Veröffentlicht am

Landbiomasse nimmt bis zu 30% mehr CO2 auf

Große Teile der wissenschaftlichen Gemeinschaft beschäftigen sich damit, die Auswirkungen von Treibhausgasemissionen und insbesondere von CO2 auf unser vergangenes und zukünftiges Klima zu untersuchen. Um unser zukünftiges Klima zu modellieren, verwenden die Forscher CO2-Emissionen um das zukünftige Klima unseres Planeten einschaetzen zu können. Solche Modelle werden benutzt, um voraszusagen wie viel CO2 Industrie und Haushalte in die Atmospaere abgeben können, um innerhalb des gestzten 1,5°C-Ziels zu bleiben. Die zentrale Frage lautet daher: Wie viel des emittierten CO2 bleibt tatsächlich in der Atmosphäre? Wie viel wird verstoffwechselt oder auf andere Weise gebunden?

Es scheint, daß die bisherigen Modelle die Kapazität der Biomasse unterschätzt haben, CO2 aufzunehmen. Denn jetzt wurden die bisherigen Modelle mit Radiokarbondaten der Atombombentests aktualisiert. Die neuen Daten deuten darauf hin, daß terrestrische Ökosysteme mehr CO2 absorbieren können als bisher angenommen. Bedeutet das, daß die Menschheit nun mehr CO2 emittieren kann?

Forscher des Politechnischen Instituts in Worcester in Massachusetts haben nun ermittelt, daß die Pflanzen jährlich 80 Millionen Tonnen CO2 aufnehmen und publizierten dies kürzlich in einem Artikel im bekannten Wissenschaftsmagazin Science. Das sind 30% mehr als bisher angenommen.

Die Idee der Wissenschaftler war, die Überreste der Atomtests in den 1950er und 1960er Jahren genauer zu untersuchen. Kohlendioxidmoleküle bestehen aus Kohlenstoff und Sauerstoff. Die von den Atombomben hinterlassene Radioaktivität ist auch als radioaktiver Kohlenstoff (14C) nachweisbar. Wie gewöhnlicher Kohlenstoff (12C) ist die radioaktive Version ein möglicher Bestandteil in CO2. Nach den Atombombentests stieg 14C-Anteil in Pflanzen durch die Photosynthese an. Dadurch gelangte Radiokarbon zusammen mit 12C in die Biosphäre an Land. Untersucht man die 14C-Anreicherung, kann man so auch die Raten der CO2-Aufnahme in Pflanzen bestimmen und letztlich, wie auch viel Kohlenstoff neu in die Biosphäre eingetragen wurde.

Tiere, die sich von Pflanzen ernähren, nehmen das selbe CO2 in ihren Organismus sowie Pilze und Bodenbakterien auf. Durch sich zersetztende Biomasse im Boden wird Kohlenstoff in Form von CO2 erneut in die Atmosphäre freigesetzt und der Kreislauf schließt sich.

Die Frage ist jedoch, wie viel CO2 aus der Luft in den Boden gelangt und so langfristig in Biomasse gebunden wird. Die Analysen des radioaktiven Kohlenstoffs zeigen nun, daß kurz nach den Atomwaffentests etwas weniger 14CO2 in der Atmosphäre verfügbar war. Umgerechnet bedeutet das, daß Pflanzen weltweit 80 Milliarden Tonnen Kohlenstoff pro Jahr binden. Bisher gingen die Klimaforscher davon aus, daß die Bindungskapazität 43 bis 76 Milliarden Tonnen betrug.

Die bisherigen Annahmen waren nicht korrekt, da hauptsächlich Baumstämme für die Berechnung verwendet wurden. In Holz gelagerter Kohlenstoff ist seit vielen Jahrzehnten oder Jahrhunderten gebunden. Die neue Studie befaßte sich mit nicht-verholzter Biomasse wie z.B. Blätter, die auch einen großen Anteil an Kohlenstoff binden. Außerdem erhielt die umfangreiche unterirdische Pflanzenbiomasse bisher zu wenig Aufmerksamkeit. In der Regel ist die unterirdische Biomasse vergleichbar mit dem, was sich über dem Erde befindet. Insbesondere wurden bisher nur Holzwurzeln berücksichtigt, nicht aber die viel feinere Rhizosphäre. Die Rhizosphäre stellt einen noch größeren Biomassanteil dar und bindet dementsprechend mehr Kohlenstoff.

Achtzig Milliarden Tonnen sind nicht nur signifikant mehr als in den derzeitigen Klimawandelprognosen. Es ist auch doppelt so viel wie die menschengemachten CO2-Emissionen (37,2 Milliarden Tonnen).

Leider bedeutet dies nicht, daß es nichts gibt, worüber man sich Sorgen machen muß. Lebewesen nutzen auch Biomasse als Energiequelle. Fast die gleiche Menge an CO2 wird wieder freigesetzt, wenn Pflanzen im Herbst ihre Blätter verlieren. Diese Blätter dienen Bodenlebewesen als Nahrungsquelle. Diese natürlichen CO2 -Emissionen aus der Biosphäre haben sich seit den 1960er Jahren stärker beschleunigt.

Insgesamt kann die Photosynthese nur 30% der von Menschen verursachten CO2-Emissionen aus der Atmosphäre binden und daher den Verbrauch fossiler Kraftstoff nicht ausgleichen. Mit großen natürlichen Landflächen für die Photosynthese kann auch mehr CO2 aus der Luft gebunden werden. Infolgedessen solten mehr und nicht weniger Wälder und Wiesen renaturalisiert werden.

Zwar basieren einige Klimamodelle auf falschen Annahmen. Doch die wichtigere Kohlenstoffspeicherung findet nicht an Land sondern im Wasser statt. CO2 löst sich dort besser auf und unzählige marine Mikroalgen führen ebenfalls Photosynthese durch. Kohlenstoff ist als Baumaterial für Schalentiere und andere Meeresorganismen sehr beliebt. Insgesamt die Ozeane 16-mal mehr Kohlenstoff als die Biosphäre an Land.

Die wichtigsten Ergebnisse der Sutdie sind:

  • Landpflanzen und Böden können bis zu 30% mehr CO2 absorbieren als in früheren Modelle angenommen.
  • Die Kohlenstoffspeicherung in diesen Ökosystemen ist vorübergehender als bisher angenommen. Das bedeutet, daß der von Menschen verursachte CO2-Ausstoß möglicherweise nicht so lang in der terrestrischen Biosphäre verbleibt, wie die aktuellen Modelle vermuten lassen.
  • Die Diskrepanz in den Modellen ist auf die kurzlebigen oder nicht belebten Pflanzengewebe sowie die umfangreichen unterirdischen Pflanzenteile zurückzuführen.

Die Auswirkungen dieser Ergebnisse sind für Klimavorhersagen und die Erstellung einer wirksamen Klimapolitik von Bedeutung. Es unterstreicht die Notwendigkeit einer genaueren Darstellung des globalen Kohlenstoffzyklus in Klimamodellen. Diese erhöhte Aufnahme von CO2 durch Vegetation ist zwar ein positives Vorzeichen, erlöst uns jedoch nicht die Notwendigkeit, die Kohlenstoffemissionen zu reduzieren, um den Klimawandel zu bekämpfen.

Veröffentlicht am

Flüssigbrennstoff aus bio-elektrischen Reaktoren

Bei Frontis Energy haben wir viel darüber nachgedacht, wie man CO2 wiederverwerten kann. Während hochwertige Produkte wie Polymere für medizinische Anwendungen rentabler sind, ist die Nachfrage nach solchen Produkten zu gering, um CO2 in großen Mengen wiederzuverwertten. Das ist aber nötig, um die CO2-Konsentration unserer Atmosphäre auf ein vorindustrielles Niveau zu bringen. Biokraftstoffe, zum Beispiel aus Biomasse, wurden seit langem als Lösung vorgeschlagen. Leider benötigt Biomasse sie zu viel Ackerland. Zudem ist die zugrundeliegende Biochemie zu komplex, um sie in Ihrer Gesamtheit zu verstehen und so effektive Lösungen zu implementieren. Daher schlagen wir einen anderen Weg vor, um das Ziel der Dekarbonisierung unseres Planeten schnell zu erreichen. Das vorgeschlagene Verfahren beginnt mit einem gewünschten Zielkraftstoff und schlägt eine mikrobielle Vergesellschaftung vor, um diesen Kraftstoff herzustellen. In einem zweiten Schritt wird das mikrobielle Konsortium in einem bioelektrischen Reaktor (BER) untersucht.

