Veröffentlicht am Schreiben Sie einen Kommentar

Billiger Biokraftstoff mit hoher Oktanzahl gefunden

Forscher des National Renewable Energy Laboratory (NREL) haben eine billige Methode zur Herstellung von Benzin mit hoher Oktanzahl aus Methanol entwickelt und diese im Fachblatt Nature Catalysis veröffentlicht. Methanol kann über verschiedene Wege aus CO2 gewonnen werden, wie wir bereits im letzten Jahr berichteten. Biomasse, wie z.B. Holz, ist dabei eine mögliche Methode.

Die Herstellung von Biokraftstoffen aus Holz ist allerdings zu teuer, um mit fossilen Brennstoffen zu konkurrieren. Um eine Lösung für dieses Problem zu finden, kombinierten die NREL-Forscher ihre Grundlagenforschung mit einer wirtschaftlichen Analyse. Dabei zielten die Forscher zunächst auf den teuersten Teil des Prozesses. Danach fanden die Forscher Methoden, um diese Kosten mit Methanol als Zwischenprodukt zu senken.

Bisher lagen die Kosten für die Umwandlung von Methanol in Benzin oder Diesel bei ungef 0.24 € pro Liter. Die Forscher haben nun einen Preis von ca. 0.16 € pro Liter erreicht.

Bei der katalytischen Umwandlung von Methanol in Benzin handelt es sich um ein wichtiges Forschungsgebiet im Bereich der CO2-Rückgewinnung. Die traditionelle Methode beruht auf mehrstufigen Prozessen und hohen Temperaturen. Sie ist teuer, produziert minderwertigen Kraftstoff in geringen Mengen. Damit ist sie im Vergleich zu Kraftstoffen auf Erdölbasis nicht konkurrenzfähig.

Das entwickelte Verfahren stieß zunächst auf das Problem eines Wasserstoffmangels. Wasserstoff ist das energetische Schlüsselelement in Kohlenwasserstoffen. Die Forscher stellten die Hypothese auf, daß die Verwendung des Übergangsmetalls Kupfer dieses Problem lösen würde, was es auch tat. Die Forscher schätzen, daß der mit Kupfer infundierte Katalysator zu 38% mehr Ausbeute weniger Kosten führte.

Durch Erleichterung der Wiedereingliederung von C4-Nebenprodukten während der Homologation von Dimethylether ermöglichte der Kupfer-Zeolith-Katalysator die 38%ige Steigerung der Ausbeute des Produkts und eine 35%ige Reduzierung der Umwandlungskosten im Vergleich zu herkömmlichen Zeolith-Katalysatoren. Alternativ dazu wurden C4-Nebenprodukte an ein synthetisches Kerosin weitergeleitet, das fünf Spezifikationen für einen typischen Düsentreibstoff erfüllte. Die Treibstoffsynthesekosten nahmen dabei im Vergleich geringfügig zu. Selbst wenn die Kosteneinsparungen minimal wären, hätte das resultierende Produkt einen höheren Wert.

Abgesehen von den Kosten bietet der neue Prozess den Anwendern weitere Wettbewerbsvorteile. Zum Beispiel können Unternehmen mit Ethanolherstellern um Gutschriften für erneuerbare Brennstoffe konkurrieren (wenn der verwendete Kohlenstoff aus Biogas oder Hausabfällen stammt). Der Prozess ist auch mit vorhandenen Methanolanlagen kompatibel, die Erdgas oder festen Abfall zur Erzeugung von Synthesegas verwenden.

Veröffentlicht am

Elektrische Energiespeicherung

Elektrischer Energiespeicherung (EES) ist der Prozess der Umwandlung elektrischer Energie aus einem Stromnetz in stabile Energieform, um sie bei Bedarf wieder in Elektrizität umwandeln zu können. EES ermöglicht die Stromerzeugung in Zeiten geringer Nachfrage, niedriger Erzeugungskosten oder während der Spitzenzeiten erneuerbarer Energieerzeugung. Auf diese Weise können Erzeuger und Übertragungsnetzbetreiber (ÜNB) die Unterschiede bei Angebot und Nachfrage im Hinblick auf die Erzeugungskosten wirksam nutzen und ausgleichen. In Zeiten hoher Nachfrage, hoher Erzeugungskosten und/oder geringer Erzeugungskapazität werden diese Faktoren durch gespeicherten Strom ausbalanciert.

EES hat viele Anwendungen, einschließlich Integration erneuerbarer Energien, Nebendienstleistungen und Stromnetzunterstützung. Diese Blog-Reihe soll dem Leser vier Aspekte von EES vermitteln:

  1. Ein Überblick über die Funktionen und Anwendungen von EES-Technologien,
  2. Aufschlüsselung der wichtigsten EES-Märkte in der EU nach dem neuesten Stand der Technik,
  3. Eine Diskussion über die Zukunft dieser EES-Märkte und
  4. Anwendungen, d.h Serviceanwendungen, von EES.

