Veröffentlicht am

Wechselnder Elektrolytfluß an der Kathode verringert die Anlaufzeit bei der mikrobiellen Elektroynthese

Die mikrobielle Elektrolyse ist eine Technologie, die lebende Mikroorganismen als Elektrokatalysatoren in Elektrolysezellen verwendet. Die Technologie kann zur Abwasserbehandlung verwendet werden. In einem früheren Beitrag schlugen wir vor, mikrobielle Elektrolyse zur dezentralen Abwasserbehandlung und zur Biogasproduktion zu verwenden. Da es sich bei der Technologie um einen Prozeß handelt, der CO2 unter Verwendung von Elektrizität in organische Verbindungen umwandelt, kann er auch zur die CO2-Verwertung eingestzt werden. Neben Methan produzieren solche Elektrolysezellen auch Verbindungen wie Essigsäure, Capronsäure und andere. Der Prozeß wird dann als mikrobielle Elektrosynthese bezeichnet. Capronsäure wird z.B. in Fruchtestern (Capronate), als Bestandteil von Arzneimitteln und zur Synthese von Hexylphenolen verwendet.

Das Hauptproblem bei der mikrobiellen Elektrolyse und der Elektroynthese ist jedoch die lange Anlaufzeit. Die Anlaufzeit ist die Zeit, die erforderlich ist, um ein Biofilm auf der Elektrodenoberfläche zu bilden und die gewünschten Produkte zu produzieren. Sie kann mehreren Wochen oder Monaten dauern. Sie ist abhängig von den Betriebsbedingungen und der Art der Mikroorganismen. Lange Anlaufzeiten begrenzen den industriellen Nutzen der mikrobiellen Elektrosynthese.

Wissenschaftler der Universität Wageningen in den Niederlanden stellten jetzt neue Forschungsergebnisse vor, die eine Verkürzung der Anlaufzeit zeigen. Dabei wurde die Richtung des Katholytflusses durch eine dreidimensionale Elektrode gewechselt, wodurch die Anlaufzeit auf nur zehn Tage verkürzt wurde. Die Forscher stellten die Hypothese auf, daß diese Technik den Stofftransport und die Bildung von Biofilmen verbesserte und somit die CO2-Reduktion und deren Produktsynthese beschleunigt. Letztlich  konnte die Anlaufzeit um 50% im Vergleich zu einer herkömmlichen Durchflusselektroden reduziert werden.

 

Der alternierdende Elektrolytfluß reduzierte auch die Leistungsaufnahme auf 136 kWh pro kg Wasserstoff. Nach 60 Tagen betrug die lokale Wasserstoffkonzentration an der Kathode höchstens 600 μM, was auf einen schnelleren Stoffumsatz und damit auf einen aktiveren Biofilm hindeutet.  Der pH-Wert im Katholyt lag bei 5,8–6,8 und damit im optimalen Bereich elektrosynthtischer Mikroorganismen. Der abwechselnde Katholytfluß bewirkte einen verbesserten Stofftransport, denn so konnte der Wasserstoff besser über die Kathodenschichten verteilt werden. Zudem spekulierten die Forscher, daß der Wechselfluß eine Erfrischung  etwaiger „toter Zonen“ in der Kathodenkammer ermöglichte.

Die Produktion von kurzen und mittelkettigen Fettsäuren war mit der Anwesenheit bestimmter Mikroorganismen verbunden. Diese wurden als Peptococcaceae und Clostridium sensu stricto 12 identifiziert. Auch der methanogene Methanobrevibacter war vorhanden. Methanobrevibacter ist chracteristisch für mikrobieller Elektrolysezellen, wenn höhere Wasserstoffkonzentrationen für die Elektroynthese vorhanden sind.

Die Technik ist jedoch noch nicht ganz ausgereift und so gibt Einschränkungen wie z.B. die Energieeffizienz, der Produktselektivität und die Skalierbarkeit. Solche Einschränkungen sind typisch für Laborexperimente. Wir freuen uns daher schon auf eine industrielle Anwendung dieser Methode.

