Veröffentlicht am Schreiben Sie einen Kommentar

Energiespeicherung in Spanien

Spaniens Energielandschaft

In unserem vorherigen Beitrag haben wir über die Aussichten der Energiespeicherung in Dänemark berichtet. Jetzt gehen wir wieder zurück nach Süden. Während allgemein angenommen wird, daß Solarenergie den Hauptanteil der erneuerbaren Energie in Spanien ausmacht, ist es tatsächlich die Windenergie mit mehr als dem Dreifachen der Solarerzeugung die wesentliche erneuerbare Energiequelle Spaniens. Spanien ist weltweit führend in der Windenergie. Im Jahr 2014 hatte Spanien weltweit die viertgrößte installierte Windkapazität, und die Windenergie machte 2015 18% der gesamten spanischen Stromerzeugung aus. Das geht so weit, daß es Überlegungen gab, den Stier als Symbol spanischen Nationalstolzes durch die Windmühle zu ersetzen. Gas und Kohle machen aber immer noch über ein Drittel der Stromerzeugung in Spanien aus.

Spaniens Stromproduktion 2015 (Quelle: International Energy Agency, 2015)

Während fossiles Öl in Spanien immer noch für Elektrizität verwendet wird, sollte beachtet werden, daß dies ausschließlich für die Gebiete außerhalb der iberischen Halbinsel gilt, also die Kanarische Inseln, Balearen, Cueta, Melilla und mehrere andere kleine Inseln.

Laut EU-Richtlinie 2009 von 28 müssen bis 2020 20% des spanischen Endenergieverbrauchs aus erneuerbaren Energiequellen stammen. Spanien wird dieses Ziel jedoch wahrscheinlich verfehlen. Anfang der 2000er Jahre war Spanien weltweit führend bei erneuerbaren Energien. Zum Beispiel war Spanien 2005 das erste Land, das PV-Anlagen für alle neuen Gebäude in Auftrag gab, und belegte weltweit den 5. Platz bei den gesamten Investitionen in erneuerbare Energien. Die Branche für erneuerbare Energien stagnierte jedoch in den letzten Jahren erheblich. Leider ist Spanien, das 2008 den Weltmarkt antrieb, aufgrund rückwirkender Richtlinienänderungen und neuer Steuern auf den Eigenverbrauch praktisch aus dem PV-Bild verschwunden.

Die Richtlinienänderungen und Eigenverbrauchssteuern beziehen sich auf das königliche Dekret 900/2015 über den Eigenverbrauch, ein Gesetz, das von der spanischen Regierung im Oktober 2015 erlassen wurde und das darauf abzielt, den Eigenverbrauch von Elektrizität finanziell zu bestrafen. Nach dem Gesetz müssen Solar-PV-Produzenten (z.B. private PV-Eigentümer) nicht nur eine Steuer auf die Energie zahlen, die sie selbst verbrauchen. Sondern sie müssen auch die gleichen Übertragungs- und Verteilungsgebühren zahlen, als hätten sie den Strom aus dem Netz gekauft. Zusätzlich zu diesen Gebühren und Steuern ist es Eigentümern von Systemen mit einer Leistung von 100 kW und weniger – den meisten Eigentümern von Wohnsystemen also – untersagt, überschüssigen Strom dem Netz zu verkaufen. Stattdessen müssen sie es kostenlos an das Netz weitergeben. Darüber hinaus ist dieses Gesetz rückwirkend. Das bedeutet, daß vorhandene PV-Systeme die Anforderungen erfüllen oder mit einer Strafe belegt werden müssen. Die Sanktionen nach dem Eigenverbrauchsgesetz reichen von nur 6 Mio. EUR bis maximal 60 Mio. EUR – etwa doppelt so hoch wie die Geldbuße für die illegale Entsorgung radioaktiver Abfälle. Die spanische Regierung sieht den Eigenverbrauch als Risiko für die Steuereinnahmen bei den derzeit hohen Strompreisen.

Spanien ist nach wie vor weltweit führend bei Sonnenwärmekraftwerken (2,5 MW). Es wurden jedoch keine neuen Anlagen gebaut, und derzeit befinden sich keine neuen Anlagen im Bau oder in Planung.

Marktausblick für Energiespeicherung

Obwohl die ersten Entwürfe des Gesetzes über den Eigenverbrauch strenge Bestimmungen gegen Batteriespeichersysteme enthielten, erlaubt die endgültige Version Energiespeichersysteme – allerdings unter Bedingungen, die sie unpraktisch machen. Für Eigentümer von Solar-Plus-Speichersystemen fallen zusätzliche Gebühren an, sie können jedoch auch nicht die Strommenge reduzieren, die sie von ihrem Versorgungsunternehmen unter Vertrag haben.

Zu diesem Zeitpunkt scheint es, als hätte das Eigenverbrauchsgesetz Investitionen in Projekte für erneuerbare Energien und / oder Energiespeicher in Spanien effektiv gestoppt.

Veröffentlicht am

Abwasser ist eine global unterschätzte Resource

In unserem letzten Beitrag zur Wasserqualität in China haben wir auf eine Studie hingewiesen, die zeigt, wie sich eine verbesserte Abwasserbehandlung positiv auf die Umwelt und letztendlich auf die öffentliche Gesundheit auswirkt. Abwasserbehandlung erfordert jedoch eine ausgeklügelte und kostspielige Infrastruktur. Diese ist nicht überall verfügbar. Die Gewinnung von Ressourcen aus Abwasser kann jedoch einen Teil der Kosten ausgleichen, die durch den Bau und Betrieb von wolchen Anlagen entstehen. Die offene Frage ist, wieviele Ressourcen sind im Abwasser enthalt?

Eine kürzlich in der Fachzeitschrift Natural Resources Forum veröffentlichte Studie versucht, diese Frage zu beantworten. Es ist die erste dieser Art, die abschätzt, wie viel Abwasser alle Städte der Erde pro Jahr produzieren. Die Menge ist enorm, wie die Autoren sagen. Derzeit fallen weltweit jährlich 380 Milliarden m³ Abwasser an. Die Autoren ließen bei ihrer Untersuchung nur 5% der städtischen Gebiete aus.

Die wichtigsten Ressourcen im Abwasser sind Energie, Nährstoffe wie Stickstoff, Kalium und Phosphor sowie das Wasser selbst. In kommunalen Kläranlagen stammen sie aus menschlichen Exkrementen. In Industrie und Landwirtschaft enthält Abwasser Überreste der Produktionsprozesse. Das Forscherteam berechnete, wie viele Nährstoffe aus kommunalen Abwässern wahrscheinlich in den globalen Abwasserstrom gelangen. Dabei errechneten sie erreichen eine Gesamtzahl von 26 Millionen Tonnen pro Jahr. Das ist fast das Achtzigfache des Gewichts des New Yorker Empire State Buildings.

Wenn man die gesamte Stickstoff-, Phosphor- und Kaliumbelastung zurückgewinnen würde, könnte man theoretisch 13% des weltweiten Düngemittelbedarfs decken. Die Forscher gingen davon aus, daß das Abwasservolumen wahrscheinlich weiter zunehmen wird, da auch die Weltbevölkerung, die Urbanisierung und der Lebensstandard zunehmen. Sie schätzen weiter, daß es im Jahr 2050 fast 50% mehr Abwasser geben wird als im Jahr 2015. Es wird notwendig sein, so viel wie möglich davon zu behandeln und die Nährstoffe in diesem Abwasser stärker zu nutzen! Wie wir in unserem vorherigen Beitrag betont haben, verursacht Abwasser immer mehr Umwelt- und Gesundheitsprobleme.

Abwasser enthält auch viel Energie. Kläranlagen in Industrieländern nutzen sie seit langem in Form von Biogas. Die meisten Kläranlagen fermentieren Klärschlamm in großen anaeroben Fermentern und produzieren daraus Methan. Infolgedessen sind einige dieser Kläranlagen jetzt energieunabhängig.

Die Autoren berechneten in ihrer Studie das Energiepotential, das im Abwasser aller Städte weltweit verborgen liegt. Grundsätzlich reicht die Energie aus, um 500 bis 600 Millionen Durchschnittsverbraucher mit Strom zu versorgen. Die einzigen Probleme sind: Abwasserbehandlung und Energietechnologie sind teuer und werden daher in nicht Schwellen- und Entwicklungsländern wenig eingesetzt. Laut den Wissenschaftlern wird sich dies ändern. Gelegentlich passiert dies bereits.

Singapur ist ein prominentes Beispiel. Dort wird das Abwasser so gründlich geklärt, daß es in das normale Wassernetz zurückgeführt wird. In Jordanien gelangt das Abwasser aus den Städten Amman und Zerqa durch ein Gefälle in die kommunale Kläranlage. Dort sind kleine Turbinen installiert, die seit ihrem Bau Energie liefern. Solche Projekte zeigen, daß eine Rückgewinnung von Ressourcen möglich ist. Sie macht die Abwasserbehandlung effizienter und kostengünstiger.

Die Frontis-Technologie basiert auf der mikrobiellen Elektrolyse, bei der viele Schritte in Kläranlagen in einem einzigen Reaktor kombiniert werden, um sowohl Nährstoffe als auch Energie zurückzugewinnen.

(Foto: Wikipedia)

Veröffentlicht am

Energiespeicherung in Dänemark

Dänemarks Stromportfolio

In unserem letzten Beitrag unserer Blogserie über Energiespeicher in Europa haben wir uns auf Italien konzentriert. Jetzt gehen wir zurück in den Norden Europas, nämlich nach Dänemark. Es überrascht nicht, daß Dänemark als Pionier der Windenergie bekannt ist. In den 1970er Jahren wurde fast ausschließlich Öl importiert, um den Energiebedarf zu decken. Die erneuerbaren Energien machen inzwischen mehr als die Hälfte des im Land erzeugten Stroms aus. Dänemark strebt bis 2035 100 Prozent erneuerbaren Strom und bis 2050 100% erneuerbaren Strom in allen Sektoren an.

Stromproduktion in Dänemark 2016

Die Nähe zu Skandinavien und zum europäischen Festland macht den Export und Import von Strom für den dänischen Systembetreiber Energinet.dk ziemlich einfach. Dies gibt Dänemark die nötige Flexibilität, um eine signifikante Durchdringung von intermittierenden Energiequellen wie Wind zu erreichen und gleichzeitig die Netzstabilität zu gewährleisten.

Obwohl die bisherigen Ergebnisse vielversprechend sind, wird es immer noch eines erheblichen Sprunges bedürfen, um zu 100 Prozent erneuerbare Energie zu gewinnen, und die offiziellen Richtlinien, nach denen Dänemark diesen Übergang steuert, müssen erst noch umgesetzt werden. Es gab jedoch Hinweise darauf, wie die endgültigen Richtlinien aussehen könnten. In ihrem Bericht  Energy Scenarios for 2020, 2035 and 2050 hat die dänische Energieagentur vier verschiedene Szenarien skizziert, um bis 2050 fossilfrei zu werden und gleichzeitig das 100%-ige Ziel für erneuerbaren Strom von 2035 zu erreichen oder Biomasse sind:

  • Windszenario − Wind als primäre Energiequelle, zusammen mit Solar-PV und Kraft-Wärme-Kopplung. Massive Elektrifizierung des Wärme- und Verkehrssektors.
  • Biomasse-Szenario − weniger Windeinsatz als im Wind-Szenario, wobei Kraft-Wärme-Kopplung Strom und Fernwärme liefert. Transport mit Biokraftstoffen.
  • Bio+ Szenario − Bestehende Kohle- und Gaserzeugung durch Bioenergie ersetzt, 50% des Stroms aus Wind. Wärme aus Biomasse und Strom (Wärmepumpen).
  • Wasserstoffszenario – Strom aus Wind, der zur Erzeugung von Wasserstoff durch Elektrolyse verwendet wird. Wasserstoff als Speichermedium für erneuerbare Energien sowie als Transportkraftstoff. Das Wasserstoffszenario würde eine massive Elektrifizierung des Wärme- und Transportsektors erfordern, während der Wind schneller eingesetzt werden müsste als das Windszenario.

Agora Energiewende und DTU Management Engineering haben postuliert, dass dieser Szenariobericht tatsächlich zeigt, dass die Umstellung des dänischen Energiesektors auf 100 Prozent erneuerbare Energien bis 2050 auf mehreren Wegen technisch machbar ist. Die dänischen Entscheidungsträger müssen jedoch vor 2020 entscheiden, ob sich das Energiesystem in ein auf Brennstoff basierendes Biomassesystem oder ein auf Strom basierendes Windenergiesystem umwandeln soll (sie müssen entscheiden, welches der vier Szenarien verfolgt werden soll).

Energiespeicher in Dänemark

Unabhängig davon, für welches energiepolitische Szenario Dänemark sich entscheidet, wird die Speicherung von Energie ein zentraler Aspekt einer erfolgreichen Energiewende sein. Derzeit sind in Dänemark drei EES-Anlagen in Betrieb, die alle elektrochemisch (Batterien) sind. Eine vierte EES-Anlage – das HyBalance-Projekt – befindet sich derzeit im Bau und wird den von Windkraftanlagen erzeugten Strom durch PEM-Elektrolyse (Protonenaustauschmembran) in Wasserstoff umwandeln.

