Veröffentlicht am

Spurenmetalle beschleunigen die Wasserstoffentwicklungsreaktion von Biokathoden in mikrobiellen Elektrolysezellen

Es ist bekannt, daß mikrobielle Biofilme an Biokathoden die Produktionenraten der Wasserstoffelektrolyse verbessern. Dabei handelt es sich um den Prozeß, der zur Herstellung von Wasserstoffgas aus Wasser durch Strom dient. Die Wasserstoffentwicklung mikrobiellen Elektrolysezellen wird sogar dann beschleunigt, wenn der Biofilm, der die Biokathode besiedelt, abgetötet wurde. Verschiedene Arten von Mikroorganisme, wie z.B. elektrogene (Geobacter sulfurreducens), nicht exoelektrogene (Escherichia coli) Bakterien oder das Wasserstoff-oxidierende methanogene Archeon Methanosarcina barkeri, vollbringen dieses Kunststück, aber Geobacter ist das schnellste. Zellrückstände wie Metalloproteine scheinen die Wasserstoffbildung zu katalysieren. Daher sind lebende Zellen für die Wasserstoffelektrolyse gar nicht notwändig, wodurch Biokathoden eine billige und umweltfreundliche Alternative zu Edelmetallkatalysatoren werden könnten. Während die Autoren des erwähnten Artikels über die Rolle von Metalloproteinen spekulierten, zeigt eine neue Veröffentlichung in Electrochimica Acta durch Forscher der Wageningen University, daß die Verfolgung von Metallen im Wachstumsmedium tatsächlich für die beobachtete Ratenbeschleunigung verantwortlich ist.

Die Autoren verwendeten eine Mischung aus Metallsalzen in einem mikrobiellen Wachstumsmedium, wie z.B. Kobalt-, Kupfer-, Eisen-, Mangan-, Molybdän-, Nickel- und Zinksalz, sowie den Metallchelator Ethylendiaminetetraossigsäure (EDTA). Das Medium war dabei biokompatibel mit neutralem pH-Wert, mesophile Temperatur und Wasser als Elektrolyt.

Die Forscher führten eine Reihe von Experimenten durch, um die Auswirkung verschiedener Parameter auf die katalytische Aktivität und Stabilität der Spurenelementmischung zu untersuchen. Diese Parameter umfassten die Konzentration der Metallverbindungen, das Vorhandensein oder die Abwesenheit von EDTA, die Art des Elektrodenmaterials und die Art des Elektrolyten. Verschiedene Techniken zur Messung des kathodischen Stroms, die Wasserstoffproduktionsrate, das Überpotential und die Stromdichte der Wasserstoffelektrolyse wurden herangezogen.

Die Ergebnisse zeigen, daß die Spurenelementmischung den kathodischen Strom und die Effizienz derLadungsübertragung zu Wasserstoff signifikant erhöhte und daß Kupfer und Molybdän die aktivsten Verbindungen in der Mischung waren. Das ist überraschend, da in der vorherigen Veröffentlichung hauptsächlich Kobalt- und Eisenverbindungen auf der Oberfläche der Biokathoden gefunden wurden. Beide Elemente sind auch gute Wasserstoffkatalysatoren, während beispielsweise Molybdänsulfid die Produktionsraten in methanogenen mikrobiellen Elektrolysezellen nicht erhöhte. Wasserstoffelektrolyse ist der elektrochemische Flaschenhals, der die Reaktionrate in methanogenen Elektrolysezellen bestimmt, da es sich beim Wasserstoff um das Zwischenprodukt handelt:

4 H2 + CO2 → CH4 + 2 H2O

Die Wissenschaftler zeigten auch, daß das Entfernen von EDTA aus dem Mix die Katalysatorleistung weiter verbesserte, da EDTA als Komplexierungsmittel (Chelator) fungierte, wodurch die Verfügbarkeit von Metallionen and der Elektrodenoberfläche verringert wurde. Es wurde auch darauf hingewiesen, daß Elektroden auf Kohlenstoffbasis besser geeignet waren als Elektroden auf Metallbasis, wahrscheinlich weil sie eine höhere Oberfläche haben. Dies ist ein interessantes Ergebnis, da man der Ansicht sein kann, daß der Mechanismus hinter der besseren Leistung von Kohlenstoffelektroden die mikrobielle Adhesionspräferenz für Kohlenstoff ist. Die Ergebnisse zeigten benfalls, daß die Verwendung eines mikrobiellen Wachstumsmediums als Elektrolyt die Katalysatorleistung im Vergleich zur Verwendung eines Phosphatpuffers nicht signifikant beeinflußte.