Mögliche Biosynthesewege zur elektrosynthetischen Kraftstoffgewinnung. CO2 kann für die Herstellung von Flüssigbrennstoff auf mehreren Wegen verwendet werden. Das Endprodukt, langkettige Alkohole, kann entweder direkt als Brennstoff verwendet oder zu Kohlenwasserstoffen reduziert werden. Es werden Beispiele für Bioelektrokraftstoff-Pfade gezeigt, bei denen CO2 und Strom als Ausgangsmaterial verwendet werde. Methan, Acetat oder Butanol sind die Endprodukte. Nachfolgende Verfahren sind 1, aerobe Methanoxidation, 2, direkte Verwendung von Methan, 3 heterotrophe Phototrophen, 4, Aceton-Butanol-Gärung, 5, Biomassegewinnung, 6, Butanol als direktes Endprodukt, 7, weitere Vergärung durch Hefen zu Fuselalkoholen

Unser heutiges atmosphärische CO2-Ungleichgewicht ist die direkte Folge der Verbrennung fossiler Kohlenstoffe. Diese Realität erfordert schnelle und pragmatische Lösungen, um einen weitere CO2-Anstieg zu verhindern. Die direkte Abscheidung von CO2 aus der Luft ist schon bald rentabel. Dadurch wird die Nutzung von Ackerland für den Anbau von Treibstoff verhindert. Die Herstellung von Kraftstoff für Verbrennungsmotoren mit CO2 also Ausgangsmaterial ist kurzfristig die beste Zwischenlösung, da sich dieser Kraftstoff nahtlos in die vorhandene städtische Infrastruktur integriert. Biokraftstoffe wurden in den letzten Jahren intensiv erforscht, insbesondere auf dem neuen Gebiet der synthetischen Biologie. So verführerisch die Anwendung gentechnisch veränderter Organismen (GVO) zu sein scheint, so sind doch traditionell gezüchtete mikrobielle Stämme bereits vorhanden und somit sofort verfügbar. Unter Vermeidung von GVO, wird CO2 bereits heute in BER zur Herstellung von C1-Kraftstoffen wie Methan verwendet. BER können auch zur Herstellung von Kraftstoffvorläufern wie Ameisensäure oder Synthesegas, sowie C1+ -Verbindungen wie Acetat, 2-Oxybutyrat, Butyrat, Ethanol und Butanol eingesetzt werden. Gleichzeitig lassen sich BER gut in die städtische Infrastruktur integrieren, ohne daß kostbares Ackerland benötigt wird. Mit Ausnahme von Methan ist jedoch keiner der vorgenannten bioelektrischen Kraftstoffen (BEKS) in reiner Form leicht brennbar. Während Elektromethan eine im Handel erhältliche Alternative zu fossilem Erdgas ist, ist seine volumetrische Energiedichte von 40-80 MJ/m3 niedriger als die von Benzin mit 35-45 GJ/m3. Abgesehen davon, wird Methan als Kraftstoff von den meisten Automobilnutzern nicht gekauft. Um flüssigen Brennstoff herzustellen, müssen Kohlenstoffketten mit Alkoholen oder besser Kohlenwasserstoffen als Endprodukten verlängert werden. Zu diesem Zweck ist Synthesegas (CO + H2) eine theoretische Option und kann durch die Fischer-Tropsch-Synthese gewonnen werden. Tatsächlich sind Synthesegasvorläufer aber entweder fossile Brennstoffe (z. B. Kohle, Erdgas, Methanol) oder Biomasse. Während fossile Kraftstoffe offensichtlich nicht CO2-neutral sind, benötigt man zur Herstellung von Biomasse Ackerland. Die direkte Umwandlung von CO2 und elektrolytischen Wasserstoff in C1+ -Kraftstoffe wird wiederum durch elektroaktive Mikroben im Dunkeln katalysiert (siehe Titelbild). Dadurch wird die Konkurrenz zwischen Nahrungsmittelanbau und Kraftstoffpflanzen vermieden. Leider wurde nur bislang wenig anwendbares zu elektroaktiver Mikroben erforscht. Im Gegensatz dazu gibt es eine Vielzahl von Stoffwechselstudien über traditionelle mikrobielle Kraftstoffproduzenten. Diese Studien schlagen häufig die Verwendung von GVO oder komplexen organischen Substraten als Vorläufer vor. Bei Frontis Energy gehen wir einen anderen weg. Wir ermitteln systematisch Stoffwechselwege für die Produktion von flüssigem BEKS. Der schnellste Ansatz sollte mit einem Screening von metabolischen Datenbanken mit etablierten Methoden der metabolischen Modellierung beginnen, gefolgt von Hochdurchatztestsin BER. Da Wasserstoff das Zwischenprodukt in der Bioelektrosynthese ist, besteht die effizienteste Strategie darin, CO2 und H2 als direkte Vorläufer mit möglichst wenigen Zwischenschritten zu benutzen. Skalierbarkeit und Energieeffizienz, also wirtschaftliche Machbarkeit, sind dabei entscheident.

Zunächst produziert ein elektrotropher Acetogen Acetat, das von heterotrophen Algen im darauffolgenden Schritt verwendet wird.

Das größte Problem bei der die BEKS-Produktion ist das mangelnde Wissen über Wege, die CO2 und elektrolytisches H2 verwenden. Diese Lücke besteht trotz umfangreicher Stoffwechseldatenbanken wie KEGG und KBase, wodurch die Auswahl geeigneter BEKS-Stämme einem Stochern im Nebel gleichkommt. Trotz der hohen Komplexität wurden Stoffwechselmodelle verwendet, um Wege zur Kraftstoffproduktion in Hefen und verschiedenen Prokaryoten aufzuzeigen. Trotz ihrer Unzulänglichkeiten wurden Stoffwechelatenbanken breits eingesetzt, um Artwechselwirkungen zu modellieren, z.B. mit ModelSEED / KBase (http://modelseed.org/) in einer heterotrophen Algenvergesellschaftung, mit RAVEN / KEGG oder mit COBRA. Ein erster systematischer Versuch für acetogene BEKS-Kulturen, bewies die die Verwendbarkeit von KBase für BER. Diese Forschung war eine Genomstudie der vorhandenen BEKS-Konsortien. Dieselbe Software kann auch in umgekehrt eingesetzt werden, beginnend mit dem gewünschten Brennstoff. Im Ergebnis werden dann die erforderlichen Organismen benannt. Wir beschrieben nun einige BEKS-Kulturen.

Mögliche Kombinationen für die BEKS-Produktion mit Clostridien, 3, oder heterotrophe Algen, 7. Die Weiterverarbeitung erfolt durch Hefen.

