für Leistung gibt, wie er in der Photovoltaik oder bei Batterien üblich ist. Um unsere Ergebnisse zu normalisieren, verwendeten wir Dollar pro Peak-Leistungskapazität als (USD/Wp), wie es in der Photovoltaik Standard ist. Die durchschnittlichen Kosten für Luftkathoden von MBZ betragen 4.700 USD/Wp (2.800 USD/m²). Platin auf Kohlenstoff (Pt/C) und Kohlenstoffnanofasern sind mit 500 USD/Wp (Pt/C 2.800 USD/m²; Nanofasern 2.000 USD/m²) die besten Materialien.

Wir haben herausgefunden, daß kohlenstoffbasierte Nanomaterialien oft eine mit Pt/C vergleichbare Leistung liefern. Während MBZ noch weit davon entfernt sind, rentabel zu sein, sind bereits mikrobielle Elektrolysezellen bereits im Markt angekommen. Mit diesen neuen kohlenstoffbasierten Nanomaterialien rücken MBZ jedoch näher und werden zu einer wirtschaftlichen Realität. Graphen- und Kohlenstoffnanoröhrchen sind vielversprechende Materialien, wenn sie mit Mineralien wie Mangan- oder Eisenoxiden kombiniert werden. Der Preis für Graphen ist jedoch immer noch zu hoch, um MBZ in der Abwasserbehandlung zur wirtschaftlichen rentabel zu machen. Die Kosten für die mikrobielle Elektrolyse sind allerdings bereits so niedrig, dass sie eine ernstzunehmende Alternative zur herkömmlichen Abwasserbehandlung darstellen, wie wir im obigen Beitragsbild zeigen. Bei stark belastetem Abwasser könnte eine Aufbereitungsanlage tatsächlich zu einem Kraftwerk werden, dessen überschüssiger Strom am Markt verkauft werden kann. Die Kosten für die mikrobielle Elektrolyse werden durch die Kombination von billigem Stahl und Graphit reduziert.

Zusammenhang zwischen Reaktorkapazität und Gesamtelektrodenkosten einschließlich Anode und Kathode. Fehler sind Standardabweichungen von vier verschiedenen Rohrreaktorkonstruktionen. Anoden sind Graphitgranulate und Kathoden sind Stahlrohre

Graphit wiederum ist das Ausgangsmaterial für Graphen, einem vielversprechenden Stoff für MBZ-Elektroden. Wenn Graphitflocken auf wenige Graphenschichten reduziert werden, sind einige der technologisch wichtigsten Eigenschaften des Materials stark verbessert. Dazu gehören die Gesamtoberfläche und die Elastizät. Graphen ist also ein sehr dünner Graphit. Viele Hersteller von Graphen nutzen dies, um ein Material zu verkaufen, das in Wirklichkeit nur billiger Graphit ist. Im Fachmagazin Advanced Materials schreiben Kauling und Kollegen eine systematische Studie von Graphen von 60 Herstellern und stellen fest, daß viele hochpreisige Graphenprodukte hauptsächlich aus Graphitpulver bestehen. Die Studie ergab, daß weniger als 10% des Materials in den meisten Produkten aus Graphen bestand. Keines der getesteten Produkte enthielt mehr als 50% Graphen. Viele waren stark kontaminiert, höchstwahrscheinlich mit Chemikalien, die im Produktionsprozess verwendet wurden. Dies kann oft dazu führen, daß ein Material katalytische Eigenschaften hat, die ohne Verunreinigung nicht beobachten worden wären, wie z.B. die Materialforscher Wang und Pumera berichteten.

Es gibt viele Verfahren zur Herstellung von Graphen. Eines der einfachsten ist die Ablagerung auf einer Metallischen Oberfläche, wie wir es in unserer neuesten Publikation beschreiben:

Im Allgemeinen werden einschichtiges Graphen (ESG) und mehrlagiges Graphen (MLG) durch chemische Gasphasenabscheidung (CVD) aus einem Kohlenstoffvorläufer (kohlenstoffhaltigen Gasen) auf katalytischen Metalloberflächen synthetisiert. In einem oberflächenvermittelten Gasphasenabscheidungsprozess kann der Kohlenstoffvorläufer, z. Isopropylalkohol (IPA) wird an der Metalloberfläche zersetzt, z. Cu oder Ni. Um die Anzahl der gebildeten Graphenschichten zu kontrollieren, muss die Löslichkeit des Kohlenstoffvorläufers auf der Metallkatalysatoroberfläche berücksichtigt werden. Aufgrund der geringen Löslichkeit des Vorläufers in Cu kann ESG gebildet werden. Es ist schwierig, ESG auf der Oberfläche eines Metalls mit einer hohen Affinität für den Vorläufer zu züchten.

Protokoll:
Das Protokoll ist eine wirtschaftliche, sichere und einfache Methode zur Synthese von MLG-Filmen durch Gasphasenabscheidung in 30–45 Minuten in einem Chemielabor. Eine Nickelfolie wird zum Ätzen in Essigsäure getaucht und anschließend in ein luftdichtes Quarzrohr überführt, das das System vor Umgebungssauerstoff und Wasserdampf schützt. Stickstoffgas wird durch IPA geblasen, und das resultierende IPA-gesättigte Gas wird durch das geschlossene System geleitet. Dabei werden die Abgase in einem Becher mit Wasser- oder Gaswaschflasche gewaschen. Der Strom wird 5 min lang mit einer Geschwindigkeit von ca. 50 cm3/min gespült. Sobald die Flamme eines Meker-Brenners 575–625 °C erreicht, wird sie unter der Nickelfolie positioniert, sodaß ausreichend Energie für die Bildung von Graphen zur Verfügung steht. Die Flamme wird nach 5–10 Minuten gelöscht, um die Reaktion zu stoppen und das System 5 min lang abzukühlen. Man erhält die mit Graphen beschichtete Ni-Folie.

Aber wie dünn müssen Graphitflocken sein, um sich als Graphen zu verhalten? Eine verbreitete Idee, die von der International Organization for Standardization (ISO) unterstützt wird, ist, daß Flocken mit mehr als zehn Graphenschichten im Wesentlichen aus Graphit bestehen. Die Thermodynamik gibt vor, daß sich jede Atomschicht in einer Flocke mit zehn oder weniger Schichten bei Raumtemperatur als einzelner Graphenkristall verhält. Darüber hinaus verstärkt sich die Steifheit der Graphitflocken mit der Schichtdicke, was bedeutet, daß dünne Graphenflocken um Größenordnungen elastischer sind als dickere Graphitflocken.

Um tatsächlich Graphen in bioelektrischen Reaktoren einsetzen zu können, muß man es leider immernoch selbst herstellen. Die Zutaten finden Sie in unserem Do-It-Yourself Shop.