Die Autoren kamen zu dem Schluß, daß ihr Ansatz eine einfache, billige und umweltfreundliche Methode ist, um effektive Katalysatoren für die Wasserstoffelektrolyse herzustellen. Sie schlugen vor, daß diese Katalysatoren in biologische Systeme für die Wasserstoffproduktion in bioelektrischen und Fermentationsprozessen integriert werden könnten. In der Tat ist es unvermeidlich, in mikrobiellen Elektrolysezellen keine Spurenmetalle zu verwenden, da sie zur Aufrechterhaltung des mikrobiellen Stoffwechsels unerlässlich sind.

Beide Artikel zeigen, daß Spurenmetalle bei der Wasserstoffelektrolyse eine wichtige Rolle spielen können und daß sie aus biologischen Quellen hergestellt werden können. Sie haben jedoch auch einige Einschränkungen und Herausforderungen, wie die Stabilität, Selektivität und Skalierbarkeit der Katalysatoren. Daher sind weitere Untersuchungen erforderlich, um die Leistung und Anwendbarkeit von Katalysatoren auf Trace-Metallbasis für sie zu optimieren.

(Bild: US National Science Foundation)

Veröffentlicht am

Bio-elektrische Systeme helfen bei der PFAS-Aufbereitung

Per- und Polyfluoralkylsubstanzen (PFAS) werden seit vielen Jahrzehnten für verschiedene Anwendungen hergestellt. Darunter befinden sich medizinische Anwendungen, wie z.B. Implantate und Katheter, oder Alltagsgüter zur Brandbekämpfung, Kunststoffe, Kochgeschirr Kosmetik. Ebenso sind zahllose Industrieanwendungen z.B. in der Automobilindustrie, der Chemieindustrie sowie dem Energiesektor inklusive Wasserstoffelektrolyse und Brennstoffzellen auf PFAS (z.B. Nafion™) angewiesen. Die weit verbreitete Anwendung von PFAS hat weltweit zum Eindringen von Spuren dieser Substanzen in die Umwelt geführt. Dazu zählen Flughäfen, Chemieanlagen, Feuerwehren, militärische Anlagen.

Die langfristige Auswirkungen dieser Substanzen auf die Gesundheit wird besonders im Hinblick auf deren chemische Stabilität (die eine gewünschte Eigenschaft ist) derzeitig kontrovers diskutiert.

Neben der kompletten Vermeidung des Eindringens in die Umwelt können PFAS aber auch aus ihr beseitigt werden. Zum Beispiel wird Aktivkohle häufig verwendet, um PFAs daran zu absorbieren. In Böden ist diese Methode jedoch nicht effizient. Idealerweise müßte die Aktivkohle selbst weiter aufbereitet werden, um PFAS wieder zu verwenden. Dieser Prozeß ist sehr energieintensiv.

Wie bei vielen Aufbereitungsprozessen können auch Mikroben zum Einsatz kommen. Solche biologischen Methoden werden als Bioremediation bezeichnet. Allerdings gehören die Kohlenstoffluor-Bindungen (C-F) in PFAS zu den stärksten kovalenten Bindungen in der organischen Chemie. Darüber hinaus gibt es nur sehr wenige natürlich vorkommende C-F Bindungen in der Nature, die dort auch nur in geringen Konzentrationen vorkommt. Ein prominentes Beispiel ist Fluoressigsäure, eine hochgiftige Verbindung die vom südafrikanischen Giftblattstrauch gebildet wird.  Nur wenige Mikroorganismen mit der Fähigkeit, die C-F-Bindung zu lösen, wurden identifiziert. Die Bioremediation von PFAS ist also möglich aber ein langsamer Prozeß.

Wie in unseren vorhergehenden Artikeln bereits beschrieben wurde, können bio-elektrische Systeme mikrobielle Umsetzungsprozesse beschleunigen. Das geschieht, indem sie der mikrobiellen Gemeinschaft eine grösseres elektrochemisches Potentialgefälle anbieten, als dies natürlich der Fall ist. Dieses Verfahren wird erfolgreich bei der Reinigung von Industrieabwässern eingesetzt.