Tabelle: Einige gebräuchliche Dienstverwendungen von EES-Technologien

Speicherkategorie

Speichertechnologie

Wasserspeicher

Speicherkraftwerke

Pumpspeicherkraftwerke

Elektrochemische Speicher

Batterieen

(Redox)-Flußbatterieen

Kondensatoren

Wärmespeicher

Salzschmelze

Wärmespeicher

Kältespeicher

Elektromechanische Speicher

Schwerkraft

Luftdruckspeicher

Schwungräder

Wasserstoffspeicher

Brennstoffzellen

H2-Speicher

Power-to-Gas

Im Gegensatz zu anderen Rohstoffmärkten verfügt die Stromindustrie in der Regel nur über geringe oder gar keine Speicherkapazitäten. Strom muss genau zum Zeitpunkt seiner Erzeugung verbraucht werden, wobei die Netzbetreiber Angebot und Nachfrage ständig in Einklang bringen. Mit einem ständig wachsenden Marktanteil von intermittierenden erneuerbaren Energiequellen wird dieser Balanceakt immer schwieriger.

Während EES bekannt für den Ausgleich von Versorgungsschwankungen, z.B. bei der Erzeugung erneuerbarer Energien, ist, gibt es viele andere Anwendungen. EES ist für den sicheren und zuverlässigen Betrieb des Stromnetzes von entscheidender Bedeutung, da sie wichtige Zusatzdienste und -funktionen zur Verbesserung der Zuverlässigkeit des Stromnetzes bereitstellt. ES ist in allen wichtigen Bereichen des Stromnetzes anwendbar (Erzeugung, Übertragung und Verteilung sowie Endnutzerdienste). Einige der am häufigsten genutzten Dienste sind in der obigen Tabelle aufgeführt. Weitere Erläuterungen zur Verwendung von Speicherdiensten werden später in diesem Blog bereitgestellt, einschließlich einer umfassenden Liste der EES-Anwendungen.

Jon Martin, 2019

Veröffentlicht am

Halbleiternanoröhrchen mit photovoltaischem Effekt

Kostengünstigen und effiziente Methoden zur Umwandlung von Sonnenlicht in Elektrizität stehen im Fokus der Erforschung umweltfreundlicher Methoden zur Energiegewinnung. Solarzellen, die zu diesem Zweck entwickelt wurden bestehen zurzeit aus Halbleitern wie Silizium. Elektrische Energie wird am Übergang zwischen zwei verschiededen Halbleitern erzeugt. Der Wirkungsgrad dieser Solarzellen hat jedoch seine theoretische Grenze fast erreicht. Neue Methoden zur Umwandlung von Sonnenlicht in Elektrizität müssen daher gefunden werden, um eine größere Durchdringung unserer Energienetze mit erneuerbaren Energiequellen zu ermöglichen. Ein internationales Forscherkonsortium aus Deutschland, Japan und Israel hat jetzt einen wichtigen Fortschritt in dieser Richtung erzielt. Zhang und Kollegen veröffentlichten ihre Ergebnisse kürzlich im angesehen Fachblatt Nature. Sie demonstrieren eine übergangsfreie Solarzelle, die durch Auftragen einer atomeren Halbleiterschicht in eine Nanoröhre hergestellt werden kann.

In einer herkömmlichen Solarzelle werden zwei Bereichen eines Halbleiters in einem als Dotierung bekannten Prozess unterschiedliche chemische Elemente hinzugefügt. Der elektrische Transport erfolgt durch die negativ geladene Elektronen einer Region und durch die positiv geladene Elektronenlöcher (Defektelektronen). An der Verbindungsstelle zwischen diesen beiden Bereichen wird ein elektrisches Feld erzeugt. Wenn an diesem Übergang Sonnenlicht absorbiert wird, entstehen Elektron-Defektelektronen-Paare. Die Elektronen und Defektelektronen werden dann durch das entstandene elektrische Feld getrennt, wodurch ein elektrischer Strom entsteht. Diese Umwandlung von Sonnenenergie in Strom wird als photovoltaischer Effekt bezeichnet. Dieser photovoltaische Effekt ist besonders wichtig für eine umweltfreundliche Energiegewinnung. Sein Wirkungsgrad hat wie eingangs gesagt fast die theoretische Grenze erreicht.