Projektname

Technologie

Kapazität (kW)

Entladedauer (h)

Status

Nutzung

RISO Syslab Redox Flußbatterie Elektrochemisch Flußbatterie 15 8 In betrieb Stabilisierung erneuerbarer Energien
Vestas Lem Kær ESS Demo 1.2 MW Elektrochemisch Lithiumionakku 1.200 0.25 In betrieb Frequenzregulierung
Vestas Lem Kær ESS Demo 400 kW Elektrochemisch Lithiumionakku 400 0.25 In betrieb Frequenzregulierung
HyBalance Wasserstoffspeicher Wasserstoff Power-to-Gas 1.250 In betrieb Integration enerneuerbarer Energie
BioCat Power-to-Gas Methanspeicher Methan Power-to-Gas 1.000 Stillgelegt Netzeinspritzung & Frequenzregulierung

Das HyBalance-Projekt ist das Pilotprojekt von Power2Hydrogen, einer Arbeitsgruppe, die sich aus wichtigen Akteuren der Industrie und akademischen Forschungseinrichtungen zusammensetzt, um das große Potenzial für Wasserstoff aus Windenergie zu demonstrieren. Die Anlage wird bis zu 500 kg Wasserstoff pro Tag produzieren, der für den Transport und den Netzausgleich verwendet wird.

Bemerkenswert ist das stillgelegte BioCat Power-to-Gas-Projekt, ein Pilotprojekt, das von 2014 bis 2016 in Hvidovre, Dänemark, betrieben wurde. Das Projekt, eine gemeinsame Zusammenarbeit von Electrochaea und mehreren Industriepartnern (finanziert von Energienet.dk), war eine 1 MWe Power-to-Gas-Anlage (Methan), die gebaut wurde, um die kommerziellen Möglichkeiten von Methan Power-to-Gas zu demonstrieren. Das BioCat-Projekt war Teil des Ziels von Electrochaea, die Kommerzialisierung Ende 2016 zu erreichen. Bis Anfang 2017 wurden jedoch keine weiteren Aktualisierungen vorgenommen.

Marktausblick für Energiespeicher – Dänemark

Der Energiespeichermarkt in Dänemark wird am stärksten auf Wachstum ausgerichtet sein, wenn die Politik dem Wasserstoffszenario folgt, in dem in allen Sektoren massive Mengen Wasserstoff erzeugt werden müssen, um den Einsatz fossiler Brennstoffe zu verhindern.

Durch erneuerbare Energien erzeugte Gase (Wasserstoff, Methan) haben das Potenzial, das Stromnetz auf zwei Arten auszugleichen: Ausgleich von Angebot und Nachfrage („intelligentes Netz“) und Ausgleich durch physische Speicherung. Das Smart Grid, ein intelligentes Stromnetz, in dem Produktion und Verbrauch zentral verwaltet werden, bietet Elektrolyse-Technologien eine bedeutende Chance als kurzfristiger „Pufferspeicher“ (Sekunden bis Minuten). Die Massenspeicherung von durch erneuerbare Energien erzeugten Gasen kann als langfristige Speicherlösung (Stunden, Tage, Wochen, Monate) dienen, um die Flexibilität in einem fossilfreien Energienetz aufrechtzuerhalten (Dänische Partnerschaft für Wasserstoff- und Brennstoffzellen).

Ohne das Wasserstoffszenario wird das Potenzial für wasserstoffbasierte Energiespeicher in Dänemark begrenzt sein. In ihrem Bericht „Potenzial von Wasserstoff in Energiesystemen“ aus dem Jahr 2016 kam die Power2Hydrogen-Arbeitsgruppe zu dem Schluß, daß:

  • Wasserstoffelektrolyseure würden keine wesentliche Verbesserung der Flexibilität für die Integration erneuerbarer Energien gegenüber dem heutigen ausreichend flexiblen System bewirken.
  • Bis zum Jahr 2035 wurde mit der Zunahme der Windproduktion der Schluss gezogen, dass Wasserstoffelektrolyseure tatsächlich die Systemflexibilität verbessern und eine noch umfassendere Penetration der Windenergie in das System ermöglichen würden.

Das Potenzial für durch erneuerbare Energien erzeugte Gase in Demark ist extrem hoch. Es ist sehr wahrscheinlich, dass Power-to-Gas-Systeme der Dreh- und Angelpunkt der Energiewende in Dänemark sein werden. Kurzfristig scheint es wenig Möglichkeiten zu geben, mittel- bis langfristig wird es jedoch umfangreiche Möglichkeiten geben, wenn sich die offizielle Energiewende auf das Wasserstoffszenario oder eine ähnliche Politik auf der Basis erneuerbarer Gase konzentriert.

(Jon Martin, 2019)

Veröffentlicht am

Herausforderungen der Windenergie

Viele Menschen glauben, daß es keinen Verbesserungsbedarf gibt, weil Windkraftanlagen seit Jahrzehnten funktionieren.  Die Windenergie hat das Potenzial, eine der weltweit kostengünstigen Energiequellen zu sein. In einem kürzlich im Fachmagazin Science erschienenen wissenschaftlichen Artikel wurde die Wissenschaft aufgefordert, sich drei großen Herausforderungen in den Naturwissenschaften zu widmen, um die Innovation der Windenergie voranzutreiben. Dabei wurden im Wesentlichen drei Richtungen identifiziert:

  1. Die bessere Ausnutzung von Windströmungen
  2. Struktur- und Systemdynamik von Windrädern
  3. Netzzuverlässigkeit der Windkraft

Um bei der besseren Ausnutzung von Windströmungen voranzukommen, müssen die Dynamik der Bewegung der Luftmasse und ihre Wechselwirkungen mit Land und Turbinen verstanden werden. Um mehr Energie zu gweinnen, haben Windenergieanlagen an Größe zugenommen. Wenn sich Windenergieanlagen mit anderen Windenergieanlagen größere Gebieten teilen, veraendert sich zuh zunehmend die dort vorherrschende Strömung. Unser Wissen über Windströmungen in komplexem Gelände und bei unterschiedlichen atmosphärischen Bedingungen ist sehr lückenhaft. Wir müssen diese Bedingungen genauer modellieren, damit der Betrieb großer Windkraftanlagen am produktivaer und günstigster wird.

Wenn die Höhe von Windkraftanlagen zunimmt, müssen wir die Dynamik des Windes in diesen Höhen und Maßstäben verstehen. Die Verwendung vereinfachter physikalischer Modelle und grundlegender Beobachtungstechnologien in der Vergangenheit ermöglichte die Installation von Windkraftanlagen und die Vorhersage der Leistung in einer Vielzahl von Geländetypen. Die Herausforderung besteht darin, diese unterschiedlichen Bedingungen so zu modellieren, daß Windkraftanlagen so optimiert werden, daß sie sowohl kostengünstig und steuerbar sind, als auch am richtigen Ort installiert werden.

Die Struktur- und Systemdynamik von Windrädern ist ebenfalls mangelhaft erforscht. Windkraftanlagen sind heute die größten flexiblen, rotierenden Maschinen der Welt. Die Schaufellängen überschreiten routinemäßig 80 Meter. Ihre Türme ragen weit über 100 Meter hinaus. Um dies zu verbildlchen, können drei Airbus A380 in den Bereich eines Windenergierotors passen.  Da diese Anlagen immer größer und schwerer werden und unter zunehmenden strukturellen Belastungen arbeiten, sind neue Materialien und Herstellungsprozesse erforderlich. Das rührt daher, daß die Skalierbarkeit, der Transport, die strukturelle Integrität und das Recycling der verwendeten Materialien an ihre Grenzen stoßen.

Darüber hinaus wirft das Wechselspiel zwischen Turbinen- und atmosphärischer Dynamik mehrere wichtige Forschungsfragen auf. Viele vereinfachte Annahmen, auf denen frühere Windenergieanlagen basieren, gelten nicht mehr. Die Herausforderung besteht nicht nur darin, die Atmosphäre zu verstehen, sondern auch herauszufinden, welche Faktoren sowohl für die Effizienz der Stromerzeugung als auch für die strukturelle Sicherheit entscheidend sind.

Zudem ist unser heutiges Stromnetz nicht für den Betrieb großer zusätzlicher Windresourcen ausgelegt. In Zukunft muß es sich  daher grundlegend von dem heutigen unterscheiden. Es wird ein hoher Zuwachs an variabler Wind- und Sonnenkraft erwartet. Für die Aufrechterhaltung eines funktionierenden, effizienten und zuverlässigen Netzes müssen diese Stromerzeuger vorhersehbar und steuerbar sein. Außerdem müssen erneuerare Stromerzeuger in der Lage sein, nicht nur Strom, sondern auch stabilisierende Netzdienste bereitzustellen. Der Weg in die Zukunft erfordert eine integrierte Systemforschung an den Schnittstellen von Atmosphärenphysik, Windturbinendynamik, Anlagensteuerung und Netzbetrieb. Dazu gehören auch neue Energiespeicherlösungen wie Power-to-Gas.

Windenergieanlagen und deren Stromspeicher können wichtige Netzdienste wie Frequenzsteuerung, Rampensteuerung und Spannungsregelung bereitstellen. Innovative Steuerungen könnten die Eigenschaften von Windenergieanlagen nutzen, um die Energieerzeugung der Anlage zu optimieren und gleichzeitig diese wesentlichen Dienstleistungen bereitzustellen. Beispielsweise können modern Datanverarbeitungstechnologien großen Datenmengen für Sensoren liefern, die dann auf die gesamte Anlage angwendet werden. Daurch kan die Energieerfassung verbessert werden, was widerum die Betriebskosten deutlich senken kann. Der Weg zur Verwirklichung dieser Zukunft erfordert umfangreiche Forschungen an den Schnittstellen von atmosphärischer Strömungsmodellierung, individueller Turbinendynamik und Windkraftanlagensteuerung mit dem Betrieb größerer elektrischer Systeme.

Fortschritte in den Naturwissenschaften sind unerläßlich, um Innovationen voranzutreiben, Kosten zu senken und eine reibungslose Integration in das Stromnetz zu erreichen. Zusätzlich müssen auch Umweltfaktoren beim Ausbau der Windenergie berücksichtigt werden. Um erfolgreich zu sein, muß der Ausbau der Windenergienutzung verantwortungsbewußt erfolgen, um die Zerstörung der Landschaft so gering wie möglich halten. Investitionen in Wissenschaft und interdisziplinäre Forschung in diesen Bereichen werden mit Sicherheit helfen, akzeptablen Lösungen für alle Beteiligten zu finden.

Zu solchen Projekten gehören Untersuchungen, die die Auswirkungen des Windes auf wild lebende Tiere charakterisieren und verstehen. Auch wissenschaftliche Forschung, die Innovationen und die Entwicklung kostengünstiger Technologien ermöglicht, um die Auswirkungen von Wildtieren auf Windkraftanlagen an Land und vor der Küste wird derzeit intensiv betrieben.  Dazu muß verstanden werden, wie Windenergie so platziert werden kann, daß die lokalen Auswirkungen minimiert werden und gleichzeitig ein wirtschaftlicher Nutzen für die betroffenen Gemeinden entsteht.

Diese großen Herausforderungen der Windforschung bauen aufeinander auf. Die Charakterisierung der Betriebszone von Windenergieanlagen in der Atmosphäre wird für die Entwicklung der nächsten Generation noch größerer, kostengünstiger Windenergieanlagen von entscheidender Bedeutung sein. Das Verständnis sowohl der dynamischen Steuerung der Anlagen als auch der Vorhersage der Art des atmosphärischen Zuflusses ermöglichen eine bessere Steuerung.

Frontis Enegy unterstützt als innovatives Unternehmen den Übergang in eine CO2-neutrale Energieerzeugung.

(Foto: Fotolia)

Veröffentlicht am

Schnelles Aufladen von Lithiumakkus bei hoher Temperatur

Eine der größten Hürden bei der Elektrifizierung der Straßenverkehrs ist die lange Aufladezeit der Lithiumakkus in elektrischen Fahrzeugen. In einem aktuellen Forschungsbericht im Fachmagazin Joule wurde jetzt gezeigt, daß man die Ladezeit auf 10 Minuten verkürzen kann, während man den Akku erwärmt.

Ein Lithiumakku kann nach nur 10 Minuten Ladezeit eine 320 Kilometer lange Fahrt mit Strom versorgen − vorausgesetzt, ihre Temperatur wird beim Aufladen auf mehr als 60 °C erhöht.

Lithiumbatterien, bei denen Lithiumionen zur Stromerzeugung verwendet werden, werden bei Raumtemperatur langsam aufgeladen. Das Aufladen dauertof mehr als drei Stunden, im Gegensatz zu drei Minuten beim Volltanken.

Eine kritische Barriere für die Schnellaufladung ist die Lithiumbeschichtung, die normalerweise bei hohen Laderaten auftritt und die Lebensdauer und Sicherheit der Batterien drastisch beeinträchtigt. Die Forscher der Pennsylvania State University in University Park stellen wir eine asymmetrische Temperaturmodulationsmethode vor, die einen Lithiumakku bei einer erhöhten Temperatur von 60 °C auflädt.