Hefen gehören zu den Mikroorganismen mit dem größten Potenzial für die Produktion von flüssigem Biokraftstoff. Bäckerhefe (Saccharomyces cerevisiae) ist das prominenteste Beispiel. Hefen sind zwar für die Ethanolfermentation bekannt, produzieren aber auch Fuselöle wie Butan, Phenyl- und Amylderivate, Aldehyde und Alkohole. Im Gegensatz zu Ethanol, das durch Zuckerfermentation gebildet wird, wird Fuselöl im Aminosäurestoffwechsel synthetisiert, gefolgt von Aldehydreduktion. Es wurden viele Enzyme identifiziert, die an der Reduktion von Aldehyden beteiligt sind, wobei Alkoholdehydrogenasen am häufigsten beobachtet werden. Die entsprechenden Reduktionsreaktionen erfordern reduziertes NADH⁠, es ist jedoch nicht bekannt, ob an Kathoden gebildetes H2 daran beteiligt sein kann.
Clostridien, beispielsweise Clostridium acetobutylicum und C. carboxidivorans, können Alkohole wie Butanol, Isopropanol, Hexanol und Ketone wie Aceton aus komplexen Substraten (Stärke, Molke, Cellulose usw.) oder aus Synthesegas herstellen. Der Clostridienstoffwechsel wurde vor einiger Zeit aufgeklärt und unterscheidet sich von Hefe. Er erfordert nicht zwangsläufig komplexe Substrate für die NAD+-Reduktion, denn es wurde gezeigt, daß Wasserstoff, Kohlenmonoxid und Kathoden Elektronen für die Alkoholproduktion abgeben können. CO2 und Wasserstoff wurden in einem GMO-Clostridium verwendet, um hohe Titer von Isobutanol herzustellen. Typische Vertreter für die Acetatproduktion aus CO2 und H2 sind C. ljungdahlii, C. aceticum und Butyribacterium methylotrophicum. Sporomusa sphaeroides produziert Acetat in BES. Clostridien dominierten auch in Mischkulturen in BER, die CO2 in Butyrat umwandelten. Sie sind daher vorrangige Ziele für eine kostengünstige Produktion von Biokraftstoffen. In Clostridien werden Alkohole über Acetyl-CoA synthetisiert. Diese Reaktion ist reversibel, wodurch Acetat als Substrat für die Biokraftstoffproduktion mit extrazellulärer Energieversorgung dienen kann. In diesem Fall wird die ATP-Synthese durch Elektronenbifurkation aus der Ethanoloxidation oder durch Atmung und Wasserstoffoxidation betrieben. Ob die Elektronenbifurkation oder Atmung mit Alkoholen oder der Ketonsynthese verknüpft sind ist nicht bekannt.
Phototrophe wie Botryococcus produzieren auch C1+ Biokraftstoffe. Sie synthetisieren eine Reihe verschiedener Kohlenwasserstoffe, darunter hochwertige Alkane und Alkene sowie Terpene. Hohe Titer wurden jedoch nur mithilfe von GVOs produziert, was in vielen Ländern aus rechtlichen Gründen ökonomisch schwer möglich ist. Darüber hinaus erfordert die Dehydratisierung / Deformylierung vom Aldehyd zum Alkan oder Alken molekularen Sauerstoff, was deren Produktion in BER unmoeglich macht, da Saurstoff bevorzugt die Kathode oxidiert. Der Olefinweg von Synechococcus hängt auch von molekularem Sauerstoff ab, wobei das Cytochrom P450 an der Fettsäuredecarboxylierung beteiligt ist. Die Anwesenheit von molekularem Sauerstoff beeinflußt die BES-Leistung auch durch den sofortigen Produktabbau. Im Gegensatz dazu zeigen unsere eigenen Vorversuche (siehe Titelfoto) und ein Korrosionsexperiment, daß Algen mit einer Kathode als Elektronendonor im Dunkeln leben können, selbst wenn geringe Mengen Sauerstoff vorhanden waren. Die an der Herstellung einiger Algenkraftstoffe beteiligten Enzyme sind zwar bekannt (wie die Deformylierung von Olefinen und Aldehyden), es ist jedoch nicht bekannt, ob diese Wege durch Wasserstoffnutzung beschritten werden können (möglicherweise über Ferredoxine). Ein solcher Zusammenhang wäre ein vielversprechender Hinweis für Kohlenwasserstoff-erzeugenden Cyanobakterien, die an Kathoden wachsen können. Unsere zukünftige Forschungen wird zeigen, ob wir hier richtig liegen.
Bei Frontis Energy glauben wir, daß eine Reihe anderer Mikroorganismen Potenzial zur BEKS-Produktion haben. Um nicht GVO zurückgreifen zu müssen, müssen BER-kompatible Mischkulturen über rechnergestützte Stoffwechselmodelle aus vorhandenen Datenbanken identifiziert werden. Mögliche Intermediate sind z.Z. unbekannt. Der Kenntnis ist aber Voraussetzung für profitable BEKS-Reaktoren.

Veröffentlicht am

Polyelektrolytschichten bestimmen die Effizienz von Entsalzungsmembranen

Zunehmende Wasserknappheit und Verschmutzung mit schädlichen Chemikalien in geringer Konzentration (micropollutants) sind verantwortlich für die zunehmende Verteuerung von Trinkwasser. Entsalzung von Meerwasser und eine bessere Aufbereitung von Abwasser sind nötig, um diesem Trend entgegenzuwirken. Membranen sind in der Lage den größten Teil von Wasserverunreinigungen zu entfernen. Der Energieaufwand dafür ist jedoch enorm. Daher müssen moderne Membranen möglichst effizient sein, um mit wenigen Durchläufen und unter geringem osmotischen Druck ein befriedigendes Ergebnis zu erzielen.

Nanofiltrationsmembranen bestehend aus Polyelektrolytschichten sind ein vielversprechender Ansatz, um Wasser effizienter aufzureinigen. Entsprechend hat die Zusammenstellung von Polyelektrolytschichten ein starkes Interesse bei der Herstellung von Nanofiltrationsmembranen hervorgerufen. Diese Membranen werden schichtweise hergestellt, was eine gute Anpassung der Membraneigenschaften auf unterschiedliche Anwendungen ermöglicht.

Im Handel erhältliche Nanofiltrationsmembranen sind im Allgemeinen ein Kompromiß zwischen hoher Wasserpermeabilität und guter Entsalzung. Durch diesen Kompromiß werden entweder die Qualität oder Menge des gereinigten Wasser negativ beeinträchtigt. Nanofiltrationsmembranen, die schichtweise produziert werden, können diesen Kompromiß aufgrund der Produktion von Nanoschichten vorteilhaft beeinflussen. Dazu ist es wichtig zu wissen, welche Komponente die entscheidende Rolle im Beschichtungsprozeß spielt.

Eine Forschergruppe der Technischen Universität Eindhoven in den Niederlanden hatte es sich daher zur Aufgabe gemacht, diese Schichtkomponenten genauer zu untersuchen. Dabei haben sie die Polyelektrolytkonzentration genauer betrachtet. Es ist bekannt, daß eine höhere Polyelektrolytkonzentration dickere Schichten produziert. Ihre Auswirkung auf die Membranleistung war aber bisher unbekannt. Die Forscher haben in ihrer nun publizierten Arbeit zwei bekannte starke Polyelektrolyte verwendet:  PDADMAC und PSS (Polydiallyldimethylammoniumchlorid und Poly(styrol-co-divinylbenzol)sulfonsäure). Die Membranleistung wurde hinsichtlich der Wasserpermeabilität, dem nötigen Molekulargewicht und der Entsalzung untersucht.

In der ersten Doppelschicht zeigten die mit einer 50 mM Salzlösung beschichteten Membranen eine niedrigere Wasserpermeabilität und Molekulargewichtschwelle, sowie bessere Entsalzung (Magnesiumsulfat) aufgrund der höheren Polyelektrolytkonzentration. Nach einer bestimmten Anzahl von Doppelschichten erreichen das nötigen Molekulargewicht und die Entsalzungseffizienz für alle Polyelektrolytkonzentration ein Plateau. Je höher die Polyelektrolytkonzentration, desto eher wurde auch der Plateauwert erreicht.

Die mit der 1 M Salzkonzentration beschichteten Membranen hatten mit einer Ausnahme eine niedrigere oder vergleichbare Entsalzungseffizienz. Die Wissenschaftler schlußfolgerten, daß die Polyelektrolytkonzentration die Membranleistung signifikant verändert. Jedoch wurde bei sieben oder mehr Doppelschichten ein Plateau erreicht. Die dickeren Schichten wiesen eine geringere Wasserdurchlässigkeit auf als diejenigen, die mit Polyelektrolytlösungen unter Verwendung einer 50 mM Salzlösung beschichtet wurden. Aufgrund der geringen Schwellung der so beschichteten Membranen wiesen all eine bessere Entsalzungseffizienz auf, mit Ausnahme von Magnesiumchlorid.