Physikalisch entsteht der photovoltaische Effekt in traditionellen pn-Übergängen, bei denen ein p-Typ-Material (mit einem Überschuss an Defektelektronen) an ein n-Typ-Material (mit einem Überschuss an Elektronen) angrenzt. In der lichtinduzierten Erzeugung von Elektronen-Defektelektronen-Paaren und deren anschließende Trennung wird Strom erzeugt. Weitere Fortschritte werden durch die Nutzung anderer photovoltaischer Effekte erwartet, die keinen Übergang erfordern und nur in Kristallen mit gebrochener Inversionssymmetrie auftretet. Die praktische Umsetzung dieser Effekte wird jedoch durch die geringe Effizienz der vorhandenen Materialien behindert. Halbleiter mit reduzierter Dimensionalität oder kleinerem Bandabstand haben sich als effizienter erwiesen. Übergangsmetall-Dichalkogenide (TMDs) sind z.B. zweidimensionale Halbleiter mit kleiner Bandlücke, bei denen verschiedene Effekte durch Aufbrechen der Inversionssymmetrie in ihren Volumenkristallen beobachtet wurden.

Die neu entwickelte photovolataische Methode basiert auf Wolframdisulfid, einem Mitglied der TMD-Familie. Kristalle dieses Materials sind schichtförmig aufgebaut und können ähnlich wie Graphit schichtweise abgezogen werden. Die resultierenden atomdicken Bleche können dann durch chemische Verfahren zu Röhrchen mit Durchmessern von etwa 100 Nanometern gewalzt werden. Die Autoren stellten photovoltaische Apparate aus drei Arten von Wolframdisulfid her: eine Monoschicht, eine Doppelschicht und eine Nanoröhre.

Eine systematische Reduzierung der Kristallsymmetrie wurde über die bloße gebrochene Inversionssymmetrie hinaus erreicht. Der Übergang von einer zweidimensionalen Monoschicht zu einer Nanoröhre mit polaren Eigenschaften wurde erheblich verbessert. Die so erzeugte Photostromdichte ist um Größenordnungen größer als die anderer vergleichbarer Materialien. Die Ergebnisse bestätigen nicht nur das Potenzial von TMD-basierten Nanomaterialien, sondern allgemein auch die Bedeutung der Reduzierung der Kristallsymmetrie für die Verbesserung des photovoltaischen Effekts.

Während die Nanoröhrenbauelemente einen großen photovoltaischen Effekt hatten, erzeugten die Einschicht- und Zweischicht-Bauelemente unter Beleuchtung nur einen vernachlässigbaren elektrischen Strom. Die Forscher führen die unterschiedlichen Leistungsmerkmale der Solarzellen auf ihre ausgeprägte Kristallsymmetrie zurück. So kann man spontan einen Strom in gleichmäßigen Halbleitern erzeugen, ohne daß ein Übergang erforderlich ist.

Der Effekt wurde erstmals 1956 in den Bell Laboren in New Jersey beobachtet, nur zwei Jahre nach der Erfindung moderner Siliziumsolarzellen. Der Effekt ist auf nicht zentrosymmetrische Materialien beschränkt, die durch mangelnde Symmetrie bei räumlicher Inversion (die Kombination aus einer 180°-Drehung und einer Reflexion) gekennzeichnet sind. Der Effekt hat zwei faszinierende Eigenschaften: Der durch Licht erzeugte Strom hängt von der Polarisation des einfallenden Lichts ab und die zugehörige Spannung ist größer als die Bandlücke des Materials. Das ist die Energie, die zur Anregung von leitenden freien Elektronen erforderlich ist. Der Effekt weist jedoch typischerweise eine geringe Umwandlungseffizienz auf und ist daher im Laufe der Jahre eher von akademischem als von praktischem Interesse geblieben.

Um eine hohe Effizienz zu erzielen, muß ein Material eine hohe Lichtabsorption und eine geringe innere Symmetrie aufweisen. Diese beiden Eigenschaften existieren jedoch in einem bestimmten Material normalerweise nicht gleichzeitig. Halbleiter, die das meiste einfallende Sonnenlicht absorbieren, weisen im Allgemeinen eine hohe Symmetrie auf. Das verringert oder verhindert gar den Effekt. Materialien mit geringer Symmetrie, wie Perowskitoxide, absorbieren aufgrund ihrer großen Bandlücke nur wenig Sonnenlicht. Um dieses Problem zu umgehen, wurden enorme Anstrengungen unternommen, um die Lichtabsorption in Materialien mit geringer Symmetrie zu verbessern, beispielsweise durch Verwendung der erwähnten Dotierung. Inzwischen wurde gezeigt, daß die Effekt in Halbleitern auftreten kann, indem mechanische Felder verwendet werden, um die Kristallsymmetrie des Materials anzupassen.