Veröffentlicht am

Halbleiternanoröhrchen mit photovoltaischem Effekt

Kostengünstigen und effiziente Methoden zur Umwandlung von Sonnenlicht in Elektrizität stehen im Fokus der Erforschung umweltfreundlicher Methoden zur Energiegewinnung. Solarzellen, die zu diesem Zweck entwickelt wurden bestehen zurzeit aus Halbleitern wie Silizium. Elektrische Energie wird am Übergang zwischen zwei verschiededen Halbleitern erzeugt. Der Wirkungsgrad dieser Solarzellen hat jedoch seine theoretische Grenze fast erreicht. Neue Methoden zur Umwandlung von Sonnenlicht in Elektrizität müssen daher gefunden werden, um eine größere Durchdringung unserer Energienetze mit erneuerbaren Energiequellen zu ermöglichen. Ein internationales Forscherkonsortium aus Deutschland, Japan und Israel hat jetzt einen wichtigen Fortschritt in dieser Richtung erzielt. Zhang und Kollegen veröffentlichten ihre Ergebnisse kürzlich im angesehen Fachblatt Nature. Sie demonstrieren eine übergangsfreie Solarzelle, die durch Auftragen einer atomeren Halbleiterschicht in eine Nanoröhre hergestellt werden kann.

In einer herkömmlichen Solarzelle werden zwei Bereichen eines Halbleiters in einem als Dotierung bekannten Prozess unterschiedliche chemische Elemente hinzugefügt. Der elektrische Transport erfolgt durch die negativ geladene Elektronen einer Region und durch die positiv geladene Elektronenlöcher (Defektelektronen). An der Verbindungsstelle zwischen diesen beiden Bereichen wird ein elektrisches Feld erzeugt. Wenn an diesem Übergang Sonnenlicht absorbiert wird, entstehen Elektron-Defektelektronen-Paare. Die Elektronen und Defektelektronen werden dann durch das entstandene elektrische Feld getrennt, wodurch ein elektrischer Strom entsteht. Diese Umwandlung von Sonnenenergie in Strom wird als photovoltaischer Effekt bezeichnet. Dieser photovoltaische Effekt ist besonders wichtig für eine umweltfreundliche Energiegewinnung. Sein Wirkungsgrad hat wie eingangs gesagt fast die theoretische Grenze erreicht.

Physikalisch entsteht der photovoltaische Effekt in traditionellen pn-Übergängen, bei denen ein p-Typ-Material (mit einem Überschuss an Defektelektronen) an ein n-Typ-Material (mit einem Überschuss an Elektronen) angrenzt. In der lichtinduzierten Erzeugung von Elektronen-Defektelektronen-Paaren und deren anschließende Trennung wird Strom erzeugt. Weitere Fortschritte werden durch die Nutzung anderer photovoltaischer Effekte erwartet, die keinen Übergang erfordern und nur in Kristallen mit gebrochener Inversionssymmetrie auftretet. Die praktische Umsetzung dieser Effekte wird jedoch durch die geringe Effizienz der vorhandenen Materialien behindert. Halbleiter mit reduzierter Dimensionalität oder kleinerem Bandabstand haben sich als effizienter erwiesen. Übergangsmetall-Dichalkogenide (TMDs) sind z.B. zweidimensionale Halbleiter mit kleiner Bandlücke, bei denen verschiedene Effekte durch Aufbrechen der Inversionssymmetrie in ihren Volumenkristallen beobachtet wurden.

Die neu entwickelte photovolataische Methode basiert auf Wolframdisulfid, einem Mitglied der TMD-Familie. Kristalle dieses Materials sind schichtförmig aufgebaut und können ähnlich wie Graphit schichtweise abgezogen werden. Die resultierenden atomdicken Bleche können dann durch chemische Verfahren zu Röhrchen mit Durchmessern von etwa 100 Nanometern gewalzt werden. Die Autoren stellten photovoltaische Apparate aus drei Arten von Wolframdisulfid her: eine Monoschicht, eine Doppelschicht und eine Nanoröhre.

Eine systematische Reduzierung der Kristallsymmetrie wurde über die bloße gebrochene Inversionssymmetrie hinaus erreicht. Der Übergang von einer zweidimensionalen Monoschicht zu einer Nanoröhre mit polaren Eigenschaften wurde erheblich verbessert. Die so erzeugte Photostromdichte ist um Größenordnungen größer als die anderer vergleichbarer Materialien. Die Ergebnisse bestätigen nicht nur das Potenzial von TMD-basierten Nanomaterialien, sondern allgemein auch die Bedeutung der Reduzierung der Kristallsymmetrie für die Verbesserung des photovoltaischen Effekts.

Während die Nanoröhrenbauelemente einen großen photovoltaischen Effekt hatten, erzeugten die Einschicht- und Zweischicht-Bauelemente unter Beleuchtung nur einen vernachlässigbaren elektrischen Strom. Die Forscher führen die unterschiedlichen Leistungsmerkmale der Solarzellen auf ihre ausgeprägte Kristallsymmetrie zurück. So kann man spontan einen Strom in gleichmäßigen Halbleitern erzeugen, ohne daß ein Übergang erforderlich ist.