Durch das Hochgeschwindigkeitsladen wird Lithium normalerweise dazu angeregt, eine der Elektroden der Batterie zu beschichten (Lithiumplattierung). Dadurch wird der Energiefluß blockiert und der Akku wird schließlich unbrauchbar. Um eine Ablagerung von Lithium auf der Anodenzu vermeiden, haben die Forscher die Expositionszeit bei 60 °C auf nur ~10 Minuten pro Zyklus begrenzt.

Dabei griffen die Forscher auf industriell verfügbare Materialien zurück und minimierten den Kapazitätsverlust bei 500 Zyklen auf 20%. Eine bei Raumtemperatur geladene Batterie konnte nur 60 Zyklen lang schnell geladen werden, bevor ihre Elektrode plattiert wurde.

Die asymmetrische Temperatur zwischen Laden und Entladen eröffnet einen neuen Weg, um den Ionentransport während des Ladens zu verbessern und gleichzeitig eine lange Lebensdauer zu erreichen.

Über viele Jahrzehnte wurde allgemein angenommen, daß Lithumakkus wegen des beschleunigten Materialabbau nicht bei hohen Temperaturen betrieben werden sollten. Im Gegensatz zu dieser herkömmlichen Weisheit stellten die Forscher nun ein Schnelladeverfahren vor, das eine Zelle bei 60 °C lädt und die Zelle bei einer kühlen Temperatur entlädt. Zudem wird durch Laden bei 60 °C  der Batteriekühlungsbedarf um mehr als das 12-fache verringert.

Bei Batterieanwendungen hängen die Entladungsprofile vom Endverbraucher ab, während das Ladeprotokoll vom Hersteller festgelegt wird und daher speziell ausgelegt und gesteuert werden kann. Das hier vorgestellte Schnelladeverfahren eröffnet einen neuen Weg für den Entwurf elektrochemischer Energiesysteme, die gleichzeitig eine hohe Leistung und eine lange Lebensdauer erzielen können.

Bei Frontis Energy denken wir ebenfalls, daß es sich bei dem neuen einfachen Ladeverfahren um eine vielversprechende Methode handelt. Wir sind gespannt auf die Markteinführung dieser neuen Schnellademethode.

(Foto: iStock)

Veröffentlicht am

Energiespeicherung in Italien

Italiens Stromportfolio

In unserem letzten Beitrag haben wir Sie über das Energiespeicherpotenzial in Großbritannien informiert. Italien wird mit dem Brexit nach Deutschland und Frankreich das drittgrößte EU-Mitglied. Italien, das im Norden ein ausgedehntes Bergland hat, war lange Zeit von der Stromerzeugung aus Wasserkraft abhängig. Bis Mitte der 1960er Jahre entfiel fast die gesamte Stromerzeugung in Italien auf Wasserkraft. Die installierte Kapazität der Wasserkraft stagnierte aber seit Mitte der 1960er Jahre, wobei ein rascher Anstieg der Erzeugung fossiler Brennstoffe den Gesamtanteil der Wasserkraft im Jahr 2014 von ~90% auf 22% senkte. Eine detaillierte Aufschlüsselung der Stromquellen in Italien ist nachstehend aufgeführt .

Italiens Stromproduktion 2015

Es wurden erhebliche Anstrengungen unternommen, um Italien auf kohlenstoffarmen Stromerzeugung umzustellen. Italien hatte 2016 die fünfthöchste installierte Solarkapazität der Welt und die zweithöchste Pro-Kopf-Solarkapazität nach Deutschland. Neben dem beeindruckenden Fortschritt bei der Photovoltaik belegte Italien mit 0,9 GW weltweit den 6. Platz in der Geothermie.

Das Solarwachstum in Italien wurde durch Einspeisevergütungen vorangetrieben, die im Jahr 2005 verabschiedet wurden. Dies bot den Eigentümern von PV-Wohnhäusern eine finanzielle Entschädigung für den Verkauf von Energie an das Netz. Das Einspeisevergütungensprogramm wurde jedoch am 6. Juli 2014 eingestellt, nachdem das Subventionslimit von 6,7 Mrd. EUR erreicht war.

Trotz der beeindruckenden Erfolge im Bereich der erneuerbaren Energien macht die traditionelle Wärmeerzeugung (Erdgas) in Italien immer noch ca. 60% der gesamten Stromerzeugung aus. Wie viel Aufwand in die Reduzierung dieser Zahl gesteckt wird, ist noch unklar. Italien hat bis 2020 18% erneuerbare Energien zugesagt und ist bereits zu fast 70% vor Ort, sodaß die Reduzierung fossilen Stroms im Hinblick auf die Erreichung dieses Ziels kaum dringend erforderlich scheint. Italien ist jedoch in hohem Maße von Importen fossiler Brennstoffe abhängig, und die Anforderungen an die Energiesicherheit werden wahrscheinlich weiterhin die Entwicklung von mehr heimischen Stromquellen wie erneuerbaren Energien vorantreiben.

Energiespeicher

Italien dominiert den Markt für elektrochemische Energiespeicher in Europa. Mit über 6.000 GWh geplanter und installierter elektrochemischer Erzeugungskapazität (~84 MW installierte Kapazität) liegt Italien weit vor dem zweiten Platz in Großbritannien. Dies ist vor allem auf das umfangreiche SNAC-Projekt von TERNA (Italiens Übertragungsnetzbetreiber) zurückzuführen, einer Natriumionenbatterieanlage mit einer Gesamtleistung von fast 35 MW in drei Phasen. Eine Aufschlüsselung der Energiespeicherprojekte nach Technologietyp ist hier aufgeführt.

Energiespeicherprojekte nach Typ (Sandia National Laboratories)

Service-Einsatz von Energiespeichern

In Italien wird der elektrische Energiespeicher fast ausschließlich für netzunterstützende Funktionen verwendet. vor allem Entlastung von Übertragungsstaus (Frequenzregelung). Zwar handelt es sich möglicherweise nicht direkt um eine Straffung erneuerbarer Energien, doch lassen sich Engpässe auf die Variabilität der Sonnenenergie zurückführen, was bedeutet, daß die Entwicklung der elektrischen Energiespeicher in Italien weitgehend von der Notwendigkeit der Integration der Sonnenenergie getrieben wird.

Energiespeicherung nach Nutzungsart (Sandia National Laboratories)

Energiespeichermarktausblick

Italien ist einer der Top-Märkte für Energiespeicher in der EU und auf Wachstum ausgerichtet. Der italienische Übertragungsnetzbetreiber TERNA hat den Verkauf von Energiespeichern als Dienstleistung untersucht. Im Jahr 2014 schlug die AEEG, die elektrische Regulierungsbehörde, unter der TERNA tätig ist, vor, Batterien als Erzeugungsquellen zu behandeln, die Kraft-Wärme-Kopplungs-Anlagen ähneln. Italien war schon immer ein Markt, der vollständig von einer kleinen Anzahl großer zentraler Versorgungsunternehmen dominiert wurde, und dieser Trend dürfte sich bei der Einführung von elektrischer Energiespeicherung fortsetzen. Diese Unternehmen haben sich auf Batterietechnologien konzentriert und werden diesen Weg voraussichtlich fortsetzen.

Der private Markt könnte jedoch eine große Chance für P2G darstellen. Die International Battery & Energy Storage Alliance hat die Realität des unerschlossenen italienischen Energiespeichermarktes wie folgt zusammengefasst: „Mit einer hohen Solarleistung von 1.400 kWh / kWp, Nettostrompreisen für Privathaushalte von rund 23 Cent / kWh und derzeit ohne Einspeisevergütungen ist der italienische Energiemarkt als sehr empfänglich für Energiespeicherung. “

Italien ist jetzt gut mit PV-Wohnanlagen ausgestattet, für die keine Subventionen mehr erhoben werden können. Verbunden damit, daß die überwiegende Mehrheit der Haushalte in Italien Erdgas verbrennt, das aus Rußland, Libyen und Algerien importiert wird, und daß Italien eine einzigartige Chance für P2G auf Wohn- / Gemeindeebene darstellt. Dies wird durch Energy Storage Update bestätigt, das 2015 zu dem Schluß kam, daß Italien „einer der vier größten Märkte weltweit für den Eigenverbrauch von PV- und Batterie-Energie“ ist.

Zwar ist nicht genau bekannt, wie viele PV-Anlagen in Wohngebieten in Italien vorhanden sind, es wurde jedoch Ende 2015 spekuliert, daß es in Italien über 500.000 PV-Anlagen gab.

(Jon Martin, 2019)

Veröffentlicht am

Autonome Methanproduktion auf dem Mars durch mikrobielle Elektrolyse für eine sichere Rückkehr zur Erde

Wie gestalten wir die Erforschung des Mars durch Menschen? Wie minimieren wir unser Gepäck während wir gleichzeitig den Nutzen des mitgebrachten Materials maximieren? Wie nutzen wir am besten was bereits auf dem Mars vorhanden ist?

Um genügend Treibstoff für eine sichere Rückkehr der Mars-Besatzung bereitzustellen, können wir Methan und Sauerstoff auf dem Mars produzieren. Die Produktion kann durch von Mikroben bewerkstelligt werden. Diese müssen zum Mars gebracht werden. Wir empfehlen leichte Perowskit-Solarmodule, die ebenfalls zum Mars transportiert werden müssen. Im optimistischen Szenario sind für die Installation der oberflächennahen Solarenergie und die Kraftstoffproduktion für die sichere Rückkehr nach Beginn der bemannten Mission ungefähr 18 Monate erforderlich. Das pessimistische Szenario dauert 4 Jahre. Um Sauerstoff zu sparen, schlagen wir auch Marsperchloraten als Raketentreibstoffkomponente vor. Für die Versorgung späterer Missionen mit Nahrungsmitteln empfehlen wir die Verwendung von Flechten als Primärkolonisatoren zur Erzeugung von organisch reichem Boden.

Verfahren zur Energieerzeugung auf dem Mars

Für die Herstellung von Methan als Aufstiegs- und Rückkehrtreibstoff empfehlen wir die Verwendung von vorhandenen Ressourcen auf dem Mars. Da der bei der Elektrolyse entstehende Sauerstoff für eine sichere Rückführung nicht ausreicht, empfehlen wir auch die Verwendung von Algen zur Erzeugung des zusätzlichen Sauerstoffs. Algenbiomasse kann als Grundlage für die Nahrungsmittelproduktion verwendet werden. Methan produzierende Mikroben werden in methanogenen Elektrolysereaktoren (MER) angezogen, während Algen in überdeckten Marskratern wachsen. Die Methanproduktion auf dem Mars soll autonom von Robotern und Reaktoren durchgeführt werden, die in der Nähe der eisreichen Polarregionen landen und salzhaltiges Wasser als Elektrolyt für die Niedertemperaturelektrolyse schmelzen. Der Landerobotor wird eigenständig Anlagen zur Treibstoffproduktion bauen, um das Mars-Transferfahrzeug für die Rückkehr zu betanken. Das Transferfahrzeug gewährleistet den Transport zwischen der Marsoberfläche und der Erdumlaufbahn. Erst wenn genug Treibstoff für eine sichere Rückkehr zur Erde produziert wurde, beginnt eine bemannte Marsmission. Darüber hinaus wird Methan als Energiespeicher eingesetzt, falls Sonnenkollektoren ausfallen. Ziel ist es, bis zum Ende der ersten bemannten Mission ein 3,5-MW-Solarkraftwerk auf dem Mars zu errichten.

Schema des Kraftstoffherstellungsprozesses. Rote Kreise markieren die Endprodukte Stahl (oben) und CH4/O2 (unten). Oben: 1, Landeroboter auf Eis, 2, Kernspaltungsreaktor mit Wärmetauscher zum Schmelzen von Eis, 3, Abbaueinheit, 4, Eisen / Nickel-Erze, 5, Induktionsstahlgießerei mit Energieversorgung aus dem Kernspaltungsreaktor (2), 6, Algenanreicherungstank mit Wasserversorgung aus dem Kernspaltungsreaktor (2), 7, Krater-Algen-Reservoir zur Erzeugung von O2 und Biomasse für 8, Entwässerungsanlage zum Abscheiden von Wasser aus 9, Biomasse-Pellets, 10, Stahl für Unten: 11, Solarkollektor-Schmelzeis und Wasser für 12, mikrobieller Elektrolysereaktor (MER) zur Erzeugung von Methan und Sauerstoff, welche durch 13, einen Gasabscheider getrennt werden. 14, auf Stahl montierte Sonnenkollektoren zur Erzeugung von Elektrizität für den MER (11) und 15, Gasspeichertank. 16, die Mars-Rakete für die Rückkehr zur Erde wird mit CH4/O2 betrieben.