Die neu entdeckte Lösung ist ermutigend im Hinblick auf die Herstellung von Halbleiternanoröhrchen mit hoher Lichtabsorption. Im Falle von Wolframdisulfid ist die Kristallsymmetrie der Nanoröhrchen im Vergleich zur Mono- und Doppelschicht aufgrund der gekrümmten Wände des Röhrchens verringert. Die Kombination aus ausgezeichneter Lichtabsorption und geringer Kristallsymmetrie bedeutet, daß die Nanoröhrchen einen erheblichen photovoltaischen Effekt aufweisen. Die elektrische Stromdichte übertrifft die von Materialien, die von Natur aus eine geringe Symmetrie aufweisen. Dennoch ist die erzielte Umwandlungseffizienz immer noch viel geringer ist als die des Photovoltaik-Effekts in herkömmlichen Solarzellen auf Sperrschichtbasis.

Die Ergebnisse der Autoren belegen das große Potenzial von Nanoröhrchen bei der Gewinnung von Sonnenenergie und werfen verschiedene technologische Herausforderungen und wissenschaftliche Fragen auf. Aus Anwendersicht wäre es aufschlußreich, eine Solarzelle zu fertigen die aus eine hohen Zahl von Halbleiternanoröhrchen besteht, um zu überprüfen, ob sich der Ansatz skalieren lässt. Die Richtung des erzeugten Stroms würde weitgehend von der inneren Symmetrie des Materials bestimmt. Daher wäre eine gleichmäßige Symmetrie über das Nanoröhrchenanordnungen erforderlich, um einen gemeinsamen Strom zu erzeugen. Dabei könnten sich die in verschiedenen Nanoröhrchen gegenseitig ausgleichen, was zu einer Anullierung des erzeugten Stroms führen würde.

Bei Frontis Energy fragen wir uns, ob die beschrieben Methode mit dem klassichen photovoltaischen Effekt in derselben Solarzelle zusammenwirken könnte. Das würde eventuell den Gesamtwirkungsgrad steigern. Die beiden Effekte könnten die Sonnenenergie aufeinander folgend nutzen. Trotz der verbleibenden Herausforderungen bietet die vorgelgte Arbeit einen Möglichkeit zur Entwicklung hocheffizienter Solarzellen.

(Photo: Wikipedia)

Veröffentlicht am

Möglichkeiten zur Energiespeicherung im EU-Markt

Elektrische Energiespeicher (EES) sind nicht nur wesentlicher Bestandteil für den zuverlässigen Betrieb moderner Stromnetze, sondern auch ein Schwerpunkt der globalen Energiewende. Energiespeicher sind die krtitische technologische Hürde bei der Einführung erneuerbarer Energie als alleinige Quelle der Stromversorgung. Hier werden ausgewählte Energiespeichermärkte in der EU bewertet. In den folgenden Blogbeiträgen werden diese detailliert beschrieben.

Deutschland ist mit über 80 MW installierter Wind- und Solarkapazität das absolut führende EU-Land in der Energiewende. Experten haben jedoch argumentiert, daß es unwahrscheinlich ist, den Gesamtbedarf Deutschlands an großtechnischen Energiespeichern in den nächsten 20 Jahren in nennenswerter Menge auszubauen. Dies ist auf eine Reihe von Faktoren zurückzuführen. Die geografische Lage Deutschlands und die zahlreichen Anschlüsse an benachbarte Stromnetze erleichtern den Export von Überschußstrom. Wenn Deutschland außerdem seine 2020-Ziele für Wind- und Solarkapazität (46 GW bzw. 52 GW) erreicht, würde das Angebot in der Regel 55 GW nicht überschreiten. Fast alles würde im Inland verbraucht und der Speicherbedarf wäre gering.

Bei der Bewertung der Energiespeicherung in Großbritannien stellt sich anders dar. Da es sich um einen isoliertes Inselstaat handelt, liegt der Schwerpunkt wesentlich stärker auf der Unabhängigkeit im Energiebereich. Dieses Bestreben ist nach Energieunabhängigkeit ist stärker, als das Ziel, einen kohlenstoffarmen Energiesektor aufzubauen. Die bestehende Gesetzgebung ist jedoch umständlich und birgt Hindernisse, die den Übergang zu einem kohlenstoffarmen Energiesektor − einschließlich Energiespeicherung − erheblich behindern. Die britische Regierung hat die Existenz gesetzgeberischer Hindernisse anerkannt und sich dazu verpflichtet, diese zu beseitigen. Im Rahmen dieser Bemühungen wird bereits eine Umstrukturierung ihres Strommarktes zu einem kapazitätsbasierten Markt durchgeführt. Die Aussichten für Energiespeicherung in Großbritannien sind vielversprechend, da nicht nur die Industrie, sondern auch die Öffentlichkeit und die Regierung erheblichen Druck ausüben, solche Anlagen in industriellem Maßstab weiterzuentwickeln. Der bevorstehende Brexit trübt diese Aussicht jedoch in merhfacher Hinsicht.