In bio-elektrischen Systemen werden Mikroorganismen und Verunreinigungen in eine elektrochemische Apparatur platziert. Die Elektroden eines solchen Systems dienen als Elektronenspender oder -empfänger. So wird der biologische Abbau über den elektrischen Strom gemessen.

Bio-elektrische Systeme wurden in der Tat schon zum Abbau von fluorierten Alkanen eingesetzt. So wurde z.B. der Entzündungshemmer Dexamethason mithilfe einer solchen Apparatur erfolgreich beseitigt. Wie auch von uns für bioelektrischen Flüssigkraftstoff vorgeschlagen, könnten auch für PFAS Designer-Mikrobiome untersucht werden. Auch sollten Untersuchungen an anderen Medikamentrückständen, wie z.B. Prozac™ vorgenommen werden, damit diese nicht weiter in die Umwelt gelangen.

Bei Frontis Energy sind wir schon gespannt auf die Entwicklungen in den kommenden Jahren.

 

Veröffentlicht am

Bio-elektrisches System entfernt Stickstoff aus Abwasser

Belebtschlammbecken

Bei der Behandlung von Abwasser werden organische Verunreinigungen sowie Stickstoffverbindungen in einen energieintensiven Prozeß entfernt. Die Behandlung im Belebtschlamm benötigt zum Beispiel viel Energie für das Begasen mit Luft oder Sauerstoff. Die Belüftung verursacht dabei erhebliche Kosten. Für die Belüftung sind etwa 5 kWh pro Kilogramm je nach Kläranlage erforderlich. Die mit dem Energieverbrauch verbundenen Kosten machen in einer durchschnittlichen europäischen Abwasseraufbereitungsanlage rund 500.000 Euro pro Jahr aus. Dies ist bis zu einem Drittel der Gesamtbetriebskosten von Kläranlagen. Die Stickstoffentfernung aus Abwasser muß daher wirtschaftlicher werden.

Bioelektrische Technologie spart Energie

Herkömmliche Stickstoffentfernung besteht aus einer Abfolge von Nitrifikations– und Denitrifizierungsreaktionen. Die Nitrifizierung ist die aerobe Ammoniumoxidation zu Nitrit und Nitrat und wird von ammoniumoxidierenden Bakterien durchgeführt. In der anschließenden Denitrifizierung wird das Nitrat zu Stickstoffgas (N2) umgewandelt. Neben dem kostspieligen Belüftungsprozess erfordern die verbleibenden Zwischenprodukte Nitrit und Nitrat also eine weitere Abwasserbehandlung.

Anstelle des energieintensiven Pumpens von Sauerstoff in das Abwasser könnten bioelektrische Systeme mit viel niedrigeren Kosten das gleiche Ergebnis erzielen. In solchen Systemen stellt eine Anode den Elektronenakzeptor zur mikrobiellen Ammoniumoxidation dar und ersetzt den Sauerstoff. Die Belüftung entfällt dadurch oder kann stark reduziert werden.

Vollständige Umwandlung von Ammonium auf Stickstoffgas

Wir berichteten bereits über die Verwendung eines solchen bio-elektrischen Systems, um Ammoniak aus Abwasser in Fed-Batch-Reaktoren zu entfernen. Nun veröffentlichten Forscher der Universität von Girona eine weitere Machbarkeitsstudie basierend auf dieser neuen Technologie. Das vorgestellte bioelektrische System war ein komplett sauerstoffreier Reaktor, der kontinuierlich Ammonium zu Stickstoffgas umwandeln konnte. Der Zweikammerreaktor nitrifizierte Abwasser und entzog ihm so letztendlich den Stickstoff.

Die bio-elektrisch Ammoniumentfernung wurde in einem kontinuierlich betätigten Ein-Liter-Reaktor mit einer Umsatzrate von ~ 5 g / m3 / Tag katalysiert. Eine komplexe mikrobielle Gemeinschaft mit nitrifizierenden Bakterien wie Nitrosomonas sind als Schlüsselorganismus wurde ebenfalls beschrieben.