Um das Leben von 6 Besatzungsmitgliedern aufrecht zu erhalten, ist eine Stromproduktionskapazität von 170 kW (siehe „Oberflächenlebensraum-Energiebedarf“) erforderlich und hat neben der Kraftstoffproduktion höchste Priorität für eine sichere Heimreise. Die Vorgehensweise ist in der oberen Abbildung skizziert. Es ist ein schrittweiser Prozess, bei dem die meisten Schritte voneinander abhängig sind und sich daher mit zunehmender Stromerzeugung selbst beschleunigen. Um das Risiko eines Ausfalls zu minimieren, empfehlen wir mindestens vier unabhängige Landerobotor auf dem Mars. Die Polarregionen weisen den höchsten Oberflächenwassergehalt auf. Dieses Wasser istr für bemannte Forschungsmissionen, die methanogene Elektrolyse sowie die Produktion von Sauerstoff und Biomasse von entscheidender Bedeutung. Die Landeroboter werden eine kleine Kernspaltungsanlage mitführen, die mit dem Abbau von Eisen- und Titanerzen beginnt, um Stahl zu produzieren. Stahl dient als strukturelle Stütze für Sonnenkollektoren. Zunächst beginnt der Landeroboter mit dem Abbau von Eisenerzen, damit die Stahlproduktion beginnen kann. Graphit oder andere reduzierte Formen von Kohlenstoff für die Stahlproduktion werden von der Erde mitgebracht, da die Produktion von organischer Materie auf dem Mars durch Algen ein langsamer Prozess ist. Alternativ werden modulare Kohlefaser-Leichtbauelemente zur Montage von Solarmodulen von der Erde zum Mars gebracht. Sobald die 170 kW Solaranlage errichtet ist, beginnt das Schmelzen des Eises für die methanogenen Elektrolysereaktoren (MER). Der kombinierte Strom aus dem Kernspaltungsreaktor und der Solaranlage wird genutzt. Erst wenn die Methanmenge für eine sichere Rückkehr einer Orion-Kapsel produziert wurde, wird die Leistung in drei gleiche Teile umgeleitet: (1) weiterhin Eis für Algen schmelzen, (2) Erze für thermische Kollektoren fördern und (3) Methan produzieren. Nachdem genügend Wärmekollektoren hergestellt wurden, um die Eisschmelze mit dem Algenwachstum in Einklang zu bringen, wird die elektrische Eisschmelze abgeschaltet. Jetzt wird elektrische Energie für die Stahlproduktion verwendet, um mehr Sonnenkollektoren und Methan zu installieren, bis ein ausreichender Ertrag für mehr Nutzlast erreicht ist. Zu diesem Zeitpunkt trifft die Besatzung ein und entscheidet, was die höchsten Prioritäten sind. Wir empfehlen, sich auf die Beschleunigung des Algenwachstums für die Produktion von Sauerstoff und Biomasse zu konzentrieren, da die vollständige Unabhängigkeit von der Erde die Produktion von organischem Kohlenstoff aus CO2 erfordert.

Die Zusammensetzung des Marsbodens, so wie sie von NASAs Curiosity und anderen Fahrzeugen analysiert wurde (Quelle: NASA 2012)

Energiebedarf für die Rückkehr

Der auf dem Mars produzierte Kraftstoff dient drei verschieden Zwecken:

  • Rückkehr einer Orion-Kapsel
  • Produktion von zusätzlichem Kraftstoff für mehr Komfort während des Rücktransports (optional)
  • Energiespeicher bei Nacht oder Stromausfall

Zwei Optionen für die Mars-Erde-Rückkehr scheinen möglich. (1) Option 1 wurde von der NASA in DRA 5.0 vorgeschlagen und betrifft ein Orion-ähnliches Fahrzeug von etwa 12 Tonnen mit einer Geschwindigkeit von 14 km/s⁠. Diese Option erfordert nur ein Fahrzeug, bietet jedoch weniger Komfort für die lange Heimreise und setzt die Besatzung daher einem höheren Stress aus. Sie verbraucht jedoch weniger Treibstoff und ermöglicht so eine schnellere Durchführung der ersten Marsmission. (2) Wir stellen eine zweite Option vor, die zwei Fahrzeuge umfasst, eine Orion-ähnliche Kapsel für den Transport von 6 Besatzungsmitgliedern in eine Marsumlaufbahn von 250 km und ein Transitfahrzeug für die Rückkehr zur Erde. Da Option zwei die bevorzugte Option ist, empfehlen wir, Option eins, das eine-Kapsel-Szenario, nur zur Sicherheit in Betracht zu ziehen.

Wir nehmen die Kapazität einer bemannten Orion-Kapsel mit Drachentriebwerken (Draco) als Referenz an. Das Orion-ähnliche Raumschiff kann 6 Besatzungsmitglieder befördern und wiegt 12 Tonnen einschließlich Kraftstoff. Für einen Mars-Start wird ein Schub-Masse-Verhältnis von mindestens 5 N/kg benötigt, was für einem Schub von 60 kN bzw. 150 Draco-Triebwerken zum Transport von 6 Besatzungsmitgliedern in die Mars-Umlaufbahn ausreicht. Die Reisezeit von der Marsoberfläche bis zu einer Umlaufbahn von 250 km würde bei vollem Schub 7 Minuten betragen. Zum Abheben wären ca. 600 m3 Methan (bei Erdatmosphärendruck) erforderlich. Um diese Methanmenge bei 210 kW (40 kW Kernspaltung und 170 kW Solarenergie, siehe „Bedarf an Lebensraumenergie an der Oberfläche“) zu produzieren, sind 3 Jahre Brennstoffproduktion erforderlich. Die vorgeschlagenen Solarstromanlagen mit 1.400 m2 Perowskit-Solarzellen können an einem Mars-Tag von 8 Stunden effektiv 170 kW erzeugen (20 kW/m2). Wenn dieselbe Orion-Kapsel auch für den Mars-Erde-Transit verwendet wird, sind weitere 7 Minuten oder 17.000 km erforderlich, um die Reisegeschwindigkeit von 14 km/s zu erreichen, und ungefähr die gleiche Zeit für einen vollständigen Stop. Um genügend Treibstoff für den Mars-Erde-Transit zu produzieren, sind nur noch 3 Tage erforderlich. Sobald genug Treibstoff für das sichere Szenario produziert wurde, verlässt die Besatzung die Erdumlaufbahn in Richtung Mars.

Für das Komfortszenario wird die vorgeschlagene Nutzlastoption mit 63 Tonnen Besatzung aus dem Mars DRA 5.0 für den Erde-Mars-Transit angenommen. Dies erscheint sinnvoll, da die meisten Geräte auf dem Mars zurückgelassen werden und nur der Transitlebensraum, die Orion-Kapsel (für Notfälle), der Antrieb und entsprechende Kraftstoff benötigt werden. Dieses Szenario erfordert jedoch erheblich mehr Kraftstoff. Dafür würden Generatoren mit einer Papazität von 210 kW auf der Oberfläche mindestens 42 Jahre lang Methan produzieren müssen. Da dies außerhalb des Planung liegt, empfehlen wir eine Erweiterung der Oberflächenleistung auf 3.500 kW, wodurch die erforderliche Methanproduktion auf 30 Monate bei einer Geschwindigkeit von 14 km/s oder 12 Monate bei 9 km/s reduziert würde. Die geringere Belastung der Besatzung rechtfertigt die geringere Fluggeschwindigkeit und die höhere Investition. Es werden jedoch 6,3 Tonnen (entsprechend 0,18 km2) Perowskit-Zellen benötigt, um ausreichend Brennstoff zu produzieren. Für dieses Szenario werden rund 280 Tonnen Stahl als strukturelle Unterstützung gebraucht. Da für das Elektroschmelzen 900 kWh/t Stahl verbraucht werden⁠, sollte zusätzlich der Kernspaltungsreaktor von etwa 40 kW für etwa ein Jahr Stahlproduktion (bzw. zwei Monate mit den kompletten 210 kW) eingesetzt werden. Alternativ könnten von der Erde mitgebrachte Kohlefaserelemente die Stahlproduktion in dieser Phase der Mission überflüssig machen. Der gesamte Prozess beschleunigt sich von selbst, da die Stromerzeugung während des Montageprozesses der Solarmodule zunimmt.

Zur Erzeugung von ausreichen Methan für den Start, wird ein MER von 200.000 Litern unter Verwendung von Stahlgitter- oder Bürstenelektroden (Anode und Kathode) mit einer projizierten Oberfläche von 2.200 m2 benötigt (siehe Abbildung unten). Ein modulares Redundanzsystem mit kleineren Abmessungen verbessert die Sicherheit, erfordert jedoch mehr Material. MERs haben die theoretische Kapazität, innerhalb von weniger als ein oder zwei Tagen ausreichend Kraftstoff für den Start einer Orion-Kapsel zu produzieren, wenn die Stromversorgung gesichert ist. Bei maximaler Leistung würde dieser Reaktor etwa 100 GWh oder 220 kWh/mol Methan verbrauchen. Mikroben erleichtern die Elektrolyse bei niedrigen Temperaturen, und diese Mikroben werden vom Landeroboter in kleinen (100 ml) redundanten Chargen transportiert. Da die Grenze für die Methanproduktion nicht die Reaktorkapazität, sondern die zur Verfügung stehende elektrische Leistung ist, kann die Verdoppelung der Menge an Sonnenkollektoren die erforderliche Zeit für die Methanproduktion halbieren. Um das so erzeugte Methan zu lagern, empfehlen wir, das Elektrolyt vor dem Beladen des MER zunächst auf 200 bar zu bringen. Zur Extraktion aus dem Elektrolyt ist ein geringer Druckabbau erforderlich, und die so erhaltene Gasphase wird dann zur späteren Verwendung in Druckstahltanks geleitet.

Ein experimenteller MER muß zunächst auf der Erde gebaut werden. Wie der Mars-Reaktor wird auch dieser experimentelle MER ein 5 x 5 m großer zylindrischer Reaktor mit einer oder zwei Kammern sein. Der Vorteil des Zweikammersystems ist die Trennung von Sauerstoff und Methan, erfordert jedoch mehr Wasser, während der Einkammerreaktor einfacher zu bauen ist und weniger Wasser enthält. Nach der Produktion ist jedoch eine O2/CH4-Trennung erforderlich. Leider ist das Verhältnis von Sauerstoff zu Methan schwer vorherzusagen, da es vom anodischen pH-Wert abhängt. Ein Massenverhältnis von mehr als 2:1 ist erforderlich. Wir schlagen daher die Verwendung von Algen als zusätzliche Sauerstoffproduzenten vor (siehe „Photosynthese-Krater zur Erzeugung von Sauerstoff und Biomasse“). Als Elektroden werden Bürsten- oder Stahlgitterelektroden verwendet. Auf dem Mars hergestelltes Stahlgewebe (40 x 40 mesh) mit einer projizierten Fläche von 1.100 m2 pro Elektrode kann verwendet werde.

A detailed description of the reactor can be found here.

Alternative Oxidationsmittel in kalten Methanbrennstoffzellen oder Raketentreibstoff

Es wird erwartet, daß die Sauerstoffknappheit jede bemannte Marsmission stark einschränkt. Sauerstoff ist als Treibstoff und für jede menschliche Anwesenheit von entscheidender Bedeutung. Die Verwendung von Methan zur Energiespeicherung ist nur bei ausreichendem Elektronenakzeptor sinnvoll. Während Methan in Turbinen mit akzeptablen Wirkungsgraden für die Stromerzeugung verbrannt werden kann, kann es auch in Brennstoffzellen verwendet werden. Es gibt jedoch keine Katalysatoren, die Methan an Elektroden bei Raumtemperatur oder darunter oxidieren. Die einzig mögliche Ausnahme bilden anaerobe Methanoxidationskonsortien, die auf natürliche Weise biologische Elektronentransportketten nutzen. Der Einsatz biologischer Elektronentransportketten eröffnet die Möglichkeit, die beim Transport in Elektronen gespeicherte Energie einzufangen. Da dies elektronenakzeptorunabhängig ist, können oxidierte Metallmineralien, die auf dem Mars häufig vorkommen, als Elektronenakzeptoren verwendet werden. Der Nachteil dieser Methanbrennstoffzellen ist, daß im Vergleich zu Sauerstoff weniger Energie eingefangen wird. Zudem existieren sie nur theoretisch.

(1) CH4 + 2 O2 → HCO3 + H+ + H2O ;∆G°‘ = −830 kJ/molCH4

(2) CH4 + 4 Fe2O3 + 15 H+ → HCO3 + 8 Fe2+ + 9 H2O ;∆G°‘ = −250 kJ/molCH4

Der hohe Säuregehalt auf dem Mars spricht jedoch für eine Reaktion, bei der aus Eisenoxiden und Protonen mithilfe der Reduktionskraft von Methan zusätzliches Wasser gebildet wird. Lösliches Fe2+ könnte für die Herstellung von Elektrostahl verwendet werden, da die Reduktion von Fe2+ zu Fe0 ein erheblich geringeres Redoxpotential und damit weniger Energie erfordert.