Italien, das einst stark von Wasserkraft abhängig war, bezieht derzeit 50% seines Stroms aus Erdgas, Kohle und Öl (34% Erdgas). Die Einführung einer Solar-FIT im Jahr 2005 führte zu einem deutlichen Wachstum in der Solarindustrie bevor das Programm im Juli 2014 endete. Italien belegt jetzt weltweit den 2. Platz bei der Pro-Kopf-Solarkapazität . In den letzten Jahren war ein deutlicher Anstieg der elektrochemischen Energiespeicherkapazität zu verzeichnen (>90 MW verfügbar). Dieser Anstieg wurde hauptsächlich von einzelnen TERNA Großprojekten angetrieben, TERNA ist Italiens Übertragungsnetzbetreiber (ÜNB). Diese Kapazität hat Italien zum führenden Anbieter von Energiespeicherkapazitäten in der EU gemacht. Der Markt wird jedoch bislang von den großen ÜNB dominiert. Die Kombination aus Abhängigkeit von importiertem Erdgas und mehr als 500.000 Photovoltaikanlagen, die keine FIT-Prämien mehr erheben, sowie die Erhöhung der Stromtarife, machen Italien zu einem erfolgversprehcenden Markt für Power-to-Gas für Privathaushalte.

Dänemark verfolgt aggressiv ein zu 100% erneuerbares Energieziel für alle Sektoren bis zum Jahr 2050. Zwar gibt es noch keine offizielle Gesetzgebung. Die Richtung wurde jedoch im Wesentlichen auf eines von zwei Szenarien eingegrenzt: ein auf Biomasse basierendes Szenario oder ein Wind + Wasserstoff-basiertes Szenario. Unter dem wasserstoffbasierten Szenario wären weitreichende Investitionen in die Erweiterung der Windkapazität und in die Kopplung dieser Kapazität mit Wasserstoff-Power-to-Gas-Systemen zur Speicherung überschüssiger Energie erforderlich. Angesichts des dänischen Fachwissens und der damit verbundenen Investitionen in die Windenergie ist zu erwarten, daß das künftige dänische Energiesystem auf dieser Stärke aufbaut und daher erhebliche Power-to-Gas-Investitionen erfordert.

In Spanien stagnierte der Ausbau erneuerbarer Energien aufgrund rückwirkender Richtlinienänderungen und Steuern auf den Verbrauch von solarbetriebenem Strom, die 2015 eingeführt wurden. Die Umsetzung des Königlichen Dekrets 900/2015 über den Eigenverbrauch machte Photovoltaikanlagen unrentabel und führte zu zusätzlichen Gebühren und Steuern für die Nutzung von Energiespeichergeräten. Wir haben keinen Hinweis darauf gefunden, daß in naher Zukunft ein Markt für Energiespeicher in Spanien entstehen wird.

Das letzte untersuchte Land waren die Niederlande, die von der EU wegen mangelnder Fortschritte bei den Zielen für erneuerbare Energien kritisiert wurden. Da nur 10% des niederländischen Stroms aus erneuerbaren Quellen stammt, besteht derzeit nur eine geringe Nachfrage nach großtechnischen Energiespeichern. Während die Niederlande möglicherweise hinter den Zielen für erneuerbaren Strom zurückbleiben, waren sie führend bei der Einführung von Elektrofahrzeugen. Ein Trend, der sich bis 2025 fortsetzen wird. Es wird geschätzt, daß eine Million Elektrofahrzeuge auf niederländischen Straßen fahren werden. Parallel zum Anstieg der Elektrofahrzeuge gab es einen starken Anstieg von Li-Ionen-Anlagen mit einer Leistung von weniger als 100 kW zur Speicherung von Energie an Ladestationen für Elektrofahrzeuge. Es wird erwartet, daß diese Anwendungen weiterhin im Fokus der Energiespeicherung in den Niederlanden stehen werden.

Ähnlich wie in Italien sind die Niederländer in ihren Häusern in hohem Maße auf Erdgas angewiesen. Diese Tatsache, gepaart mit einem immer stärkeren Bedarf an energieunabhängigen und -effizienten Häusern, könnte die Niederlande zu einem Hauptmarkt für Power-to-Gas-Technologien für Privathaushalte machen.

Mehr zu dem Thema EES können Sie hier lesen.