Die Ergebnisse zeigen, daß die Erhöhung der Polyelektrolytkonzentration die Menge der Polyelektrolytadsorption ebenfalls erhöht. Dies führte aufgrund einer höheren Beschichtungsdicke zu niedrigeren Permeabilitäten mit reinem Wasser. Innerhalb des untersuchten Konzentrationsbereichs führte das jedoch nicht zu niedrigeren Molekulargewichtschwellen oder besserer Entsalzung. Darüber hinaus verursachte die zusätzliche Polyelektrolytadsorption weniger Verknüpfungen zwischen den einzelnen Schichten. Die höhere Diffusivität von PDADMAC im Vergleich zu PSS führte zu hoch positiv geladenen Membranen, was wiederum zu einer besseren Entsalzung von Magnesiumchlorid und Natriumchlorid führte.

Durch eine Zunahme der Membranoberflächenladung beeinflußte die Erhöhung der Polyelektrolytkonzentration und die Salzkonzentration den Ladungsausschluß  signifikant, was zu besserer Entsalzung führte. Der Größenausschluß wurde jedoch nicht geändert, was zu denselben Plateauwerten führte. Die nun vorgestelten Untersuchungen erlauben es Chemikern in Zukunft, besser abgestimmte Entsalzungsmembranen herzustellen, was den Energiebedarf und den Bedarf and Rohmaterial bei der Herstellung verringern wird.

Bild: Shutterstock

Veröffentlicht am

Wechselnder Elektrolytfluß an der Kathode verringert die Anlaufzeit bei der mikrobiellen Elektroynthese

Die mikrobielle Elektrolyse ist eine Technologie, die lebende Mikroorganismen als Elektrokatalysatoren in Elektrolysezellen verwendet. Die Technologie kann zur Abwasserbehandlung verwendet werden. In einem früheren Beitrag schlugen wir vor, mikrobielle Elektrolyse zur dezentralen Abwasserbehandlung und zur Biogasproduktion zu verwenden. Da es sich bei der Technologie um einen Prozeß handelt, der CO2 unter Verwendung von Elektrizität in organische Verbindungen umwandelt, kann er auch zur die CO2-Verwertung eingestzt werden. Neben Methan produzieren solche Elektrolysezellen auch Verbindungen wie Essigsäure, Capronsäure und andere. Der Prozeß wird dann als mikrobielle Elektrosynthese bezeichnet. Capronsäure wird z.B. in Fruchtestern (Capronate), als Bestandteil von Arzneimitteln und zur Synthese von Hexylphenolen verwendet.

Das Hauptproblem bei der mikrobiellen Elektrolyse und der Elektroynthese ist jedoch die lange Anlaufzeit. Die Anlaufzeit ist die Zeit, die erforderlich ist, um ein Biofilm auf der Elektrodenoberfläche zu bilden und die gewünschten Produkte zu produzieren. Sie kann mehreren Wochen oder Monaten dauern. Sie ist abhängig von den Betriebsbedingungen und der Art der Mikroorganismen. Lange Anlaufzeiten begrenzen den industriellen Nutzen der mikrobiellen Elektrosynthese.

Wissenschaftler der Universität Wageningen in den Niederlanden stellten jetzt neue Forschungsergebnisse vor, die eine Verkürzung der Anlaufzeit zeigen. Dabei wurde die Richtung des Katholytflusses durch eine dreidimensionale Elektrode gewechselt, wodurch die Anlaufzeit auf nur zehn Tage verkürzt wurde. Die Forscher stellten die Hypothese auf, daß diese Technik den Stofftransport und die Bildung von Biofilmen verbesserte und somit die CO2-Reduktion und deren Produktsynthese beschleunigt. Letztlich  konnte die Anlaufzeit um 50% im Vergleich zu einer herkömmlichen Durchflusselektroden reduziert werden.

 

Der alternierdende Elektrolytfluß reduzierte auch die Leistungsaufnahme auf 136 kWh pro kg Wasserstoff. Nach 60 Tagen betrug die lokale Wasserstoffkonzentration an der Kathode höchstens 600 μM, was auf einen schnelleren Stoffumsatz und damit auf einen aktiveren Biofilm hindeutet.  Der pH-Wert im Katholyt lag bei 5,8–6,8 und damit im optimalen Bereich elektrosynthtischer Mikroorganismen. Der abwechselnde Katholytfluß bewirkte einen verbesserten Stofftransport, denn so konnte der Wasserstoff besser über die Kathodenschichten verteilt werden. Zudem spekulierten die Forscher, daß der Wechselfluß eine Erfrischung  etwaiger „toter Zonen“ in der Kathodenkammer ermöglichte.

Die Produktion von kurzen und mittelkettigen Fettsäuren war mit der Anwesenheit bestimmter Mikroorganismen verbunden. Diese wurden als Peptococcaceae und Clostridium sensu stricto 12 identifiziert. Auch der methanogene Methanobrevibacter war vorhanden. Methanobrevibacter ist chracteristisch für mikrobieller Elektrolysezellen, wenn höhere Wasserstoffkonzentrationen für die Elektroynthese vorhanden sind.

Die Technik ist jedoch noch nicht ganz ausgereift und so gibt Einschränkungen wie z.B. die Energieeffizienz, der Produktselektivität und die Skalierbarkeit. Solche Einschränkungen sind typisch für Laborexperimente. Wir freuen uns daher schon auf eine industrielle Anwendung dieser Methode.

Veröffentlicht am

Spurenmetalle beschleunigen die Wasserstoffentwicklungsreaktion von Biokathoden in mikrobiellen Elektrolysezellen

Es ist bekannt, daß mikrobielle Biofilme an Biokathoden die Produktionenraten der Wasserstoffelektrolyse verbessern. Dabei handelt es sich um den Prozeß, der zur Herstellung von Wasserstoffgas aus Wasser durch Strom dient. Die Wasserstoffentwicklung mikrobiellen Elektrolysezellen wird sogar dann beschleunigt, wenn der Biofilm, der die Biokathode besiedelt, abgetötet wurde. Verschiedene Arten von Mikroorganisme, wie z.B. elektrogene (Geobacter sulfurreducens), nicht exoelektrogene (Escherichia coli) Bakterien oder das Wasserstoff-oxidierende methanogene Archeon Methanosarcina barkeri, vollbringen dieses Kunststück, aber Geobacter ist das schnellste. Zellrückstände wie Metalloproteine scheinen die Wasserstoffbildung zu katalysieren. Daher sind lebende Zellen für die Wasserstoffelektrolyse gar nicht notwändig, wodurch Biokathoden eine billige und umweltfreundliche Alternative zu Edelmetallkatalysatoren werden könnten. Während die Autoren des erwähnten Artikels über die Rolle von Metalloproteinen spekulierten, zeigt eine neue Veröffentlichung in Electrochimica Acta durch Forscher der Wageningen University, daß die Verfolgung von Metallen im Wachstumsmedium tatsächlich für die beobachtete Ratenbeschleunigung verantwortlich ist.

Die Autoren verwendeten eine Mischung aus Metallsalzen in einem mikrobiellen Wachstumsmedium, wie z.B. Kobalt-, Kupfer-, Eisen-, Mangan-, Molybdän-, Nickel- und Zinksalz, sowie den Metallchelator Ethylendiaminetetraossigsäure (EDTA). Das Medium war dabei biokompatibel mit neutralem pH-Wert, mesophile Temperatur und Wasser als Elektrolyt.

Die Forscher führten eine Reihe von Experimenten durch, um die Auswirkung verschiedener Parameter auf die katalytische Aktivität und Stabilität der Spurenelementmischung zu untersuchen. Diese Parameter umfassten die Konzentration der Metallverbindungen, das Vorhandensein oder die Abwesenheit von EDTA, die Art des Elektrodenmaterials und die Art des Elektrolyten. Verschiedene Techniken zur Messung des kathodischen Stroms, die Wasserstoffproduktionsrate, das Überpotential und die Stromdichte der Wasserstoffelektrolyse wurden herangezogen.

