Veröffentlicht am

Wechselnder Elektrolytfluß an der Kathode verringert die Anlaufzeit bei der mikrobiellen Elektroynthese

Die mikrobielle Elektrolyse ist eine Technologie, die lebende Mikroorganismen als Elektrokatalysatoren in Elektrolysezellen verwendet. Die Technologie kann zur Abwasserbehandlung verwendet werden. In einem früheren Beitrag schlugen wir vor, mikrobielle Elektrolyse zur dezentralen Abwasserbehandlung und zur Biogasproduktion zu verwenden. Da es sich bei der Technologie um einen Prozeß handelt, der CO2 unter Verwendung von Elektrizität in organische Verbindungen umwandelt, kann er auch zur die CO2-Verwertung eingestzt werden. Neben Methan produzieren solche Elektrolysezellen auch Verbindungen wie Essigsäure, Capronsäure und andere. Der Prozeß wird dann als mikrobielle Elektrosynthese bezeichnet. Capronsäure wird z.B. in Fruchtestern (Capronate), als Bestandteil von Arzneimitteln und zur Synthese von Hexylphenolen verwendet.

Das Hauptproblem bei der mikrobiellen Elektrolyse und der Elektroynthese ist jedoch die lange Anlaufzeit. Die Anlaufzeit ist die Zeit, die erforderlich ist, um ein Biofilm auf der Elektrodenoberfläche zu bilden und die gewünschten Produkte zu produzieren. Sie kann mehreren Wochen oder Monaten dauern. Sie ist abhängig von den Betriebsbedingungen und der Art der Mikroorganismen. Lange Anlaufzeiten begrenzen den industriellen Nutzen der mikrobiellen Elektrosynthese.

Wissenschaftler der Universität Wageningen in den Niederlanden stellten jetzt neue Forschungsergebnisse vor, die eine Verkürzung der Anlaufzeit zeigen. Dabei wurde die Richtung des Katholytflusses durch eine dreidimensionale Elektrode gewechselt, wodurch die Anlaufzeit auf nur zehn Tage verkürzt wurde. Die Forscher stellten die Hypothese auf, daß diese Technik den Stofftransport und die Bildung von Biofilmen verbesserte und somit die CO2-Reduktion und deren Produktsynthese beschleunigt. Letztlich  konnte die Anlaufzeit um 50% im Vergleich zu einer herkömmlichen Durchflusselektroden reduziert werden.

 

Der alternierdende Elektrolytfluß reduzierte auch die Leistungsaufnahme auf 136 kWh pro kg Wasserstoff. Nach 60 Tagen betrug die lokale Wasserstoffkonzentration an der Kathode höchstens 600 μM, was auf einen schnelleren Stoffumsatz und damit auf einen aktiveren Biofilm hindeutet.  Der pH-Wert im Katholyt lag bei 5,8–6,8 und damit im optimalen Bereich elektrosynthtischer Mikroorganismen. Der abwechselnde Katholytfluß bewirkte einen verbesserten Stofftransport, denn so konnte der Wasserstoff besser über die Kathodenschichten verteilt werden. Zudem spekulierten die Forscher, daß der Wechselfluß eine Erfrischung  etwaiger „toter Zonen“ in der Kathodenkammer ermöglichte.

Die Produktion von kurzen und mittelkettigen Fettsäuren war mit der Anwesenheit bestimmter Mikroorganismen verbunden. Diese wurden als Peptococcaceae und Clostridium sensu stricto 12 identifiziert. Auch der methanogene Methanobrevibacter war vorhanden. Methanobrevibacter ist chracteristisch für mikrobieller Elektrolysezellen, wenn höhere Wasserstoffkonzentrationen für die Elektroynthese vorhanden sind.

Die Technik ist jedoch noch nicht ganz ausgereift und so gibt Einschränkungen wie z.B. die Energieeffizienz, der Produktselektivität und die Skalierbarkeit. Solche Einschränkungen sind typisch für Laborexperimente. Wir freuen uns daher schon auf eine industrielle Anwendung dieser Methode.

Veröffentlicht am

Spurenmetalle beschleunigen die Wasserstoffentwicklungsreaktion von Biokathoden in mikrobiellen Elektrolysezellen