Jon Martin, 2019

(Foto: NASA)

Veröffentlicht am

Intelligente Batterien durch künstliches Lernen

Erneuerbare Energie, z.B. Wind- und Solarenergie stehen nur intermediär zur Verfügung. Um das Ungleichgewicht zwischen Angebot und Nachfrage auszugleichen, können unter anderem Batterien von Elektrofahrzeugen aufgeladen werden und so als Energiepuffer für das Stromnetz fungieren. Autos verbringen den größten Teil ihrer Zeit im Stand und könnten ihren Strom in das Stromnetz zurückspeisen. Dies ist zwar zur Zeit noch Zukunftsmusik aber Vermarktung von Elektro- und Hybridfahrzeugen verursacht in jedem Fall eine wachsende Nachfrage nach langlebigen Batterien, sowohl für das Fahren  als auch als Netzpufferung. Methoden zur Bewertung des Batteriezustands werden dadurch zunehmend an Bedeutung an Bedeutung gewinnen.

Die lange Testdauer des Akkzustands ist ein Problem, das die rasche Entwicklung neuer Akkus behindert. Bessere Methoden zur Vorhersage der Akkulebensdauer werden daher dringend benötigt, sind jedoch äußerst schwierig zu entwickeln. Jetzt berichten Severson und ihre Kollegen im Fachjournal Nature Energy, daß künstliches Lernen bei der Erstellung von Computermodellen zur Vorhersage der Akkulebensdauer helfen kann. Dabei werden Daten aus Lade- und Entladezyklen frühen Stadien verwendet.

Normalerweise beschreibt eine Gütezahl den Gesundheitszustand eines Akkus. Diese Gütezahl quantifiziert die Fähigkeit des Akkus, Energie im Verhältnis zu seinem ursprünglichen Zustand zu speichern. Der Gesundheitszustand ist 100%, wenn der Akku neu ist und nimmt mit der Zeit ab. Das aehnelt dem Ladezustand eines Akkus. Das Abschätzen des Ladezustands einer Batterie ist wiederum wichtig, um eine sichere und korrekte Verwendung zu gewährleisten. In der Industrie oder unter Wissenschaftlern besteht jedoch kein Konsens darüber, was genau Gesundheitszustand ist oder wie es bestimmt werden sollte.

Der Gesundheitszustand eines Akkus spiegelt zwei Alterserscheinungen wider: fortschreitender Kapazitätsabfall sowie fortschreitende Impedanzerhöhung (ein anderes Maß für den elektrischen Widerstand). Schätzungen des Ladezustands eines Akkus müssen daher sowohl den Kapazitätsabfall als auch den Impedanzanstieg berücksichtigen.

Lithiumionenbatterien sind jedoch komplexe Systeme in denen sowohl Kapazitätsschwund als auch Impedanzanstieg durch mehrere wechselwirkende Prozesse hervorgerufen werden. Die meisten dieser Prozesse können nicht unabhängig voneinander untersucht werden, da sie oft parallel stattfinden. Der Gesundheitszustand kann daher nicht aus einer einzigen direkten Messung bestimmt werden. Herkömmliche Methoden zur Abschätzung des Gesundheitszustands umfassen die Untersuchung der Wechselwirkungen zwischen den Elektroden einer Batterie. Da solche Methoden oft in das System „Batterie“ direkt eingreifen, machen sie den Akku unbrauchbar, was wohl selten gewünscht ist.

Der Gesundheitszustand kann aber auch auf weniger invasive Weise mithilfe adaptive Modelle und experimentelle Techniken bestimmt. Adaptive Modelle lernen aus aufgezeichneten Akkuleistungsdaten und passen sich dabei selbst an. Sie sind nützlich, wenn keine systemspezifischen Informationen zum Akku verfügbar sind. Solche Modell eignen sich zur Diagnose der Alterungsprozessen. Das Hauptproblem besteht jedoch darin, daß sie mit experimentellen Daten trainiert werden müssen, bevor sie zur Bestimmung der aktuellen Kapazität einer Batterie verwendet werden können.

Experimentelle Techniken werden verwendet, um bestimmte physikalische Prozesse und Ausfallmechanismen zu bewerten. Dadurch kann die Geschwindigkeit des zukünftigen Kapazitätsverlusts abgeschätzt werden. Diese Methoden können jedoch keine zeitweilig auftretenden Fehler erkennen. Alternative Techniken nutzen die Geschwindigkeit der Spannungs-  oder Kapazitätsänderung (anstelle von Rohspannungs- und Stromdaten). Um die Entwicklung der Akkutechnologie zu beschleunigen, müssen noch weitere Methoden gefunden werden, mit denen die Lebensdauer der Batterien genau vorhergesagt werden kann.

Severson und ihre Kollegen haben einen umfassenden Datensatz erstellt, der die Leistung von 124 handelsüblichen Lithiumionenbatterien während ihrer Lade- und Entladezyklen umfaßt. Die Autoren verwendeten eine Vielzahl von Schnelladebedingungen mit identische Entladungen, um die Lebensdauer der Batterien zu ändern. In den Daten wurde eine breite Palette von 150 bis 2.300 Zyklen erfaßt.