Perchloratsalze, die auf dem Mars vorhanden sind, können als Oxidationsmittel im Raketentreibstoff dienen. Ammoniumperchlorat und Calciumperchlorat, welches auf dem Mars häufiger vorkommt, sind explosive Oxidationsmittel. Um Calciumperchlorat in das Ammoniumsalz umzuwandeln, kann Ammonium durch eine Vielzahl von mikrobiellen Verfahren hergestellt werden, wie z.B. durch Stickstoffixierung (über die Nitrogenaseenzyme) und katabolische Ammonifizierung von Aminosäuren oder Abfallharnstoff (über das Ureaseenzym). Auch das Haber-Boschverfahren könnte zum Einsatz kommen. Sollte sich das Sammeln und Komprimieren des photosynthetisch gewonnenen O2-Gases in Raketentreibstoff als unpraktisch erweisen, könnte sich unser Ansatz mit festen Oxidationsmitteln als nützlich erweisen. Diese Doppeloxidationsstrategie sorgt für eine weitaus größere Flexibilität und mehr Sauerstoff zur Atmung. Abgebautes Perchlorat kann auch zur Desinfektion von Wasser verwendet werden.

Photosynthese-Krater zur Erzeugung von Sauerstoff und Biomasse

Die sauerstoffhaltige Biophotolyse von Wasser unter Verwendung von psychrophilen (Kälte-liebend), Distickstoff fixierenden Cyanobakterien, d.h. Blaualgen, die in bedeckten Kratern gezüchtet werden, ist ein plausibles Mittel, um den Bedarf an Sauerstoff und Biomasse zu decken. Der überschüssige Sauerstoff wird als Treibstoff und Bestandteil der künstlichen Luft im Oberflächenhabitat benötigt. Während dies für eine Marsmission zunächst nicht entscheidend ist, ist die Produktion von organischer Materie für längere Missionen mit größeren Teams und längerer Präsenz nützlich. Organisches Material ist für einen gesunden Boden unerläßlich, der wiederum für die Produktion von pflanzlichen Lebensmitteln auf dem Mars von entscheidender Bedeutung ist. Darüber hinaus benötigen Cyanobakterien und Algen wenig Technik und Energie, was sie ideal für die autonome Herstellung von organischem Material und Sauerstoff macht.

Die Menge an schädlichen kosmischen Strahlen sowie UV-Strahlen kann aufgrund des Fehlens einer Ozonschicht und einer schützenden Magnetosphäre höher sein. Die Menge der kosmischen Strahlung (ca. 0,076 Gray pro Jahr) liegt für viele irdische Mikroben mit Sicherheit im erträglichen Bereich. So ist z.B. das Innere  der internationalen Raumstation einer ähnlichen Strahlendosis ausgesetzt. UV-Licht mit seiner kürzeren Wellenlänge kann leicht durch eine dünne Abdeckung des Mars-Bodens blockiert werden, während längere Wellenlängen der photosynthetisch aktiven Strahlung weiter eindringen können. Die Mikroben werden in ihren Überlebenszonen selektiv angereichert. Alternativ könnte eine UV-Schutzhülle über dem Krater verwendet werden. Die leichte, aber haltbare und robuste Kraterabdeckung könnte die Form einer aufblasbaren Kuppel haben, die am Kraterrand verankert ist. Die durchsichtige obere Abdeckung läßt Sonnenlicht durch, hat jedoch eine Beschichtung, um schädliche Strahlung abzuhalten, während die gekrümmte untere Oberfläche reflektierend (um die Photosynthese zu maximieren) oder schwarz sein kann, um Wärme zu absorbieren. Solarbetriebene Gaspumpen könnten den Gasinnendruck regulieren, um die Kohlenstoff- und Stickstoff-Fixierungsraten sowie die Wasseransammlung aus dem verfügbaren Wasserdampf zu beschleunigen.

Die Umwandlung einer begrenzten Menge an Sonnenenergie mit gefrorenem Wasser, plus reichlich CO2 in biologisch erzeugten Sauerstoff, sowie organisches Material erfordert phototrophe Mikroben, die bei extrem niedrigen Temperaturen überleben können. Solche Temperaturen sind auf der Marsoberfläche üblich. Wir schlagen vor, terrestrische Cyanobakterien zu identifizieren, die dazu in der Lage sind, indem sie selektiv aus gemischten Biofilmkonsortien angereichert werden, die aus der Arktis oder Antarktis stammen. Proben aus felsigen Küstensolen werden in selektiven Anreicherungsreaktoren, die zur Nachbildung des Lebensraums der Marsbewohner eingerichtet sind, einer intensiven Untersuchung unterzogen. Der Befund, daß die Flechte Pleopsidium chlorophanum unter marsianischen Umweltbedingungen überleben, sich anpassen und wachsen kann, ist ein gutes Vorzeichen für diesen Ansatz.

Während der anfänglichen Phase der Nutzung der Oberflächenressourcen (siehe Abbildung oben) ist das Algenwachstum der zeitaufwändigste Schritt und daher hat die Gewinnung von flüssigem Wasser höchste Priorität. Durch die Verwendung von Kratern werden keine Behälter zum Wachsen benötigt und die Menge des zum Mars gebrachten Materials wird verringert. Im Idealfall handelt es sich bei solchen Kratern um äquatoriale Flachwasserteiche, die ein Maximum an Sonneneinstrahlung und ein Minimum an Wassererwärmung gewährleisten. Diese Voraussetzungen stimmen nicht mit dem anfänglichen Missionsaufbau (Landung in der Nähe von Polkappen) überein, sollten jedoch während der ersten Mission vorbereitet werden. Das heißt, Wasserleitungen von den peripheren Polargebieten zu den Äquatorgebieten müssen gebaut werden. Die Rohre müssen möglicherweise erwärmt werden, was zusätzliche Energie erfordert, oder das geschmolzene Wasser muss auf hohe Temperaturen und Drücke erhitzt werden, um die Eisbildung während des Transports zu verhindern.

Produktion von Wasser als Medium für die methanogene Elektrolyse und Algen

Der Mangel an flüssigem Wasser ist ein Haupthindernis, da jeder aktive Metabolismus ein flüssiges wässriges Medium erfordert. Neben der Produktion von Methan ist das Schmelzen von Eis die größte Herausforderung für die erste bemannte Marsmission. Flüssiges Wasser ist für MERs und Algenkrater unverzichtbar. Daher sollte jeglicher Wärme- oder Stromüberschuß auf das Schmelzen von Eis gerichtet werden, nachdem die Methanproduktion sichergestellt ist. Die so gewonnene CO2-reiche Sole ist der Elektrolyt für die MERs. Der hohe Säuregehalt ist nicht hemmend für das mikrobielle Wachstum, da acidophile Methanogene und Algen aus terrestrischen Umgebungen verwendet werden könen.  Der niedrige pH-Wert verringert das für die Wasserstofferzeugung erforderliche elektrische Überpotential. Wasserstoff ist der Zwischenschritt bei der methanogenen Elektrolyse⁠. Andererseits hemmt der niedrige pH-Wert die Sauerstoffbildung, weshalb davon auszugehen ist, daß die Korrosion von Stahlanoden zu einem möglichen Problem werden kann. Die Anodenkorrosion muß überwacht werden und darf einen bestimmten, noch zu bestimmenden Schwellenwert nicht überschreiten. Verbrauchte Anoden können in Stahlgießereien wieder aufbereitet werden, die mit der ersten Mission gebracht wurden.

Die niedrigen Temperaturen auf dem Mars, die in äquatorialen Regionen nur 20°C erreichen, stellen auch eine große Hürde für den Unterhalt von flüssigem Wasser dar. Das heißt, Wasser muß möglicherweise durch parabolische Wärmekollektoren erwärmt werden, um flüssig zu bleiben. Fischer et al. haben festgestellt, daß sich „bei Kontakt der Salze mit Wassereis innerhalb weniger Minuten flüssige Salzlösung bildet, was darauf hinweist, daß sich vorübergehend wässrige Lösungen bilden können, wenn sich Salze und Eis auf der Marsoberfläche und im flachen Untergrund befinden.“ Wenn unser Kraterdach mit einer inneren reflektierende Beschichtung im Infrarotspektrum ausgestattet ist, können so Wärmespeicher erzeugt werden und die Sole bleibt länger flüssig.

Die MER enthält methanogene Mikroorganismen für die Methanproduktion, die vom Landerobotor zusammen mit Algen zum Mars gebracht werden. Die methanogenen Mikroben sind hocheffizient in der Methanproduktion, was zu Wirkungsgraden von nahezu 100% ⁠ bei der Stromerzeugung führt. Edelmetallkatalysatoren sind nicht erforderlich. Im Gegensatz dazu kann für eine effektive Sauerstofferzeugung eine Platin- oder Palladiumbeschichtung auf der anodischen Seite der MER erforderlich sein. Anodische Algen scheinen eine mögliche Alternative, müssen aber weiter erforscht werden. Da die Menge an verwendetem Platin sehr gering ist, kann es als Salz zum Mars transportiert und auf Stahlelektroden elektroplattiert werden, sobald sie fertig sind. Das Galvanisieren ist ein einfaches Verfahren, so daß ein Roboter diese Aufgabe innerhalb weniger Minuten erledigen kann. Platinrecycling erfordert jedoch 1-2 Arbeitstage eines Besatzungsmitglieds.

Etwa 280 Tonnen Stahl für die strukturelle Unterstützung von Sonnenkollektoren werden benötigt (siehe „Herstellung von Stahl für die strukturelle Unterstützung von Mars-Oberflächenteilen“). Der Kohlenstoffgehalt von Stahl sollte 2,1% nicht überschreiten, um eine hohe Stabilität zu gewährleisten. Aus diesem Grund haben wir für Mars-Stahl 1,5% Kohlenstoff gewählt. Das heißt, für die Stahlproduktion werden ca. 4 Tonnen Kohlenstoff benötigt. Dies ist der Engpaß in der Stahlproduktion. Unter der Annahme, daß es auf dem Mars kalt ist wie in der Antarktis, kann man von einer Biomassekonzentration in der Sole von 5 mg/m3⁠ ausgehen. Bei dieser Konzentration muß fast 1 Milliarde m3 Wasser aufbereitet werden. Während die vorhandene Menge von 821.000 km3 mehr als ausreichend wäre, ist es unmöglich, diese Eismenge innerhalb des Zeitrahmens der Mission unter Verwendung eines Kernreaktors von 40 kW zu schmelzen, selbst wenn andere Energiequellen einbezogen würden. Daher könnten Parabolkollektoren von der Erde mitgebracht werden. Bei einem energetischen Wirkungsgrad der Parabolwärmekollektoren von 80% wären 300 Tonnen dieser Kollektoren erforderlich, um diese Wassermenge innerhalb von 2 Jahren zu schmelzen. Mit 10 Tonnen Parabolkollektoren kann man 2 Jahre lang nur 26.000 m3 Wasser für die Algen schmelzen. Dies reicht aus, um bei einer konstanten Konzentration von 5 mg/m3 in etwas mehr als 2 Jahren 130 g Algenkohlenstoff zu produzieren. Es ist effizienter, 4 Tonnen Graphit für die anfängliche Stahlproduktion auf den Mars zu bringen oder andere reflektierende Oberflächen als polierten Stahl für die Wasserschmelze in Betracht zu ziehen.

Alternative Verwendung von bedeckten Kratern zur Anreicherung von Wasser mit natürlichen Perchloraten

Angesichts der erheblichen Schwierigkeiten, die mit der Installation langer Wasserleitungen verbunden sind, um Krater mit Wasser zu füllen, skizzieren wir eine elegante alternative Strategie zur schrittweisen Gewinnung von Wasser aus der Atmosphäre unter Verwendung von nativen Perchloraten in den Mars-Sedimenten.

Perchloratsalze wurden in Mars-Sedimenten und Kratern wie der Dale-Krater und in Konzentrationen von 0,5 bis 1% nachgewiesen. Calciumperchlorat ist eine extrem hygroskopische Komponente des Marsbodens. Dieses zieht bei Nacht zyklisch H2O aus der Marsatmosphäre in den Boden, um dort eine Salzlösung zu bilden. Durch das Versiegeln der Kraterabdeckungen bei Tag, wenn das Wasser normalerweise sublimiert, und das Öffnen von Einstrom- oder Einwegventilen bei Nacht, nachdem photosynthetisch gebildetes O2 gewonnen wurde, kann sich atmosphärischer Wasserdampf langsam als Salzlösung mit Eis im Inneren des Kraters ansammeln. Dies geschieht minimalen Energiekosten.

Halophile Algen vertragen hohe Salzkonzentrationen und niedrige Temperaturen. Aufgrund der hohen CO2-Konzentration in der natürlichen Atmosphäre verstärkt die Kraterbedeckung die Erwärmungseffekte dieses Treibhausgases, um die Dauer des zur Fixierung von Stickstoff und Kohlenstoff erforderlichen Wassers im flüssigen Zustand zu verlängern. Durch den Transport von mehr aus dem Boden stammenden Perchloraten, möglicherweise mit Eisablagerungen, kann sich langsam Wasser in den bedeckten Kratern ansammeln. Biologisch gebildetes Distickstoffoxidgas könnte die innere Erwärmung dieses Gewächshauses und damit die biologischen Aktivitätsraten weiter verstärken.