Aus einer Anwendungsperspektive ist ein Kosten-Nutzen-Vergleich zwischen bioelektrischen Systemen und der klassischen Abwasserbehandlung erforderlich. Die Forscher zeigten, daß der selbe Grad der Stickstoffenfernung erzielt wurde (>97%). Das bioelektrische System wandelte Ammonium zu Sticke ohne eine Anreicherung von Zwischenprodukten um. Ihr System erforderte etwa 0,13 kWh pro Kilogramm Stickstoff mit einer Flußrate von 0,5 l / Tag. Die Verwendung eines bioelektrischen Systems verbraucht im Vergleich zur klassischen Belüftung mit zirka 5 kWh pro Kilogramm 35 mal weniger Energie. Gleichzeitig werden keine schädlichen Zwischenprodukte wie Nitrit- oder NOx-Gase gebildet.

Mikrobiell erzeugter Strom treibt die Ammoniumoxidation an

Der vorgestellte Artikel zeigte auch potenzielle Hinweise für den mikrobiellen Abbauweg. Das Verständnis um die zugrunde liegenden Mechanismen kann die Prozesse der anoxischen Ammoniumentfernung in bioelektrischen Systemen optimieren.

Als Abbauweg für Stickstoff schlugen die Autoren die bioelektrische Oxidation von Ammoniak über Stickstoffmonoxid vor. Dieser wurde möglicherweise von einer Mikrobe der Gattung Achromobacter durchgeführt. Auf diese Reaktion folgte vermutlich die Reduktion von Stickstoffmonoxid zu Stickstoffgas. Diese Reduktionsreaktion könnte eventuell von Denitrassisoma durchgeführt worden sein. Alternativ wurden drei weitere Sekundärrouten betrachtet: Die selbe bioelektrische Oxidation, gefolgt von Anammox oder ganz ohne Stickstoffmonoxid direkt an Stickstoffgas. Eine Art Electro-Anammox kann auch möglich sein.

Bei Frontis Energy glauben wir, daß die direkte Umwandlung von Ammonium zu Stickstoffgas durch die Umkehrung der Stickstoffixierung eine Möglichkeit ist.  Gene, die fuer Elemente der Stickstoffixierung verantwortlich sind, sind in der mikrobiellen Welt allgegenwärtig. Diese Umkehrung würde die universelle biologische Energiewährung ATP generieren, anstatt sie zu konsumieren.

Es wurde gezeigt, daß Achromobacter sp. in der beschriebenen mikrobiellen Vergesellschaftung mit bis zu 60% die häufigste Mikrobe war. Im Reaktor wurden jedoch auch Anammox-Arten (Candidatus Kuenenia und Candidatus-Anammoximicrobium) so wie denitrifizierende Bakterien (z.B. Denitratisoma) nachgewiesen.

Es wurden zwei mögliche elektroaktive Reaktionen identifiziert: Hydroxylamin- und Nitritoxidation. Dies spräche ebenfalls für der Anode als Elektronenakzeptor der Ammoniumoxidation. Nitrit- und Nitrattests legten nahe, daß sowohl die Denitrifizierung als auch Anammox-basierende Reaktionen in dem System erfolgt sein könnten.

Ammonium wurde ohne Anhäufung von Zwischenprodukten vollständig zu Stickstoffgas oxidiert. Die Autoren zeigten, daß Ammonium einem kontinuierlich betriebenen bioelektrischen System entfernt werden kann. Zur Skalierung des Systems sind jedoch ein besseres Verständnis von Reaktor- und Verfahrenstechnik sowie der zugrunde liegenden mikrobiellen und elektrochemischen Vorgänge erforderlich.

Experimenteller Aufbau

Das Impfmaterial bestand aus Biomasse zweier Nitrifikationsreaktoren.

  • Der Reaktor wurde aus zwei 1-Liter-Kammern aufgebaut, die einen Anode- und Kathodenraum beinhalteten
  • Der Separator diente Anionenaustauschermembran um die Diffusion von Ammonium auf das Kathodenraum zu minimieren
  • Die Anode- und Kathodenkammern wurden mit Graphitgranulat befüllt
  • Eine Ag/AgCl-Referenzelektrode wurde im Anodenraum verwendet
  • In jeder Kammer wurden zwei Graphitstangen als Stromkollektoren platziert
  • Das System wurde im Batch- und Durchlaufmodus betrieben

Bild: 5056468 / Pixabay