Der Effekt wurde erstmals 1956 in den Bell Laboren in New Jersey beobachtet, nur zwei Jahre nach der Erfindung moderner Siliziumsolarzellen. Der Effekt ist auf nicht zentrosymmetrische Materialien beschränkt, die durch mangelnde Symmetrie bei räumlicher Inversion (die Kombination aus einer 180°-Drehung und einer Reflexion) gekennzeichnet sind. Der Effekt hat zwei faszinierende Eigenschaften: Der durch Licht erzeugte Strom hängt von der Polarisation des einfallenden Lichts ab und die zugehörige Spannung ist größer als die Bandlücke des Materials. Das ist die Energie, die zur Anregung von leitenden freien Elektronen erforderlich ist. Der Effekt weist jedoch typischerweise eine geringe Umwandlungseffizienz auf und ist daher im Laufe der Jahre eher von akademischem als von praktischem Interesse geblieben.

Um eine hohe Effizienz zu erzielen, muß ein Material eine hohe Lichtabsorption und eine geringe innere Symmetrie aufweisen. Diese beiden Eigenschaften existieren jedoch in einem bestimmten Material normalerweise nicht gleichzeitig. Halbleiter, die das meiste einfallende Sonnenlicht absorbieren, weisen im Allgemeinen eine hohe Symmetrie auf. Das verringert oder verhindert gar den Effekt. Materialien mit geringer Symmetrie, wie Perowskitoxide, absorbieren aufgrund ihrer großen Bandlücke nur wenig Sonnenlicht. Um dieses Problem zu umgehen, wurden enorme Anstrengungen unternommen, um die Lichtabsorption in Materialien mit geringer Symmetrie zu verbessern, beispielsweise durch Verwendung der erwähnten Dotierung. Inzwischen wurde gezeigt, daß die Effekt in Halbleitern auftreten kann, indem mechanische Felder verwendet werden, um die Kristallsymmetrie des Materials anzupassen.

Die neu entdeckte Lösung ist ermutigend im Hinblick auf die Herstellung von Halbleiternanoröhrchen mit hoher Lichtabsorption. Im Falle von Wolframdisulfid ist die Kristallsymmetrie der Nanoröhrchen im Vergleich zur Mono- und Doppelschicht aufgrund der gekrümmten Wände des Röhrchens verringert. Die Kombination aus ausgezeichneter Lichtabsorption und geringer Kristallsymmetrie bedeutet, daß die Nanoröhrchen einen erheblichen photovoltaischen Effekt aufweisen. Die elektrische Stromdichte übertrifft die von Materialien, die von Natur aus eine geringe Symmetrie aufweisen. Dennoch ist die erzielte Umwandlungseffizienz immer noch viel geringer ist als die des Photovoltaik-Effekts in herkömmlichen Solarzellen auf Sperrschichtbasis.

Die Ergebnisse der Autoren belegen das große Potenzial von Nanoröhrchen bei der Gewinnung von Sonnenenergie und werfen verschiedene technologische Herausforderungen und wissenschaftliche Fragen auf. Aus Anwendersicht wäre es aufschlußreich, eine Solarzelle zu fertigen die aus eine hohen Zahl von Halbleiternanoröhrchen besteht, um zu überprüfen, ob sich der Ansatz skalieren lässt. Die Richtung des erzeugten Stroms würde weitgehend von der inneren Symmetrie des Materials bestimmt. Daher wäre eine gleichmäßige Symmetrie über das Nanoröhrchenanordnungen erforderlich, um einen gemeinsamen Strom zu erzeugen. Dabei könnten sich die in verschiedenen Nanoröhrchen gegenseitig ausgleichen, was zu einer Anullierung des erzeugten Stroms führen würde.

Bei Frontis Energy fragen wir uns, ob die beschrieben Methode mit dem klassichen photovoltaischen Effekt in derselben Solarzelle zusammenwirken könnte. Das würde eventuell den Gesamtwirkungsgrad steigern. Die beiden Effekte könnten die Sonnenenergie aufeinander folgend nutzen. Trotz der verbleibenden Herausforderungen bietet die vorgelgte Arbeit einen Möglichkeit zur Entwicklung hocheffizienter Solarzellen.

(Photo: Wikipedia)