Anschließend analysierten die Forscher die Daten mithilfe von künstliches Lernalgorithmen und erstellten dabei Modelle, mit denen sich die Lebensdauer der Akkus zuverlässig vorhersagen lässt. Bereits nach den ersten 100 Zyklen jedes experimentell charakterisierten Akkus zeigten diese deutliche Anzeichen eines Kapazitätsschwunds. Das beste Modell konnte die Lebensdauer von etwa 91% der in der Studie untersuchten vorhersagen. Mithilfe der ersten fünf Zyklen konnten Akkus in Kategorien mit kurzer (<550 Zyklen) oder langer Lebensdauer eingeordnet werden.

Die Arbeit der Forscher zeigt, daß datengetriebene Modellierung durch künstliches Lernen ein zur Vorhersage des Gesundheitszustands von Lithiumionenbatterien ist. Die Modelle können Alterungsprozesse identifizierten, die sich in frühen Zyklen nicht in Kapazitätsdaten manifestieren. Dementsprechend ergänzt der neue Ansatz die bisheringen Vorhersagemodelle. Bei Frontis Energy sehen wir aber auch die Möglichkeit, gezielt generierte Daten mit Modellen zu kombinieren, die das Verhalten anderer komplexer dynamischer Systeme vorherzusagen.

(Foto: Wikipedia)

 

Veröffentlicht am

Schneller photoelektrischer Wasserstoff

Das Erreichen hoher Stromdichten bei gleichzeitig hoher Energieeffizienz ist eine der größten Herausforderungen bei der Verbesserung photoelektrochemischer Geräte. Höhere Stromdichten beschleunigen die Erzeugung von Wasserstoff und anderer elektrochemischer Brennstoffe.

Jetzt wurde ein kompaktes solarbetriebenes Gerät zur Wasserstofferzeugung entwickelt, das den Brennstoff in Rekordgeschwindigkeit erzeugt. Die Autoren um Saurabh Tembhurne beschreiben ein Konzept im Fachblatt Nature Energy, das es ermöglicht, konzentrierte Sonneneinstrahlung (bis zu 474 kW/m²) durch thermische Integration, Stofftransportoptimierung und bessere Elektronik zwischen Photoabsorber und Elektrokatalysator zu verwenden.

Die Forschungsgruppe der Eidgenössischen Technischen Hochschule in Lausanne (EPFL) errechnete die Zunahme der maximalen Wirkungsgrade, die theoretisch möglich sind. Danach überprüften sie die errechneten Werte experimentell unter Verwendung eines Photoabsorbers und eines Elektrokatalysators auf Iridium-Rutheniumoxid-Platin-Basis. Der Elektrokatalysator erreichte eine Stromdichte von mehr als 0,88 A/cm², wobei der erechneten Wirkungsgrad für die Umwandlung von Sonnenenenergie in Wasserstof mehr als 15% betrug. Das System war unter verschiedenen Bedingungen für mehr als zwei Stunden stabil. Als nächtes wollen die Forscher ihr System skalieren.

Der produzierte Wasserstoff kann in Brennstoffzellen zur Stromerzeugung verwendet werden weshalb sich das entwickelte System zur Energierspeicherung eignet. Die mit Wasserstoff betriebene Stromerzeugung gibt nur reines Wasser ab, die saubere und schnelle Erzeugung von Wasserstoff ist jedoch eine Herausforderung. Bei der photoelektrischen Methode werden Materialien verwendet, die denen von Solarmodulen ähneln. Die Elektrolyte basierten in dem neuen System auf Wasser, wobei auch Ammoniak denkbar wäre. Sonnenlicht, das auf diese Materialien fällt, löst eine Reaktion aus, bei der Wasser in Sauerstoff und Wasserstoff gespalten wird. Bisher konnten alle photoelektrischen Methoden jedoch nicht im industriellen Maßstab eingesetzt werden.

2 H2O → 2 H2 + O2; ∆G°’ = +237 kJ/mol (H2)

Das neu entwickelte System nahm mehr als das 400-fachen der Sonnenenergie auf, die normalerweise auf eine bestimmte Erdoberfläche fällt. Dazu benutzten die Forscher Hochleistungslampen, um die notwendige „Sonnenenergie“ bereitzustellen. Bestehende Solaranlagen konzentrieren die Sonnenenergie mithilfe von Spiegeln oder Linsen in ähnlichem Maße. Die Abwärme wird verwendet, um die Reaktionsgeschwindigkeit zu erhöhen.

