Veröffentlicht am

Wechselnder Elektrolytfluß an der Kathode verringert die Anlaufzeit bei der mikrobiellen Elektroynthese

Die mikrobielle Elektrolyse ist eine Technologie, die lebende Mikroorganismen als Elektrokatalysatoren in Elektrolysezellen verwendet. Die Technologie kann zur Abwasserbehandlung verwendet werden. In einem früheren Beitrag schlugen wir vor, mikrobielle Elektrolyse zur dezentralen Abwasserbehandlung und zur Biogasproduktion zu verwenden. Da es sich bei der Technologie um einen Prozeß handelt, der CO2 unter Verwendung von Elektrizität in organische Verbindungen umwandelt, kann er auch zur die CO2-Verwertung eingestzt werden. Neben Methan produzieren solche Elektrolysezellen auch Verbindungen wie Essigsäure, Capronsäure und andere. Der Prozeß wird dann als mikrobielle Elektrosynthese bezeichnet. Capronsäure wird z.B. in Fruchtestern (Capronate), als Bestandteil von Arzneimitteln und zur Synthese von Hexylphenolen verwendet.

Das Hauptproblem bei der mikrobiellen Elektrolyse und der Elektroynthese ist jedoch die lange Anlaufzeit. Die Anlaufzeit ist die Zeit, die erforderlich ist, um ein Biofilm auf der Elektrodenoberfläche zu bilden und die gewünschten Produkte zu produzieren. Sie kann mehreren Wochen oder Monaten dauern. Sie ist abhängig von den Betriebsbedingungen und der Art der Mikroorganismen. Lange Anlaufzeiten begrenzen den industriellen Nutzen der mikrobiellen Elektrosynthese.

Wissenschaftler der Universität Wageningen in den Niederlanden stellten jetzt neue Forschungsergebnisse vor, die eine Verkürzung der Anlaufzeit zeigen. Dabei wurde die Richtung des Katholytflusses durch eine dreidimensionale Elektrode gewechselt, wodurch die Anlaufzeit auf nur zehn Tage verkürzt wurde. Die Forscher stellten die Hypothese auf, daß diese Technik den Stofftransport und die Bildung von Biofilmen verbesserte und somit die CO2-Reduktion und deren Produktsynthese beschleunigt. Letztlich  konnte die Anlaufzeit um 50% im Vergleich zu einer herkömmlichen Durchflusselektroden reduziert werden.

 

Der alternierdende Elektrolytfluß reduzierte auch die Leistungsaufnahme auf 136 kWh pro kg Wasserstoff. Nach 60 Tagen betrug die lokale Wasserstoffkonzentration an der Kathode höchstens 600 μM, was auf einen schnelleren Stoffumsatz und damit auf einen aktiveren Biofilm hindeutet.  Der pH-Wert im Katholyt lag bei 5,8–6,8 und damit im optimalen Bereich elektrosynthtischer Mikroorganismen. Der abwechselnde Katholytfluß bewirkte einen verbesserten Stofftransport, denn so konnte der Wasserstoff besser über die Kathodenschichten verteilt werden. Zudem spekulierten die Forscher, daß der Wechselfluß eine Erfrischung  etwaiger „toter Zonen“ in der Kathodenkammer ermöglichte.

Die Produktion von kurzen und mittelkettigen Fettsäuren war mit der Anwesenheit bestimmter Mikroorganismen verbunden. Diese wurden als Peptococcaceae und Clostridium sensu stricto 12 identifiziert. Auch der methanogene Methanobrevibacter war vorhanden. Methanobrevibacter ist chracteristisch für mikrobieller Elektrolysezellen, wenn höhere Wasserstoffkonzentrationen für die Elektroynthese vorhanden sind.

Die Technik ist jedoch noch nicht ganz ausgereift und so gibt Einschränkungen wie z.B. die Energieeffizienz, der Produktselektivität und die Skalierbarkeit. Solche Einschränkungen sind typisch für Laborexperimente. Wir freuen uns daher schon auf eine industrielle Anwendung dieser Methode.

This post is also available in English.