Die Ergebnisse zeigen, daß die Spurenelementmischung den kathodischen Strom und die Effizienz derLadungsübertragung zu Wasserstoff signifikant erhöhte und daß Kupfer und Molybdän die aktivsten Verbindungen in der Mischung waren. Das ist überraschend, da in der vorherigen Veröffentlichung hauptsächlich Kobalt- und Eisenverbindungen auf der Oberfläche der Biokathoden gefunden wurden. Beide Elemente sind auch gute Wasserstoffkatalysatoren, während beispielsweise Molybdänsulfid die Produktionsraten in methanogenen mikrobiellen Elektrolysezellen nicht erhöhte. Wasserstoffelektrolyse ist der elektrochemische Flaschenhals, der die Reaktionrate in methanogenen Elektrolysezellen bestimmt, da es sich beim Wasserstoff um das Zwischenprodukt handelt:

4 H2 + CO2 → CH4 + 2 H2O

Die Wissenschaftler zeigten auch, daß das Entfernen von EDTA aus dem Mix die Katalysatorleistung weiter verbesserte, da EDTA als Komplexierungsmittel (Chelator) fungierte, wodurch die Verfügbarkeit von Metallionen and der Elektrodenoberfläche verringert wurde. Es wurde auch darauf hingewiesen, daß Elektroden auf Kohlenstoffbasis besser geeignet waren als Elektroden auf Metallbasis, wahrscheinlich weil sie eine höhere Oberfläche haben. Dies ist ein interessantes Ergebnis, da man der Ansicht sein kann, daß der Mechanismus hinter der besseren Leistung von Kohlenstoffelektroden die mikrobielle Adhesionspräferenz für Kohlenstoff ist. Die Ergebnisse zeigten benfalls, daß die Verwendung eines mikrobiellen Wachstumsmediums als Elektrolyt die Katalysatorleistung im Vergleich zur Verwendung eines Phosphatpuffers nicht signifikant beeinflußte.

Die Autoren kamen zu dem Schluß, daß ihr Ansatz eine einfache, billige und umweltfreundliche Methode ist, um effektive Katalysatoren für die Wasserstoffelektrolyse herzustellen. Sie schlugen vor, daß diese Katalysatoren in biologische Systeme für die Wasserstoffproduktion in bioelektrischen und Fermentationsprozessen integriert werden könnten. In der Tat ist es unvermeidlich, in mikrobiellen Elektrolysezellen keine Spurenmetalle zu verwenden, da sie zur Aufrechterhaltung des mikrobiellen Stoffwechsels unerlässlich sind.

Beide Artikel zeigen, daß Spurenmetalle bei der Wasserstoffelektrolyse eine wichtige Rolle spielen können und daß sie aus biologischen Quellen hergestellt werden können. Sie haben jedoch auch einige Einschränkungen und Herausforderungen, wie die Stabilität, Selektivität und Skalierbarkeit der Katalysatoren. Daher sind weitere Untersuchungen erforderlich, um die Leistung und Anwendbarkeit von Katalysatoren auf Trace-Metallbasis für sie zu optimieren.

(Bild: US National Science Foundation)

Veröffentlicht am

Bio-elektrische Systeme helfen bei der PFAS-Aufbereitung

Per- und Polyfluoralkylsubstanzen (PFAS) werden seit vielen Jahrzehnten für verschiedene Anwendungen hergestellt. Darunter befinden sich medizinische Anwendungen, wie z.B. Implantate und Katheter, oder Alltagsgüter zur Brandbekämpfung, Kunststoffe, Kochgeschirr Kosmetik. Ebenso sind zahllose Industrieanwendungen z.B. in der Automobilindustrie, der Chemieindustrie sowie dem Energiesektor inklusive Wasserstoffelektrolyse und Brennstoffzellen auf PFAS (z.B. Nafion™) angewiesen. Die weit verbreitete Anwendung von PFAS hat weltweit zum Eindringen von Spuren dieser Substanzen in die Umwelt geführt. Dazu zählen Flughäfen, Chemieanlagen, Feuerwehren, militärische Anlagen.

Die langfristige Auswirkungen dieser Substanzen auf die Gesundheit wird besonders im Hinblick auf deren chemische Stabilität (die eine gewünschte Eigenschaft ist) derzeitig kontrovers diskutiert.

Neben der kompletten Vermeidung des Eindringens in die Umwelt können PFAS aber auch aus ihr beseitigt werden. Zum Beispiel wird Aktivkohle häufig verwendet, um PFAs daran zu absorbieren. In Böden ist diese Methode jedoch nicht effizient. Idealerweise müßte die Aktivkohle selbst weiter aufbereitet werden, um PFAS wieder zu verwenden. Dieser Prozeß ist sehr energieintensiv.

Wie bei vielen Aufbereitungsprozessen können auch Mikroben zum Einsatz kommen. Solche biologischen Methoden werden als Bioremediation bezeichnet. Allerdings gehören die Kohlenstoffluor-Bindungen (C-F) in PFAS zu den stärksten kovalenten Bindungen in der organischen Chemie. Darüber hinaus gibt es nur sehr wenige natürlich vorkommende C-F Bindungen in der Nature, die dort auch nur in geringen Konzentrationen vorkommt. Ein prominentes Beispiel ist Fluoressigsäure, eine hochgiftige Verbindung die vom südafrikanischen Giftblattstrauch gebildet wird.  Nur wenige Mikroorganismen mit der Fähigkeit, die C-F-Bindung zu lösen, wurden identifiziert. Die Bioremediation von PFAS ist also möglich aber ein langsamer Prozeß.

Wie in unseren vorhergehenden Artikeln bereits beschrieben wurde, können bio-elektrische Systeme mikrobielle Umsetzungsprozesse beschleunigen. Das geschieht, indem sie der mikrobiellen Gemeinschaft eine grösseres elektrochemisches Potentialgefälle anbieten, als dies natürlich der Fall ist. Dieses Verfahren wird erfolgreich bei der Reinigung von Industrieabwässern eingesetzt.

In bio-elektrischen Systemen werden Mikroorganismen und Verunreinigungen in eine elektrochemische Apparatur platziert. Die Elektroden eines solchen Systems dienen als Elektronenspender oder -empfänger. So wird der biologische Abbau über den elektrischen Strom gemessen.

Bio-elektrische Systeme wurden in der Tat schon zum Abbau von fluorierten Alkanen eingesetzt. So wurde z.B. der Entzündungshemmer Dexamethason mithilfe einer solchen Apparatur erfolgreich beseitigt. Wie auch von uns für bioelektrischen Flüssigkraftstoff vorgeschlagen, könnten auch für PFAS Designer-Mikrobiome untersucht werden. Auch sollten Untersuchungen an anderen Medikamentrückständen, wie z.B. Prozac™ vorgenommen werden, damit diese nicht weiter in die Umwelt gelangen.

Bei Frontis Energy sind wir schon gespannt auf die Entwicklungen in den kommenden Jahren.

 

Veröffentlicht am

Dezentrale Abfall-Energie-Systeme produzieren Biogas wo es benötigt wird

Die aktuelle europäischen Energiekrise hat verschiedene Ursachen, hautsächlich jedoch die hohe Nachfrage in Folge der Pandemielockerungen, das Embargo gegen Rußland, die Zurückhaltung von Investoren bei der Finanzierung fossiler Energieprojekte und die Drosselung der Förderung durch die OPEC-Staaten. In dieser komplexen Situation sind europäische Länder gezwungen, alternative und zugleich erneuerbare Energiequellen zu erschließen. Gleichzeitig ist Erdgas jedoch in vielen Branchen schwer zu ersetzen. Eine Ausnahme ist die Lebensmittel- und Getränkeindustrie, die über  enorme ungenutzte Ressourcen von Biogas in ihrem Abwasser verfügen kann.

Abwasser ist eine Ressource, von der weltweit 380 Milliarden m³ erzeugt werden. Es enthält gleichermaßen wertvolle Nährstoffe und Energie. Die weltweite Produktion wird voraussichtlich bis 2030 um 24% und bis 2050 um 51% steigen. Die Abwasserbehandlung verbraucht etwa 3-4% der global erzeugten Energie. Die vollständige Erschließung dieser Energiequelle würde den Energieverbrauch der Klärung komplett ausgleichen und in vielen Fälle sogar einen Überschuß erzeugen. Zudem ist die gesamte globale Wasseraufbereitung geschätzt für bis zu 5% der mesnchengemachten CO2-Produktion verantwortlich. Leider investieren viele Unternehmen und Gemeinden nicht komplexe und teure Abwasserbehandlungstechnologien und verschwenden weiter die wervolle Resource Abwasser. Die European Biogas Association schätzt, daß bis 2050 maximal 65% des Gasbedarfs (zirka 167 Milliarden m³) von durch Biogas abgedeckt werden könnten.