Perchloratsalze aus dem Inneren des Kraters können aus der flüssigen Salzlösung gewonnen werden, um den Salzgehalt des Wassers allmählich zu verringern. Dies könnte durch parabolische Verdunstungsrinnen geschehen, die regelmäßig über die Salzoberfläche gehoben werden. Da Perchlorate giftig sind, können sie von einigen Mikroben wie Perchlorat-reduzierenden Bakterien (PRBs), die Percholorate als alternative Elektronenakzeptoren verwenden, entfernt werden. Solche PRBs könnten zu einem späteren Zeitpunkt eingeführt werden, um die mit Wasser gefüllten Krater für höhere Lebensformen ungiftig zu machen.

Bodenkonditionierung durch phototrophe Primärproduktivität

Flechten und Blaualgen werden seit Hunderten von Jahren als Nahrungsmittel auf der Erde verwendet. Spirulina ist ein Beispiel für ein weit verbreitetes Cyanobakterium, das mithilfe von Sonnenlicht essentielle Vitamine, Antioxidantien wie Beta-Carotin und Fettsäuren aus CO2 synthetisiert. Ein Hauptvorteil der Verwendung eines stickstoffixierenden Cyanobakteriums besteht darin, daß es Sonnenenergie verwenden kann, um atmosphärisches Stickstoffgas direkt in die essentiellen Aminosäuren umzuwandeln, die zukünftige bemannte Missionen benötigen, um Muskeln auf dem Roten Planeten aufzubauen und aufrechtzuerhalten. Dies reduziert die Menge an Treibstoff, die für den Transport von Nahrungsmitteln in benötigt wird. Überraschenderweise enthalten einige Arten von Cyanobakterien 60% Protein pro trockenes Gramm, was mehr Protein als im einem Rindersteak ist, ohne die hohe Menge an schädlichem Cholesterin. Gasförmiger Stickstoff macht etwa 2,7% der dünnen Marsatmosphäre aus und ist überall verfügbar. Stickstoffgas ist nicht die einzige bioverfügbare Form von Stickstoff, die zum Züchten von sauerstoffhaltigen Phototrophen benötigt wird. Nitrate sind ein idealer Dünger. Der Curiosity Rover identifizierte bioverfügbare Nitrate als wesentlichen Bestandteil des Sediments auf dem Mars. Spurenelemente sind auch in Gesteinen und Böden vorhanden, müssen jedoch möglicherweise verarbeitet werden.

Die von dieser Pioniermission eingeleitete Bodenkonditionierung der Marslandschaft wäre für eine spätere längerfristige Besiedlung durch Menschen erforderlich. Flechten und Cyanobakterien sind weit verbreitete Pionierarten auf der Erde, die im felsigen Gefolge sich zurückziehender Gletscher wachsen. Es ist bekannt, daß diese Phototrophen die Steinverwitterung beschleunigen und die Freisetzung essentieller Mineralien erleichtern. Phosphor ist ähnlich wie Stickstoff ein wichtiger Makrophytnährstoff, von dem heute bekannt ist, daß er ein wesentlicher Bestandteil der Marsoberfläche ist. In der Tat können einige stickstofffixierende Cyanobakterien ihre Expression von Phosphor freisetzenden Phytaseenzymen unter Phosphoreinschränkung hochregulieren⁠. Cyanobakterien bauen und stabilisieren außerdem Böden, indem sie ihre Anfälligkeit für Winderosion durch die Bildung von organischen extrazellulären Polysacchariden verringern, die dazu beitragen, Feuchtigkeit einzufangen und zu speichern. Flechten können auch Säuren und andere Metabolite freisetzen, die zum Gesteinsabbau und zur Bodenbildung beitragen. Flechten und Cyanobakterien können sich zwar an höhere UV-Lichtdosen auf dem Mars anpassen, sie müssen jedoch zunächst durch eine dünne Abdeckung geschützt werden, wie im Abschnitt „Photosynthese-Krater zur Erzeugung von Sauerstoff und Biomasse“ beschrieben.

Herstellung von Stahl für Marsoberflächenbauteile

Stahl kann nicht zum Mars gebracht werden, da mindestens 2,2 Tonnen Stahl für die strukturelle Unterstützung von 1.400 m2 Perowskit-Solarmodulen benötigt werden. Während leichte Kohlefasermodule als strukturelle Unterstützung verwendet werden könnten, ist es möglich, Stahl vor Ort zu produzieren. Die Stahlproduktion auf dem Mars scheint angesichts der Fülle an Eisen, Nickel und Titan auf dem Mars eine offensichtliche Alternative zum Transport von Baumaterial zu sein. Es wird jedoch auch organischer Kohlenstoff benötigt, der durch CO2-fixierende Algen erzeugt werden soll, die zuerst in Anreicherungsbecken (transparente Plastiktüten) und später in bedeckten Kratern wachsen. Nachdem das Algenmedium entwässert, recycelt und wieder erwärmt wurde, werden trockene Algenpellets als Ergänzung für die Stahlproduktion verwendet. Der Dehydratisierungs- und Wiedererwärmungsprozess erfordert zusätzliche Energie, die mit Hilfe von Parabolkollektoren als Wärme bereitgestellt werden kann. Parabolkollektoren sind effizienter in Bezug auf die Energieerfassung und einfacher zu konstruieren, da polierter Stahl im Gegensatz zu organischen Pb/I-Verbundstoffen in Perowskit-Solarzellen verwendet werden kann. Anschließend wird Stahl geformt und poliert, um parabolische Wärmekollektoren zu bauen, die mehr Eis schmelzen und mehr Energie liefern, bis der Kernreaktor und die Solarkollektoren vollständig durch Parabolkollektoren ersetzt werden können. Diese können die auch Strom produzieren. Die Stahlproduktion ist begrenzt durch die Menge an verfügbarem organischem Kohlenstoff. Daher empfehlen wir, die Möglichkeit zu prüfen, Methangas als Reduktionsmittel und Kohlenstoffquelle für die Stahlerzeugung zu verwenden. Die Methangasproduktion ist schneller und erfordert weniger Wasserressourcen als Algen.

Die Landeroboter wird auch Eisenerze und Silikate für die Herstellung von Drähten, Sonnenkollektoren und Baumaterialien abbauen. Stahl wird in einem Induktionsofen aus Eisenerzen und Graphit oder organischer Biomasse hergestellt. Für die Stahlproduktion wird organische Biomasse aus Algentanks verwendet. Diese organische Biomasse wird zu einem späteren Zeitpunkt der Mission auch für die Graphitherstellung verwendet. Alternative Ofenkonzepte sind möglich. Beispielsweise kann Methan als Reduktionsmittel verwendet werden. Eine andere Alternative wäre ein Lichtbogenofen oder Opfergraphitelektroden. Graphit kann wie folgt aus organischem Kohlenstoff hergestellt werden:

  • Organischer Kohlenstoff aus CO2 durch kaltangepasste Algen
  • Organischer Kohlenstoff + 800ºC → C
  • C + SiO2 + 1.400 ° C → SiC
  • SiC + 4.200ºC → Graphit

Die Induktionsöfen aus Stahl und Graphit

Energie für die anfängliche Stahlerzeugung für den Bau der 170-kW-Solaranlage (siehe „Oberflächenenergiebedarf“) wird von einem Kernreaktor erzeugt. Ein 40 kW Kernreaktor wird empfohlen. Die Stahlproduktion aus Eisenerz mittels Elektroschmelze erfordert 900 kWh pro Tonne Stahl⁠. Das heißt, um eine ausreichende strukturelle Basis für Solarmodule für 6 Personen zu erzeugen, sind etwa 2.000 kWh oder etwa 3 Tage Energieerzeugung bei voller Leistung erforderlich. Dies basiert auf der Annahme, daß der Stahl mit einer Dicke von 2 mm und 10% der Perowskitfläche von 1.400 m2 ausreichend sind. Um eine ausreichende strukturelle Stabilität für 3,5 MW (0,18 km2) Perowskit-Solarzellen zu erzeugen, die für die komfortable Rückgabeoption benötigt werden, werden 280 Tonnen Stahl benötigt. Das sind 50 Tagen Stahlproduktion mit den gesamten 210 kW (40 kW Kernreaktor + 170 kW Perowskit). Um 1,5% Kohlenstoff hinzuzufügen, werden 4 Tonnen Graphit benötigt, die als Ladung von der Erde transportiert werden.

Stahl ist auch für Parabol-Wärmekollektoren vor Ort erforderlich. Parabolische Wärmekollektoren werden zum Schmelzen des Eises für das Algenwachstum benötigt. Ungefähr 600 Tonnen Stahl werden für Parabolkollektoren für 1 Milliarde m3 Eisschmelze benötigt. D.h. es müssen 9 zusätzliche Tonnen Graphit mitgebracht werden. Um diese Menge Stahl auf dem Mars herzustellen, sind mindestens zwei weitere Jahre erforderlich. Dies scheint der beste Kompromiß zwischen Transport und Wartezeit für eine Marsmission zu sein, ist aber immer noch eine Annäherung. Auch das Algennebenprodukt Sauerstoff rechtfertigt diesen Ansatz. Da der Start einer bemannten Mission nicht von der Algenproduktion abhängt, gilt dies nicht als Wartezeit, die weitere 4 Jahre vor dem Start erforderlich macht. Dies soll nur die Machbarkeit der Stahlproduktion auf dem Mars belegen. Alternativ muß die Verwendung von auf dem Mars erzeugtem Methan als Kohlenstoff- und Elektronenquelle für Stahl untersucht werden, da dadurch möglicherweise kein Graphittransport mehr erforderlich ist.

Mögliche Perowskitproduktion und Wiederverwendung von Blei aus dem Kernspaltungsreaktor

Bleireste aus dem Kernspaltungsreaktor 235U an Bord des Landeroboters können verwendet werden, da sie ein Nebenprodukt des radioaktiven Zerfalls der Kontamination von 238U sind. Es gibt keine bestätigten höheren Jodkonzentrationen auf dem Mars. Um das PbI und Methylammoniumiodid in Solarzellen zu produzieren, muß dieses Element in Form von elementarem Jod, KI oder NaI mit dem Landeroboter mitgebracht werden. Da jedoch Jod durch das Element Chlor zur Herstellung von Perowskit ersetzt werden kann, muß die ursprüngliche Menge Jod möglicherweise nicht nachgefüllt werden. Chlor ist auf dem Mars ein reichlich vorhandenes Element.

Lösungsmittel, die für Perowskit-Zellen benötigt werden, können vor Ort unter Verwendung von Methangas und Essigsäure (ebenfalls ein mögliches Nebenprodukt von MERs) als Vorläufer hergestellt werden, sobald sie verfügbar sind. Um die Zwischenlücke zu schließen, können Lösungsmittel und organische Substrate verwendet werden, die vom Landeroboter auf den Mars gebracht werden. Diese Materialien sind:

  • N, N-Dimethylformamid (Lösungsmittel)
  • 2-Propanol (Lösungsmittel)
  • 2,2 ‚, 7,7′-Tetrakis (N, N-di-p-methoxyphenylamin) -9,9‘-spirobifluoren (Spiro-MeOTAD, Reaktant)

Da die Synthese von Perowskit-Zellen auf dem Mars immer noch zu schwierig sein kann, empfehlen wir den Transport dieser Komponenten. Wie unten gezeigt (Energiebedarf des Oberflächenlebensraums) werden nur 9 kg Perowskit-Sonnenkollektoren benötigt. Da Photovoltaikanlagen ständig verbessert werden, kann man in Zukunft eine bessere Leistung und geringere Gewichte erwarten.

Die in dieser Tabelle zum aktuellen Stand der Technik enthaltenen Geräte weisen Wirkungsgrade auf, die von unabhängigen, anerkannten Prüflabors (NREL, AIST, JRC-ESTI und Fraunhofer-ISE) bestätigt und standardisiert gemeldet werden (Quelle: NREL 2019).

Energiebedarf des Oberflächenlebensraums

Der durchschnittliche Energiebedarf pro Kopf in der Europäischen Union betrug 150 GJ/Jahr. Obwohl diese Schätzung für eine permanente Kolonie auf dem Mars wahrscheinlich zu hoch ist, haben wir dies hier als Referenz verwendet. Ein Perowskit-Solarmodul, das mit einem Wirkungsgrad von 12% betrieben wird, kann aus dem Mars-Aphel 8 Stunden Sonnenstrahlung mit einer angenommenen Leistung von 170 W/m² also 14 MJ/Tag/m² erzeugen. Das heißt, 240 m² Methylammonium-Bleihalogenid-Perowskit-Sonnenkollektoren sind erforderlich, um die Anwesenheit einer Person auf dem Mars aufrechtzuerhalten. Dies erfordert 350 g mesoporöses TiO2 und 370 g Au pro Kopf. Das geringe Gewicht von ca. 720 g pro Kopf ermöglicht einen Transport dieser Komponenten von der Erde zum Mars (insgesamt 8,5 kg). Die Montage des dünnen Solarkollektors auf einer stabilen Stahloberfläche ist auf dem Mars nur möglich, wenn Stahl vor Ort hergestellt wird. NASAs Human Exploration of Mars Design empfiehlt eine Mission von 6 Forschern. Das heißt, daß bei einer Leistung von ca. 1.400 m² Perowskit-Solarmodulen oder 170 kW nur ​​eine bemannte Forschungsmission überleben braucht. Vor dem Einbau dieser Paneele muß Stahl hergestellt werden, auf dem sie montiert werden können. Für den geplanten höheren Energiebedarf sind 3,5 MW erforderlich, wofür etwa 6,3 Tonnen Perowskit zum Mars transportiert werden können.