Es ist bekannt, daß mikrobielle Biofilme an Biokathoden die Produktionenraten der Wasserstoffelektrolyse verbessern. Dabei handelt es sich um den Prozeß, der zur Herstellung von Wasserstoffgas aus Wasser durch Strom dient. Die Wasserstoffentwicklung mikrobiellen Elektrolysezellen wird sogar dann beschleunigt, wenn der Biofilm, der die Biokathode besiedelt, abgetötet wurde. Verschiedene Arten von Mikroorganisme, wie z.B. elektrogene (Geobacter sulfurreducens), nicht exoelektrogene (Escherichia coli) Bakterien oder das Wasserstoff-oxidierende methanogene Archeon Methanosarcina barkeri, vollbringen dieses Kunststück, aber Geobacter ist das schnellste. Zellrückstände wie Metalloproteine scheinen die Wasserstoffbildung zu katalysieren. Daher sind lebende Zellen für die Wasserstoffelektrolyse gar nicht notwändig, wodurch Biokathoden eine billige und umweltfreundliche Alternative zu Edelmetallkatalysatoren werden könnten. Während die Autoren des erwähnten Artikels über die Rolle von Metalloproteinen spekulierten, zeigt eine neue Veröffentlichung in Electrochimica Acta durch Forscher der Wageningen University, daß die Verfolgung von Metallen im Wachstumsmedium tatsächlich für die beobachtete Ratenbeschleunigung verantwortlich ist.

Die Autoren verwendeten eine Mischung aus Metallsalzen in einem mikrobiellen Wachstumsmedium, wie z.B. Kobalt-, Kupfer-, Eisen-, Mangan-, Molybdän-, Nickel- und Zinksalz, sowie den Metallchelator Ethylendiaminetetraossigsäure (EDTA). Das Medium war dabei biokompatibel mit neutralem pH-Wert, mesophile Temperatur und Wasser als Elektrolyt.

Die Forscher führten eine Reihe von Experimenten durch, um die Auswirkung verschiedener Parameter auf die katalytische Aktivität und Stabilität der Spurenelementmischung zu untersuchen. Diese Parameter umfassten die Konzentration der Metallverbindungen, das Vorhandensein oder die Abwesenheit von EDTA, die Art des Elektrodenmaterials und die Art des Elektrolyten. Verschiedene Techniken zur Messung des kathodischen Stroms, die Wasserstoffproduktionsrate, das Überpotential und die Stromdichte der Wasserstoffelektrolyse wurden herangezogen.

Die Ergebnisse zeigen, daß die Spurenelementmischung den kathodischen Strom und die Effizienz derLadungsübertragung zu Wasserstoff signifikant erhöhte und daß Kupfer und Molybdän die aktivsten Verbindungen in der Mischung waren. Das ist überraschend, da in der vorherigen Veröffentlichung hauptsächlich Kobalt- und Eisenverbindungen auf der Oberfläche der Biokathoden gefunden wurden. Beide Elemente sind auch gute Wasserstoffkatalysatoren, während beispielsweise Molybdänsulfid die Produktionsraten in methanogenen mikrobiellen Elektrolysezellen nicht erhöhte. Wasserstoffelektrolyse ist der elektrochemische Flaschenhals, der die Reaktionrate in methanogenen Elektrolysezellen bestimmt, da es sich beim Wasserstoff um das Zwischenprodukt handelt:

4 H2 + CO2 → CH4 + 2 H2O

Die Wissenschaftler zeigten auch, daß das Entfernen von EDTA aus dem Mix die Katalysatorleistung weiter verbesserte, da EDTA als Komplexierungsmittel (Chelator) fungierte, wodurch die Verfügbarkeit von Metallionen and der Elektrodenoberfläche verringert wurde. Es wurde auch darauf hingewiesen, daß Elektroden auf Kohlenstoffbasis besser geeignet waren als Elektroden auf Metallbasis, wahrscheinlich weil sie eine höhere Oberfläche haben. Dies ist ein interessantes Ergebnis, da man der Ansicht sein kann, daß der Mechanismus hinter der besseren Leistung von Kohlenstoffelektroden die mikrobielle Adhesionspräferenz für Kohlenstoff ist. Die Ergebnisse zeigten benfalls, daß die Verwendung eines mikrobiellen Wachstumsmediums als Elektrolyt die Katalysatorleistung im Vergleich zur Verwendung eines Phosphatpuffers nicht signifikant beeinflußte.

Die Autoren kamen zu dem Schluß, daß ihr Ansatz eine einfache, billige und umweltfreundliche Methode ist, um effektive Katalysatoren für die Wasserstoffelektrolyse herzustellen. Sie schlugen vor, daß diese Katalysatoren in biologische Systeme für die Wasserstoffproduktion in bioelektrischen und Fermentationsprozessen integriert werden könnten. In der Tat ist es unvermeidlich, in mikrobiellen Elektrolysezellen keine Spurenmetalle zu verwenden, da sie zur Aufrechterhaltung des mikrobiellen Stoffwechsels unerlässlich sind.

Beide Artikel zeigen, daß Spurenmetalle bei der Wasserstoffelektrolyse eine wichtige Rolle spielen können und daß sie aus biologischen Quellen hergestellt werden können. Sie haben jedoch auch einige Einschränkungen und Herausforderungen, wie die Stabilität, Selektivität und Skalierbarkeit der Katalysatoren. Daher sind weitere Untersuchungen erforderlich, um die Leistung und Anwendbarkeit von Katalysatoren auf Trace-Metallbasis für sie zu optimieren.

(Bild: US National Science Foundation)