Europa ist die größte Käserei der Welt. Es werden jährlich mehr als 9 Millionen Tonnen Käse hergestellt. Mit jeder Tonne Käse bleiben gleichzeitig 9 m³ Käsemolke zurück. Trotz seines hohen Ernährungswerts wird Molke aus verschiedenen Gründen oft wie Abwasser behandelt. Die sehr hohe organische Belastung der Molke macht es schwierig sie als Abwasser zu klären. Molkeabfälle können aber auch für die Biogasproduktion benutzt werden. Zudem fällt auch noch reguläres Abwasser an. Zum Beispiel zahlt eine mittelgroße Käsefabrik jährlich 1,5 Millionen Euro für ihr Abwasser. Die Reduzierung dieser Kosten durch die Herstellung von Biogas würde das Abwasser der Milchindustrie zu einer wertvollen Ressource machen.

Diese Situation ist in vielen anderen Sektoren für Lebensmittel und Getränke wie Brauereien, Brennereien, Winzer, Bäckereien usw ähnlich. Alle diese Sektoren haben einen hohen Energiebedarf. Erneuerbare elektrische Energie kann diesen Bedarf nicht auslgeichen. Der Markt für die Klärung in Europa und den USA liegt bei zirka 12 Milliarden Euro.

Die traditionelle Abwasserbehandlung basiert auf Belüftung und klassischer Klärschlammfaulung mit der anschließender Verbrennung. Diese Methoden konsumieren oft mehr als 70% der Energie einer Kläranlage. Wenn energiereiche Verunreinigungen gemessen am gesamten organischen Kohlenstoff oder Ammoniak vor dem Prozeß in Biogas umgewandelt würden, könnten mindestens 80% zur Abwasserbehandlung nötigen Energie eingespart werden. Es ist widersinnig, daß diese Energie des Abwasser mit noch mehr aufgewendeter Energie entfernt wird.

Eine immer größer werdende Anzahl von Kläranlagen erchließt bereits die im Abwasser enthaltenen Ressourcen zusätzlich zum Wasser selbst. Die ältesten Recyclingprodukte sind Biogas und Düngemittel, die aus Klärschlamm gewonnen wurden. Aufgrund des Gehalts an Schwermetallen wie Kupfer und Quecksilber wird Klärschlamm nicht mehr als Dünger verwendet sondern in Müllverbrennungsanlagen entsorgt.

Biogas ist in Europa besonders beliebt, da die erzeugten Mengen und Preise hoch genug sind, um mit Erdgas zu konkurrieren. Biogas ist auch eine grüne Alternative zu Erdgas, da kein zusaetzliches CO2 emittiert wird. Ein Nachteil der klassischen Biogas ist der CO2- und Sulfidgehalt. Ein weiterer Nachteil ist, dass die Schlammverdauung der Terminalbehandlungsschritt ist, der wertvolle Abwasserressourcen verschwendet. Schließlich erfordern die Größe und Komplexität der aktuellen Verdauung eine erhebliche Verpflichtung von Benutzern, wenn es um Capex und OPEX geht. Die meisten Lebensmittelhersteller konzentrieren sich lieber auf die Herstellung von Lebensmitteln und nicht auf die Reinigung ihres Abwassers.

Neuartige Hochleistungs-Biogasreaktoren lösen diese Probleme durch Miniaturisierung. Sie erreichen eine 20-fache  Reduktion der Größe im Vergleich zu herkömmlichen Systemen. Zur Verwendung kommt eine neue Technologie, die Anfang der Neunziger Jahre in Japan entwickelt wurde. Sie wird als mikrobielle Elektrolyse bezeichnet. Die Elektrolyse von Abwasser wird durch elektroaktive Mikroorganismen auf der Anode (die positive Elektrode) katalysiert. Die Reaktionsprodukte sind CO2 (aus organischer Substanz) und Stickstoffgas (N2, aus Ammoniak).

Prinzip eines mikrobiellen Elektrolysereaktors. Auf der linken Anode wird das organische Material zu CO2 oxidiert. Die freien Elektronen werden von der Anode absorbiert und zurf Kathode transportiert. Wasserstoffgas (H2) wird dort freigesetzt. CO2 und Wasserstoff bilden Methan, das mikrobielle Anschlußreaktionsprodukt.

Gleichzeitig wird Wasserstoffgas (H2) an der Kathode (der negativen Elektrode) gebildet. Dieser Wasserstoff reagiert mit CO2 zu Methan. Dieser letzte Methanisierungsschritt vervollständigt die biokatalytische Behandlung des Abwassers. Das gebildete Biogas kann entweder in das Erdgasnetz eingespeist oder vor Ort verwendet werden, um Strom und Wärme zu erzeugen.

Die Reaktion wird unter Verwendung einer angelegten Spannung beschleunigt und basiert auf den Gesetzen der Thermodynamik. Infolgedessen kann das Reaktorvolumen verringert werden. Die Größenreduzierung hat mehrere Vorteile. Erstens macht es Biogas in Märkten zugänglich, in denen es aufgrund der hohen Investitionskosten bisher nicht möglich war. Zweitens ermöglicht die Reduzierung der Größe einen höheren Durchsatz zu niedrigeren Kosten. Kleinere Einheiten sind mobil und können genossenschaftlich geteilt, bewegt oder vermietet werden. Schließlich wollen Nahrungsmittelhersteller das tun was sie am besten können, nämlich Essen herstellen. Ihre Abfall- und Energierechnungen sollten sie davon nicht abhalten.

 

Symbolbild: Pixabay

Veröffentlicht am

Nanostrukturierte Membranen verbessern die Gasabscheidung von Kohlendioxid

Zur Reduktion von Treibhausgasemissionen sind verschiedne Prozesse in der Entwicklung, die eine Trennungen von Gasgemischen bestehend aus CO2 und Methan bzw. CO2 und Stickstoffgas erfordern (CO2/CH4 und CO2/N2). Polymermembranen sind unter anderem aufgrund ihrer niedrigen Betriebskosten, hohen Energieeffizienz und einfachen Skalierbarkeit im Vergleich zu anderen Trennungstechnologien gute Kandidaten für einen großtechnischen Einsatz.

Die Gaspermeabilität und -selektivität, sowie die Kosten dieser Polymermembranen sind die entscheidenden Kriterien für ihren industriellen Einsatz. Diese Kriterien werden werden bei molekularen Ordnungsvorgängen während der Polymerisierung auf Nanometer- und Mikrometer-Ebene beeinflußt. Die Ordnungsvorgänge der meisten gängigen Membranen findet aber nicht auf dieser Ebenen statt und können daher schlecht gesteuert werden. Über Materialien mit Selbstorganisationseigenschaften und das Wirken ihrer molekularen Ordnung auf die Gastrennleistung ist wenig bekannt.

Chemiker der Technischen Universität Eindhoven in den Niederlanden untersuchten die Auswirkungen des Schichtabstands innerhalb der Membran und deren Halogenierung auf die Gastrennung und publizierten ihre Ergebnisse im Fachmagazin MDPI Membranes. Dabei fokussierten sie sich auf die Gastrennung von Helium, CO2 und Stickstoff. Sie verwendeten für ihre Untersuchung Flüssigkristallmembranen. Flüssigkristallmoleküle können sich in verschiedenen Nanostrukturen arrangieren. Diese Strukturen fallen je nach Herstellungsprozess unterschiedlich aus und sind somit steuerbar. Damit sind Flüssigkristallmembranen ideal geeignet, um den Einfluss der Nanostrukturen auf die Gastrennung zu untersuchen.