Auf dem Mars hergestellte Verbindungen (Zweck in Klammern)

  • Eisen, Fe0 (Stahl)
  • Stahl (Konstruktion, Drähte, Elektroden)
  • Graphit (Stahl, Elektroden)
  • Siliciumdioxid, SiO2 (Siliciumcarbid, Graphit)
  • Siliziumkarbid, SiC (Graphit)

Auf den Mars gebrachte Verbindungen (mit optionaler späterer In-situ-Produktion):

  • Graphit (für die anfängliche Stahlproduktion)
  • Oder Kohlefaserelemente (für den Bau ohne Stahl)
  • Platinchlorid (zum Galvanisieren von Anoden, alternativ zu Stahl)
  • Perowskit-Sonnenkollektoren (3,3 Tonnen)
  • Mesoporöses Titandioxid, TiO2
  • (Perowskit-Solarzellen, Photonenfalle)
  • Gold (Perowskit-Solarzellen, Leiter)
  • Bleiiodid (Perowskit-Solarzellen)
  • N, N-Dimethylformamid (Perowskitsolarzellen, Lösungsmittel)
  • Methylammoniumiodid, CH3NH3I (Perowskit-Solarzellen, Reaktant)
  • 2-Propanol (Perowskit-Solarzellen, Lösungsmittel)
  • Iodwasserstoffsäure (Perowskitsolarzellen, Reaktant)
  • Spiro-MeOTAD (Perowskit-Solarzellen, Reaktant)

(Prof. John Piscotta von der West Chest University hat and diesem Artikel mitgewirkt. Bild: NASA/Wikipedia)

Veröffentlicht am

Energiespeicherung in Großbritannien

In unserem letzten Beitrag zum EU-Energiespeichermarkt haben wir einen kurzen Überblick über die Situation in Deutschland gegeben. Jetzt wollen wir einen näheren Blick auf Großbritannien werfen. Der britische Energiemix wurde traditionell von fossilen Brennstoffen dominiert. Dies ist auch bis heute der Fall. Zirka 60% des in Großbritannien erzeugten Stroms wird aus fossilen Brennstoffen gewonnen und weitere 20% aus Kernkraft.

Stromproduktion in Großbritannien 2015 (Quelle: Die britische Regierung)

Während das Vereinigte Königreich stark von kohlenstoffintensiven Stromquellen abhängig war, verpflichteten hat es sich 2008 zum Ziel gesetzt, bis 2020 mindestens 15% aus erneuerbare Energien zu erzeugen und zudem eine 80%ige Reduzierung der CO2-Emissionen bis 2050 zu erreichen (Ministerium für Energie und Klimawandel). Das Vereinigte Königreich hat jedoch inzwischen erklärt, daß es das erneuerbare Ziel von 15% für 2020 verfehlen wird, da keine entsprechenden politischen Maßnahmen getroffen wurden. Der Übergang zu einem kohlenstoffarmen Markt wird dennoch mit erheblichem Druck vorangetrieben. Ein Viertel der vorhandenen Erzeugungskapazitäten (hauptsächlich Kohle und Kernkraft) wird voraussichtlich bis 2021 stillgelegt. Es wird erwartet, daß das Wachstum der erneuerbaren Energien zu mehr Energiespeicherkapazitäten führen wird.

Im Jahr 2011 räumte die britische Regierung ein, daß der gegenwärtige Energiemarkt für eine Umstellung auf erneuerbaren Energie nicht geeignet ist. Die Regierung schlug eine Verlagerung auf einen kapazitätsbasierten Markt vor, d.h. auf einen Markt, in dem eine zentrale Behörde die Beschaffungen von Energiekapazitäten im Voraus plant und durchführt, um die künftige Erzeugung angemessen steuern zu können. Die vorgeschlagene Marktreform würde dazu beitragen, den Übergang zu kohlenstoffarmer Energie voranzutreiben, indem die Einnahmen der Erzeuger erneuerbarer Energien durch Kohlenstoffpreise und Einspeisetarife stabilisiert werden. Der Kapazitätsmarkt war nach den ersten Energieauktionen Ende 2015 in Betrieb.

Großbritannien hat bei seinen kurzfristigen Zielen für saubere Energien große Fortschritte erzielt, und es besteht Optimismus, daß sich dieser Trend fortsetzt. Die Entwicklung kohlenstoffarmer Erzeugungstechnologien aus Wind und Sonne in großem Maßstab wird fortgesetzt.

Energiespeicher

Ende 2016 gab es in Großbritannien 27 Energiespeichernlagen (ohne Pumpspeicherkraftwerke) mit einer installierten Leistung von 430 MW. Das Energiespeicherportfolio in Großbritannien wird von elektrochemischen Technologien (hauptsächlich Blei-Säure- und Lithium-Ionen-Batterieanlagen) dominiert, wie dargestellt ist.

Anlagen zur Energie Speicherrung in Großbritannien nach Art, 2015 (Quelle: Sandia National Laboratories)

Die Verbreitung elektrochemischer Technologien scheint sich auch kurzfristig fortzusetzen. Fünf der sieben Energiespeicherprojekte in Großbritannien sind elektrochemisch. Obwohl es sich um eine relativ kleine Stichprobe handelt, stehen die sinkenden Kosten für die Speicherung von Lithium-Ionen-Batterien in Großbritannien im Mittelpunkt.

Energiespeichernutzung

Anlagen zur Energiespeicherung nach Nutzung in Großbritannien (Quelle: Sandia National Laboratories)

Wie auch in Deutschland, ist auch in Großbritannien nur ein sehr kleiner Teil der Energiespeicheranlagen für den Ausbau der Kapazitäten für erneuerbare Energien vorgesehen. Die vorhandene Speicherkapazität ist fast ausschließlich für die kritische Übertragungsunterstützung (Vor-Ort-Stromversorgung) vorgesehen. Zudem sind fast alle sich in Entwicklung befindlichen Großspeicher zum Tagesausgleich von Spitzenlasten vorgesehen.

Das Wachstum von elektrischen Energiespeichern in Großbritannien ist nach wie vor mit erheblichen Unsicherheiten behaftet. Bei einer derart geringen Stichprobengröße ist es zudem schwierig, aus den Daten in der obigen Abbildung einen Trend zu erkennen. Laut der vorherigen britischen Regierung, würde man davon ausgehen, daß das geografisch isolierte Vereinigte Königreich ein Nettoimporteur von Elektrizitä bleibt und deswegen langfristig einen stärkeren Fokus auf den Ausbau der Kapazitäten für erneuerbare Energien legen wird.

Marktausblick für Energiespeicher

Großbritannien befindet sich mitten in einer umfassenden Umstrukturierung seines Stromerzeugungsportfolios und des Marktes, auf dem diese Vermögenswerte vertrieben werden. Da ein großer Teil der vorhandenen Kapazität in den nächsten 10 bis 15 Jahren in den stillgelegt werden sollen, steht Großbritannien vor den Herausforderungen, den anfallenden Energiebedarf zu decken und gleichzeitig die Anstrengungen zur Reduzierung der CO2-Emissionen auszugleichen. Dazu sind umfangreiche Investitionen in alle Bereiche des Stromnetzes erforderlich, einschließlich Energiespeicher.

In ihrer Veröffentlichung zu Smart Power stellte die Nationale Infrastrukturkommission fest, daß das Vereinigte Königreich zwar vor Herausforderungen steht, um die alternde Infrastruktur abzudecken, dies jedoch eine Chance für den Aufbau einer effizienten und flexiblen Energieinfrastruktur darstellt. Die Kommission erklärte, daß Energiespeicherung eine der drei Schlüsselinnovationen für eine „intelligente Energiewende“ sei.

Viele andere offizielle Regierungsstellen haben ähnliche Gedanken bezüglich der Energiespeicherung geäußert. In seinem Bericht über die kohlenstoffarme Netzinfrastruktur erklärte der Ausschuß für Energie und Klimawandel, daß „Speichertechnologien so bald wie möglich in großem Maßstab eingesetzt werden sollten“, und forderte die Regierung auf, die veralteten und unfairen Vorschriften zu beseitigen, die die Entwicklung der Energiespeicher in der EU mit Handschellen belasten Großbritannien (Garton und Grimwood).

Im April 2016 erkannte die britische Regierung Bedenken hinsichtlich der regulatorischen Hürden für Energiespeicherprojekte an (vor allem die doppelte Erhebung von Netzentgelten) und erklärte, daß sie mit der Nationalen Infrastrukturkommission und dem Ministerium für Energie und Klimawandel zusammenarbeiten würden, um das Problem zu untersuchen. Während es in Großbritannien regulatorische Hürden für die Speicherung von Energie geben kann, hat die britische Regierung ihr Engagement durch Finanzierung unter Beweis gestellt. Seit 2012 hat die britische Regierung mehr als 80 Millionen Pfund für die Energiespeicherforschung bereitgestellt. Darüber hinaus hat das Ministerium für Energie und Klimawandel einen neuen Fonds in Höhe von 20 Millionen Pfund entwickelt, um Innovationen bei Energiespeichertechnologien voranzutreiben.

Insgesamt sind die Aussichten für die Energiespeicherung in Großbritannien positiv. Es besteht ein erheblicher Druck, nicht nur von der Industrie, sondern auch von vielen staatlichen Stellen mit der Entwicklung von Energiespeichern in großem Maßstab zu beginnen. Auch die Investoren sind bereit. Laut Aussage der Nationalen Infrastrukturkommission: „Unternehmen stehen bereits an, um zu investieren“.

Einfach ausgedrückt: Die regulatorischen Hürden bremsen das Wachstum auf dem britischen Energiespeichermarkt. Angesichts der großen Fortschritte der Regierung bei der Entwicklung erneuerbarer Energien und ihres Bekenntnisses, Großbritannien zu einem führenden Anbieter von Energiespeichertechnologie zu machen, werden diese regulatorischen Hürden wahrscheinlich gelockert, und der britische Energiespeichermarkt dürfte in naher Zukunft ein beträchtliches Wachstum verzeichnen.

Zu diesem Zeitpunkt wurden bestimmte Technologietypen und Dienstnutzungen noch nicht detailliert angenommen. Angesichts der geografischen Isolation des Nettostromimporteurs Großbritannien würde die Logik jedoch darauf hindeuten, daß die Kapazitäten für erneuerbare Energien langfristig ausgebaut werden, um den inländischen Verbrauch erneuerbarer Energien zu maximieren. Die rapide sinkenden Kosten für elektrochemische Technologien und die Tatsache, daß ein Großteil der vorhandenen Gaskapazitäten bis 2030 das Ende ihrer Lebensdauer erreichen wird, legen nahe, daß der britische Energiespeichermarkt für P2G-Technologien nicht ideal wäre.

In unserem nächsten Beitrag können Sie mehr über den Energiespeicherung in Italien erfahren.

(Jon Martin, 2019)

Veröffentlicht am

Bioelektrischer Alkohol als Flüssigkraftstoff mit Hilfe von Hefen

Hefen wie Saccharomyces cerevisiae werden, wie der Name erraten läßt, zur Herstellung von Bier und anderen alkoholischen Getränken im großen Maßstab eingesetzt. Ihre hohe Salz- und Ethanoltoleranz macht sie dabei aber nicht nur für die Herstellung von Getränken nützlich, sondern auch für hohe Alkoholkonzentrationen bei der Produktion von Kraftstoffen. Wie wir schon berichteten, sind dabei neben dem bekannten Ethanol besonders auch die langkettigen Fuselalkohole interessant. Schon heute wird Bioethanol mit Benzin gemischt und verbessert somit die CO2-Bilanz von Verbrennungsmotoren. Dieser flüssiger Biokraftstoff wird entweder aus Stärke oder Lignocellulose hergestellt. Die lokale Produktion und Verwendung von Bioethanol unterstützt lokale Volkswirtschaften, verringert den CO2-Ausstoß und fördert die Selbstversorgung. Letzteres ist besonders wichtig für ressourcenarme Binnenländer von Bedeutung.

Um Ethanol und andere Alkohole effizient aus Lignocellulose-Hydrolysaten herzustellen, müssen Hefen sowohl Glucose als auch Pentosen wie Xylose und Arabinose verwenden. Dies liegt daran, daß Biomasse sowohl reich an Lignocellulose und damit auch Glucose und Xylose ist. Dies ist allerdings auch der Hauptnachteil der Verwendung von Saccharomyces cerevisiae, da sie Xylose nicht fermentieren kann. Dementsprechend ist die Identifizierung von Hefestämmen, die sowohl Glucose als auch Xylose fermentieren können, von großer Bedeutung. Hocheffiziente Hefestämme können, z.B. in Co-Kulturen mit anderen Hefen, die zur Lignocellulosefermentation fähig sind, für die Ethanolherstellung verwendet werden. Eine solche Hefe ist z.B. Wickerhamomyces anomalous.