Eine häufig verwendete Herstellungsmethode besteht darin, die Selbstorganisation von reaktiven Flüssigkristallmolekülen in einer Zelle mit Abstandshaltern zu starten. Das hilft dabei, die Membrandicke und -ausrichtung besser zu kontrollieren und letztlich die molekulare Orientierung zu steuern. Die abschließende Vernetzung der Flüssigkristallmoleküle und Fixierung der Nanostrukturen ist erforderlich, um eine ausreichende mechanische Festigkeit zu erreichen. So haben z.B. hoch geordnete Kristallmembranen (also keine Flüssigkristalle) eine niedrigere Gasdurchleitungskapazität jedoch eine höhere Selektivität für Helium und CO2 gegenüber Stickstoff.

Auch lamellare Strukturen und die Richtung des Gasflusses haben einen großen Einfluß auf Selektivität und Permeabilität der Membran. Darüber hinaus ist bekannt, daß Halogenatome wie Chlor oder Fluor die CO2-Permeabilität und -Selektivität verbessern, indem sowohl die Gaslöslichkeit als auch die Diffusion beeinflussen.

In den nun vorgestellten Versuchen, waren alle Membranen, die aus Flüssigkristallen mit ähnlichen chemischen Zusammensetzungen bestanden, jedoch unterschiedliche Halogenalkylabstandslängen besaßen, planar ausgerichtet. Die CO2-Sorption und die gesamte Gaspermeation waren besser, wenn deren Schichten weiter auseinander lagen. Die Gaslöslichkeit selbst war dabei nicht entscheident. Das wurde durch die erhöhten gemessenen Gasdiffusionskoeffzienten bestätigt.

Sperrige Halogene hatten nur begrenzt Einfluß auf die Gaspermeabilität und -selektivität. Die CO2-Permeabilität aller halogenierten Flüssigkristallmembranen nahm aufgrund einer geringfügig höheren CO2-Löslichkeit und des Diffusionskoeffizienten zu, was zu einer verbesserten Selektivitäten für CO2 führte. Insbesondere der Schichtabstand war ein entscheidender Faktor, der direkt den Diffusionskoeffizienten beeinflußte. Die Forscher empfahlen, daß zukünftige Arbeiten sich auf die Verbesserung der Trennleistungen konzentrieren sollten, indem die Membrandicke verringert wird.

Bei Frontis Energy freuen wir uns wie üblich schon auf ein gutes kommerzielles Produkt, das effektiv und billig CO2 aus Gasgemischen, wie zum Beispiel Biogas abscheiden kann.

Foto: Pixabay / SD-Pictures

Veröffentlicht am

Membran aus Pflanzenabfällen filtert Schwermetalle aus Wasser

Leider ist Wasserverschmutzung ist in vielen Teilen der Welt nach wie vor ein wichtiges Thema. Schwermetalle sind eine Gruppe von Schadstoffen, die sich im menschlichen Körper ansammeln und Krebs verursachen können. Existierende Technologien zur Schwermetallbeseitigung sind dagegen sehr energieintensiv.

Wissenschaftler der Nanyang Technischen Universität in Singapur und der Eidgenössischen Technischen Hochschule Zürich (ETHZ), haben eine Membran aus Nebenprodukten der Pflanzenölindustrie hergestellt, die Schwermetalle aus kontaminiertem Wasser herausfiltern kann. Das Forschungsteam entdeckte, daß Proteine, die aus den Nebenprodukten der Erdnuß- oder Sonnenblumenölproduktion stammen, Schwermetallionen sehr effektiv binden. In ihren Tests zeigten sie, daß dieses Adsorptionsverfahren, kontaminiertes Wasser bis auf Trinkwasserqualität reinigen kann .

Die Forscher sehen in der Membran eine zugleich kostengünstige, einfache, nachhaltige und skalierbare Methode zur  Schwermetallentfernung aus Wasser. Die Forschungsergebnisse des Teams wurden im Fachheft Chemical Engineering Journal veröffentlicht.

Die neuen Membranen auf Proteinbasis werden durch einen umweltfreundlichen Prozess erzeugt und brauchen für ihren Einsatz nur wenig Energie. Das macht sie fuer Industrienationen und weniger entwickelten Ländern gleichermaßen interessant.

Die Produktion von kommerziellen Pflanzenölen erzeugt proteinreichen Abfallnebenprodukte. Diese Reste bleiben nach der Ölextraktion aus der Rohpflanze zurück.

Das Forscherkollektiv verwendete Sonnenblumen- und Erdnußöle. Nachdem die Forscher die Proteine extrahiert hatte, verwandelte sie sie in Nano-Amyloidfibrillen Dabei handelt es sich um seilähnliche Strukturen aus eng verwundenen Proteinen. Diese Proteinfibrillen ziehen Schwermetalle an und wirken wie ein molekulares Sieb. Die Membranen filtrierten bis zu 99,89 Prozent der Schwermetalle.

Unter den drei getesteten Metallen war der Filter für Blei und Platin am effektivsten, gefolgt von Chrom. Da Platin oft als Katalysator in Brennstoffzellen oder Elektrolyseuren verwendet wird, ist dies eine elegante und billige Methode, das Metall wiederzugewinnen.

Die Forscher kombinierten die extrahierten Amyloidfibrillen mit Aktivkohle. Aufgrund des hohen Oberflächen-Volumen-Verhältnises der Amyloidfibrillen sind sie für die Adsorption großer Mengen an Schwermetallen besonders geeignet. Der Filter kann für alle Arten von Schwermetallen verwendet werden. Dazu kommen organische Schadstoffe wie Perfluoralkyl- und Polyfluoralkylsubstanzen. Diese Chemikalien werden für in einer Vielzahl von Verbraucher- und Industrieprodukten verwendet, aber auch für Nafion-Membranen von Brennstoffzellen.

Die Konzentration von Schwermetallen in kontaminiertem Wasser bestimmt, wie viel Wasservolumen die Membran herausfiltern kann. Eine Hybridmembran aus Sonnenblumenproteinamyloiden benötigt nur 16 kg Protein, um ein Schwimmbad, welches mit 400 Teilen Blei pro Milliarde kontaminiert ist,  zu reinigen. Ein Kilogramm Sonnenblumenextrakt ergibt etwa 160 g Protein. Gleichzeitig sind die proteinreichen Sonnenblumen- und Erdnußöle kostengünstige Rohstoffe. Da dies das erste Mal ist, daß Amyloidfibrillen aus Sonnenblumen- und Erdnußproteinen erhalten wurden, muß der Prozeß noch skaliert und  industrialisiert werden.

Der Prozeß ist aufgrund seiner Einfachheit und minimalen Verwendung chemischer Reagenzien allerdings leicht skalierbar. Das ermöglicht es, Abfälle für weitere Anwendungen neu aufzubereiten und verschiedene industrielle Lebensmittelabfälle in vorteilhafte Technologien vollständig auszunutzen. Die eingeschlossenen Metalle können auch extrahiert und weiter recycelt werden. Nach der Filtration kann die Membran einfach verbrannt werden und hinterläßt nur die Metalle.

Während Metalle wie Blei oder Quecksilber giftig sind und sicher entsorgt werden, finden andere Metalle wie Platin Anwendungen bei der Herstellung von Elektronik und anderen empfindlichen Geräten, wie Brennstoffzellen. Die Rückgewinnung des kostbaren Platins, das 30.000 Euro pro kg kostet, erfordert nur 32 kg Protein, während die Rückgewinnung von Gold, das fast 55.000 Euro pro kg entspricht, nur 16 kg Protein benötigt. Angesichts der Kosten von weniger als 1 Euro pro kg Protein, sind die Vorteile gewaltig.

Die Co-Autorin der Zeitung, Raffaele Mezzenga, hatte bereits 2016 entdeckt, daß Molkenproteine, die aus der Milch von Kühen stammen, ähnliche Eigenschaften hatten. Die Forscher erkannten schon damals, daß Proteine ​​aus pflanzlichen Ölsaaten auch ähnliche Eigenschaften aufweisen könnten.