Um die Ethanolproduktion weiter zu verbessern, kann bioelektrische Fermentationstechnologie eingesetzt werden, die die traditionelle Fermentation unterstützt. Der mikrobielle Metabolismus kann so elektrochemisch gesteuert werden. Die Vorteile sind vielfältig. Die Fermentation wird durch das Anlegen eines elektrochemischen Potentials selektiv, wodurch sich die Effizienz der  von Zuckerverwertung erhöht. Zudem wird so der Einsatz von Additiven zur Kontrolle das Redoxgleichgewichts sowie des pH-Wertes minimiert. Auch das Zellwachstum kann dadurch verbessert werden.

Solche bioelektrischen Zellen sind galvanische Zellen. Die in der bioelektrischen Zelle verwendeten Elektroden können als Elektronenakzeptoren oder -quelle wirken. Solche elektrochemischen Veränderungen wirken sich nicht nur auf den Stoffwechsel und die Zellregulation aus, sondern auch auf die Wechselwirkungen zwischen den eingesetzten Hefen aus. Jetzt hat eine Forschergruppe aus Nepal (einem ressourcenarmen Binnenland) neue Hefestämme von Saccharomyces cerevisiae und Wickerhamomyces anomalous in einem bioelektrischen Fermenter verwendet, um die Ethanolproduktion aus Biomasse zu verbessern. Die Ergebnisse haben die Wissenschaftler im Fachmagazin Frontiers in Energy Research publiziert.

Für die Studie wurden Saccharomyces cerevisiae und Wickerhamomyces anomalus ausgewählt, da beide gute Ethanolproduzenten sind und von letzterer gezeigt wurde, daß sie Xylose in Ethanol umwandeln können. Nachdem die Forscher eine Spannung an das System angelegt hatten, verdoppelte sich die Ethanolproduktion durch die verwendeten Hefen. Beide Hefen bildeten einen Biofilm auf den Elektroden, was das System ideal für den Einsatz als Durchflußsystem macht, da die Mikroorganismen nicht ausgewaschen werden.

Saccharomyces cerevisiae, lichtmikroskopische Aufnahme, 600-fache Vergrößerung (Foto: Amanda Luraschi)

Die Forscher spekulierten, daß die erhöhte Ethanolproduktion durch die stärker angetrieben Umwandlung von Pyruvat zu Ethanol zu Stande kam − dem zentralen Stoffwechselmechanismus der Hefe. Dies führten die Forscher auf einen Beschleunigung der Redoxreaktionen an der Anode und Kathode zurück. Die zugeführte externe Spannung polarisierte die im Cytosol vorhandenen Ionen und erleichtert so den Elektronentransfer von der Kathode. Dies und die beschleunigte Glucoseoxidation führten wahrscheinlich zu einer erhöhten Ethanolproduktion.

Normalerweise wird Pyruvat in Gärhefen zu Ethanol umgewandelt. Eine externe Spannungseingabe kann die Kinetik des Glukosestoffwechsels in Saccharomyces cerevisiae sowohl unter aeroben als auch unter anaeroben Bedingungen zu steuern. Dabei spielen intrazelluläre wie das Transplasmamembran-Elektronentransfersystem eine wichtige Rolle für den Elektronentransport durch die Zellmembran. Das Elektronentransfersystem besteht aus Cytochromen und verschiedenen Redoxenzymen, die der Membran an bestimmten Stellen Redoxaktivität verleiht.

Die Autoren haben zudem festgestellt, daß eine erhöhte Salzkonzentration die Leitfähigkeit und damit die Ethanolproduktion fördert. Die erhöhte Ethanolproduktion aus lignocellulosehaltiger Biomasse könnte auch auf das Vorhandensein verschiedener Naturstoffe zurückzuführen sein, die das Wachstum von Hefestämmen fördern könnten. Wenn die Celluloseacetatmembran durch eine Nafion™-Membran ersetzt wurde, erhöhte dies die Ethanolproduktion ebenfalls. Das könnte auf einen verbesserten Transport von Xylose durch die Nafion™-Membran sowie auf die Abnahme des Innenwiderstands zurückzuführen sein. Eine weitere Steigerung der Ethanolproduktion wurde beobachtet, wenn der bioelektrische Reaktor mit feinen Platinpartikeln betrieben wurde, die auf die Platinanode aufgetragen waren, und Neutralrot auf der Graphitkathode abgeschieden wurde.

Hefekulturen von links nach rechts: Saccharomyces cerevisiae, Candida utilis, Aureobasidium pullulans, Trichosporum cutaneum, Saccharomycopsis capsularis, Saccharomycopsis lipolytica, Hanseniaspora guilliermondii, Hansenula capsulata, Saccharomyces carlsbergensis, Saccharomyces rouxii, Rhodotorula rubra, Phaffia rhodozyba, Cryptococcus laurentii, Metschnikowia pulcherrima, Rhodotorula pallida

Bei Frontis Energy denken wir, daß die vorliegende Studie vielversprechend ist. Für die Zukunft sollten aber langkettige Fuselalkohole in Betracht gezogen werden, da diese weniger flüchtig und besser mit derzeitigen Verbrennungsmotoren verträglich sind. Diese können zudem leicht in die entsprechenden langkettigen Kohlenwasserstoffe umgewandelt werden.

Veröffentlicht am

Deutschlands Markt für Energiespeicher

Deutschlands Stromportfolio

In unseren letzten Beiträgen haben wir elektrische Energiespeicher (EES) und den EU-Markt für EES vorgestellt. Im Folgenden konzentrieren wir uns auf einige wichtige EU-Mitglieder und beginnen mit Deutschland. Das Elektrizitätsportfolio des Landes spiegelt seinen Status als eines der fortschrittlichsten Länder der Welt in Bezug auf Klimaschutz wider. Bis November 2016 hat Deutschland ~35% seines Strombedarfs 2016 aus erneuerbaren Quellen gedeckt, wie in der folgenden Abbildung zu erkennen ist.

Stromerzeugung nach Quelle in Deutschland 2016 (Quelle: Fraunhofer ISE)

Das Wachstum der erneuerbaren Energien wurde durch die Energiewende in Deutschland weltweit vorangetrieben. Die Energiewende ist ein langfristiger Plan zur Decarbonisierung des Energiesektors. Die Richtlinie wurde Ende 2010 mit ehrgeizigen Zielen für die Reduzierung von Treibhausgasen und für die Bereitstellung von erneuerbaren Energien bis 2050 verabschiedet (80-95% weniger Treibhausgase als 1990 und 80% erneuerbarer Strom).

Ein wesentlicher Bestandteil der Energiewende-Politik 2010 war das Vertrauen in die 17 deutschen Kernkraftwerke als Bedarfsreserve, um den Übergang von fossilen Brennstoffen zu erneuerbaren Energien zu erleichtern. Angesichts der Katastrophe von Fukushima, nur sechs Monate nach dem Inkrafttreten der Energiewende, hat die Bundesregierung die Politik dahingehend geändert, daß bis 2022 ein aggressiver Atomausstieg unter Beibehaltung der Zielvorgaben für 2050 vorgesehen ist. Dies hat die Bedeutung von sauberem, zuverlässigem Strom aus alternativen Quellen wie Wind und Sonne nur noch verstärkt.

Bestehende Energiespeicher in Deutschland

Bis Ende 2016 sind in Deutschland 1.050 MW Energiespeicherkapazität (ohne PHS) installiert. Der Großteil dieser Kapazität besteht aus elektromechanischen Technologien wie Schwungrädern und Druckluftspeichern (siehe Abbildung unten).

Deutschlands Energiespeicher nach Kapazität (Quelle: Sandia National Laboratories)

Diese Zahlen sind jedoch aufgrund der Tatsache, daß es sich bei der elektromechanischen Kategorie im Wesentlichen um zwei Druckluftspeichernanlagen mit großer Kapazität handelt, etwas verzerrt. In der Realität sind elektrochemische Projekte (hauptsächlich Batterien) weit verbreitet und machen den größten Teil des Wachstums auf dem deutschen Speichermarkt aus. Derzeit befinden sich in Deutschland elf elektrochemische Energiespeicherprojekte in der Entwicklung und keine elektromechanischen Projekte in der Entwicklung (siehe Abbildung unten).

Anzahl der EES-Projekte nach Typ (Quelle: Sandia National Laboratories)

Dienstleistungen Nutzung von Energiespeichern in Deutschland

Wie bereits erwähnt, gibt es Verwendungen für EES-Technologien. Derzeit werden mit der in Deutschland vorhandenen EES-Flotte Netzbetriebs- und Stabilitätsanwendungen (Schwarzstart, Stromversorgungskapazität) sowie Vor-Ort-Strom für kritische Übertragungsinfrastruktur bedient. Eine Aufschlüsselung der Dienstnutzungen auf dem deutschen Markt ist nachstehend aufgeführt.

Service-Nutzung von Verwendung von Energiespeichern in Deutschland (Quelle: Sandia National Laboratories)

Am bemerkenswertesten ist die Tatsache, daß der Ausbau der Kapazitäten für erneuerbare Energien nur 0,3% der derzeit in Deutschland tätigen EES (ohne Pumpspeicher) ausmacht. Um dies zu verstehen, muß angemerkt werden, daß Deutschland ein Nettoexporteur von Elektrizität ist (nächste Abbildung unten). Mit einem der zuverlässigsten Stromnetze der Welt und einer idealen geografischen Lage ist Deutschland hervorragend an eine Vielzahl benachbarter Strommärkte angebunden. So ist es einfach, überschüssigen Strom zu exportieren.

Dieser „Exportausgleich“ ist ein Hauptgrund dafür, dass der EES-Markt in Deutschland kein vergleichbares Wachstum wie bei erneuerbaren Energien verzeichnet hat. Für Deutschland ist es einfach, Strom zu exportieren, um die Systemlast in Zeiten höchster erneuerbarer Produktion auszugleichen. Es gibt jedoch negative Aspekte dieses Energieexports, wie eine starke Überlastung der Übertragungsinfrastruktur in den Nachbarländern.

Netto-Stromexporte bei durchschnittlicher Marktpreisentwicklung für Deutschland im Jahr 2015 (Quelle: Fraunhofer ISE)

Ausblick für den Energiespeichermarkt in Deutschland

Die Logik scheint darauf hinzudeuten, daß Deutschland mit aggressiven Zielen für erneuerbare Energien, seinem geplanten Atomausstieg und einer stärkeren Betonung der Energieunabhängigkeit mehr EES-Kapazität entwickeln muß. Viele Experten sind jedoch der Ansicht, daß der hinkende kurz- und mittelfristige Ausbau der EES Kapazitäten die Energiewende nicht behindern wird. Einige behaupten sogar, daß EES in den nächsten 10 bis 20 Jahren keine Notwendigkeit sein wird. Selbst wenn Deutschland beispielsweise seine Wind- und Solarziele für 2020 erreicht (46 GW bzw. 52 GW), würden diese in der Regel 55 GW nicht überschreiten, und fast der gesamte Strom würde im Inland in Echtzeit verbraucht. Daher wäre nennenswerte Unterstützung durch EES nicht erforderlich.

Das Deutsche Institut für Wirtschaftsforschung teilt diese Einschätzung und argumentiert, daß die bei erheblichen erneuerbaren Energiekapazitäten erforderliche Netzflexibilität durch kostengünstigere Optionen wie flexible Grundlastkraftwerke und ein besseres Management der Nachfrageseite gewährleistet werden könnte. Darüber hinaus bieten Innovationen bei Power-to-Heat-Technologien, bei denen überschüssiger Wind- und Solarstrom zur Versorgung von Fernwärmesystemen verwendet wird, neue Chancen und schaffen einen neuen Markt für Energiedienstleistungsunternehmen.

Power-to-Gas

Das Bundesministerium für Verkehr und digitale Infrastruktur hat festgestellt, daß P2G ideal geeignet ist, um überschüssige erneuerbare Energie in ein vielfältiges Produkt umzuwandeln, das über einen langen Zeitraum gespeichert werden kann. Deutschland war in den letzten Jahren der zentrale Ort für die Entwicklung der P2G-Technologie. Derzeit sind in Deutschland sieben P2G-Projekte in Betrieb oder im Bau.

Während der laufenden Arbeiten ist eine wirtschaftlich realisierbare Produktion von P2G derzeit nicht möglich, da der Stromüberschuss begrenzt ist und die garantierte Kapazität niedrig ist. Dieser begrenzte Stromüberschuss ist ein Beispiel für die Wirkung der oben diskutierten Stromexporte. Während es kurzfristig möglicherweise keinen bedeutenden kommerziellen Markt gibt, könnte die Einführung von P2G für den Verkehr als zusätzlicher Motor für die weitere Entwicklung erneuerbarer Energien in Deutschland fungieren.

(Jon Martin, 2019)