Ein weiterer großer Vorteil ist, daß diese Filtration im Gegensatz zu anderen Methoden wie Umkehrosmose keinen Strom benötigt. Für den gesamten Filtrationsprozeß ist die Schwerkraft vollkommen ausreichend. Damit ist die Methode auch für Kontaminationen in schlecht erschlossen Gebieten geeignet.

Bild: Pixabay

Veröffentlicht am

Doppelschichtübergänge in porösen Kohlenstoff-Nanoschichten

In elektrochemischen Zellen wie Brennstoffzellen oder Elektrolyseuren bilden sich Doppelschichten of den Elektrodenoberflächen. Diese Doppelschichten wirken sowohl als Kondensatoren als auch als Widerstände und haben daher Einfluß auf die Leistung elektrochemischer Zellen. Das Verständnis der Struktur und Dynamik der Doppelschichtenbildung wiederum könnte die Leistung von elektrochemischen Systemen erheblich verbessern. Das wuerde beispielsweise elektrochemische System zur Energiespeicherung und -umwandlung, zur Wasserentsalzung, in Sensoren usw effizienter machen.

Auf einer planaren Elektrode werden Elektrolytionen ebenso wie das Lösungsmittel an der Elektrodenoberfläche adsorbiert. Die resultierende Kapazität hängt von der Ladung, dem Lösungszustand und der Ionenkonzentration ab. Traditionell kann die Kapazität elektrochemischer Schnittstellen in zwei Arten unterteilt werden:

  1. Klassischer Doppelschichtkondensator: Die Ionen werden aufgrund ihrer Ladung adsorbiert. Die Ionenadsorption ist nicht spezifisch.
  2. Faraday-Pseudokondensator: Spezifische Ionen werden adsorbiert, beispielsweise durch chemische Wechselwirkungen auf der Elektrodenoberfläche. Dieser Vorgang kann mit einen Ladungstransfer einhergehen.

Die meisten anwendungsorientierten Elektroden sind jedoch nicht planar, sondern porös. Schichtmaterialien in solchen Situationen haben verschiedene Stufen der Elektrolytdurchdringung und damit unterschiedliche kapazitive Adsorptionsmechanismen. Das Verständnis der Elektrosorption in solchen Materialien erfordert eine holistische Betrachtung der elektrochemischen Kapazität und der Ladungspeicherung.

Ein Team von Forschern der North Carolina State University, der Paul-Sabatier-Universität in Toulouse und dem Karlsruhe-Institut für Technologie veröffentlichten neue Einblicke in die Elektrolytdurchdringung in nicht-planaren Elektrodenoberflächen in der Fachzeitschrift Nature Energy.

Elektrische Doppelschicht bei planaren Elektroden

Der Grad der Ionensolvatisierung (der Prozeß der sich neu organisierenden Lösungsmittelmoleküle und gelösten Ionen) an idealen (planaren) elektrochemischen Grenzflächen bestimmt die Ionenwechselwirkung mit der Elektrode. Es gibt zwei verschiedene Fälle:

  1. Ionen werden unspezifisch adsorbiert: Dies ist bei starker Ionensolvatisierung der Fall. Die Wechselwirkungen mit der Elektrode sind in erster Linie elektrostatisch. Diese Art von Wechselwirkung kann als Induktion betrachtet werden, das heißt die Ladung wird induziert, aber nicht übertragen.
  2. Ionen werden spezifisch adsorbiert: In diesem Fall werden Ionen nicht solvatiert und können spezifisch adsorbiert werden und auch chemische Bindung an die Elektrode eingehen. Dieser Vorgang kann als Ladungsübertragungsreaktion zwischen der Elektrode und dem adsorbierten Ion beschrieben werden. Die Ladungsübertragungsreaktion hängt jedoch von der Bindung zwischen Ion und Elektrode ab. Dies korreliert mit dem Zustand der Ionensolvatisierung. Man kann daher zu erwarten, daß die Ionensolvatisierung für das Verständnis der Ionen-Elektroden-Wechselwirkungen in einer nanoporösen Umgebung von entscheidender Bedeutung ist.

Doppelschichtkondensator auf Kohlenstoffbasis − der Durchdringungseffekt

Die Beziehung zwischen der Porosität von Kohlenstoffnano-Materialien hat Einfluß auf die spezifischen Kapazität von elektrochmischen Vorrichtungen.

Wenn sich in einer nanoporösen Umgebung elektrische Doppelschichten bilden, weicht das Kondensatormodell vom klassischen Doppelschichtmodell an planaren Oberflächen ab. Der Grad der Ionensolvatisierung in räumlichen Begrenzung wird durch die Porengröße in nanoporösen Materialien und durch den Schichtabstand in den Poren bestimmt, also den zweidimensionalen Schichtmaterialien.

Die in Subnanometerporen eingezwängten Ionen lösen sich langsam im Elektrolyt, was zur Kapazitätserhöhung führt und eine Abweichung vom typischen linearen Oberflächeverhalten zur Folge hat. Während der negativen Polarisation poröser Kohlenstoffmaterialien mit den Porengrößen <1 nm wird eine Abnahme der Kapazität beobachtet. Der Einfluß auf die Kapazität wird durch die Ionen hervorgerufen, die am Ionentransport teilnehmen.

Diese Erkenntnisse sind wichtig, um die Kohlenstoffporenstruktur poröser Elektroden effektiv zu gestalten und ihre spezifische Kapazität zu erhöhen. Da Kohlenstoffmaterial kein idealer Leiter ist, ist es wichtig, seine spezifische elektrische Struktur zu berücksichtigen. Bei Graphit zum Beispiel nimmt die Verfügbarkeit der Ladungsträger während der Polarisation zu, was zu einer erhöhten Leitfähigkeit führt.

Einheitliches Modell der elektrochemischen Ladungspeicherung in Nanoporen

Da die elektrochemischen Grenzflächen in technologischen Anwendungen nicht planar sind, schlugen die Forscher eine detaillierte Bewertung und ein anderes Konzept der elektrochemischen Kapazität an solchen nicht idealen Schnittstellen vor. Die Gruppe untersuchte die Elektrosorption auf zweidimensionalen und dreidimensionalen Kohlenstoffoberflächen mit einer kontinuierlichen Verringerung der Porengröße bei zunehmenden Oberflächenkomplexität.

Das untersuchte Beispiel bezog sich auf die Ladungsspeichereigenschaften von Lithiumionen (Li+) in den Graphenblättchen organischer lithiumhaltiger Elektrolyte. Die Abhängigkeit von der Anzahl der Graphenschichten war dabei im Fokus. In einer einzelnen Graphenschicht ist die kapazitive Reaktion aufgrund der spezifischen Adsorption unabhängig vom elektrischen Potential. Mit einer Zunahme der Graphenblätter entstanden jedoch Redox-Spitzen, die durch die Einlagerung von Lithiumionen aufgrund umgekehrter Solvatisierung entstanden. Diese Lithiumeinlaferung ist normalerweise für Batterieverschleiß verantwortlich. Die Forscher vermuteten, daß bei der Adsorption der solvatierten Lithiumionen auf einem einzelnen Graphenblatt eine Einlagerung nach einer Übergangsphase erfolgte. Diese Einlagerung war nach Ansicht der Forscher mit einer kontinuierlichen Ladungsablagerung verbunden. Das kann zu einen nahtlosen Übergang wegen des erhöhten Ladungstransfers zwischen einem Elektrolytion und der Oberfläche führen. Diese Übergangsphase würde dann maßgeblich von der Porengröße und der Ionensolvatsierung beeinflußt.

In den vorgestellten Ergebnissen wurde ein einheitlicher Ansatz vorgeschlagen, der den kontinuierlichen Übergang zwischen einem Doppelschichtkondensator und poröser Ioneneinlagerung erklärt. Dieser Ansatz weicht von der traditionellen Sichtweise auf einzelne Ladungen und deren Speicherung in nanoporösen Materialien ab. Bisher wurde diese Art der Ladungsspeicherung als rein elektrostatisches oder rein faradaysches Phänomen angesehen.

Zusammenfasend kann man feststellen, daß sich mit zunehmender Ioneneinlagerung die Ionensolvatisierung verringert. Dies führt zu einer kontinuierlichen Doppelschichtbildung.

Bild: Pixabay