Das Team sagt voraus, daß das Testgerät mit einer Grundfläche von etwa 5 cm in sechs Sonnenstunden schätzungsweise 47 Liter Wasserstoffgas produzieren kann. Dies ist die höchste Rate pro Flächeneinheit für solche solarbetriebenen elektrochemischen Systeme. Bei Frontis Energy hoffen wir, dieses System schon bald testen und anbieten zu können.

(Foto: Wikipedia)

Veröffentlicht am

Ammoniak als Energiespeicher #3

Als treue Leserin oder treuer Leser unseres Blogs werden Sie sich bestimmt an unsere vorherigen Beiträge zum Thema Ammoniak als Energiespeicher erinnern. Darin beschreiben wir mögliche Wege zur Gewinnung von Ammoniak aus der Luft, sowie der Rückgewinnung der dabei aufgebrachten Energie in Form von Methan. Letzteres Verfahren haben wir zum Patent angemeldet (WO2019/079908A1). Da die weltweite Nahrungsmittelproduktion große Mengen Ammoniak als Dünger erfordert, ist die Technologie zur Gewinnung aus der Luft schon sehr ausgereift. Diese basiert im Wesentlichen noch immer auf dem Haber-Bosch-Verfahren, welches zu Beginne des letzten Jahrhunderts zur Industriereife gebracht wurde. Dabei wird atmosphärischer Stickstoff (N2) zu Ammoniak (NH3) reduziert. Trotz der Einfachheit der beteiligten Moleküle ist die Spaltung der starken Stickstoff-Stickstoff-Bindungen im N2 und die daruas folgende Stickstoff-Wasserstoff-Bindungen eine große Herausforderung für katalytische Chemiker. Die Reaktion findet in der Regel unter harschen Bedingungen statt und benötigt viel Energie, d.h. hohe Reaktionstemperaturen, hohe Drücke und komplizierte Kombinationen von Reagenzien, die zudem oft teuer und energieintensiv in der Herstellung sind.

Jetzt hat eine Forschergruppe um Yuya Ashida einen Artikel im renomierten Fachblatt Nature veröffentlicht, in dem sie zeigen, daß eine Samariumverbindung in wässriger Lösung mit einem Molybdänkatalysator kombiniert, Ammoniak aus Luftstickstoff bilden kann. Die Arbeit eröffnet neue Möglichkeiten auf der Suche nach Wegen zur Ammoniaksynthese, welche unter Umgebungsbedingungen ablaufen. Unter solchen Bedingungen wäre der Energieaufwand zur Herstellung von Ammoniak geringer und somit die Energieeffizienz bei Energiespeicherung höher. Im heutigen Haber-Bosch-Verfahren werden Luftstoff und Wasserstoffgas über einem eisenhaltigen Katalysator miteinander verbunden. Die weltweite Ammoniakproduktion liegt heute bei 250 bis 300 Tonnen pro Minute und liefert Düngemittel, mit denen fast 60% der Weltbevölkerung versorgt werden (The Alchemy of Air, erhältlich bei Amazon).

Vergleich von Ansätzen zur Herstellung von Ammoniak. Oben: Bei der industriellen Haber-Bosch-Synthese von Ammoniak (NH3) reagiert Stickstoffgas (N2) mit Wasserstoffmolekülen (H2), typischerweise in Gegenwart eines Eisenkatalysators. Das Verfahren erfordert hohe Temperaturen und Drücke, ist jedoch thermodynamisch ideal, weil nur wenig Energie für Nebenprozesse verschwendet wird. Mitte: Nitrogenase-Enzyme katalysieren die Reaktion von Stickstoff mit sechs Elektronen (e) und sechs Protonen (H+) unter Laborbedingungen zu Ammoniak. Zwei zusätzliche Elektronen und Protonen bilden jedoch ein Molekül H2, und die Umwandlung von ATP (der Zellbrennstoff) in ADP treibt die Reaktion an. Das Verfahren weist daher ein hohes chemisches Überpotential auf. Es verbraucht viel mehr Energie, als für die eigentliche Ammoniakbildungsreaktion benötigt wird. Unten: Bei der neue Reaktion, vorgeschlagen von Ashida und Kollegen, wird ein Gemisch aus Wasser und Samariumdiiodid (SmI2) mit Stickstoff unter Umgebungsbedingungen in Gegenwart eines Molybdänkatalysators in Ammoniak umwandelt. SmI2 schwächt die O−H-Bindungen des Wassers und erzeugt die Wasserstoffatome, die dann mit Distickstoff reagieren.

Im großtechnischen Maßstab wird  Ammoniak bei Temperaturen von über 400°C und Drücken von ungefähr 400 Atmosphären synthetisiert. Diese Bedingungen werden oft auch als „harsch“ bezeichnet. Anfägnlich waren dies harschen Bedingungen nur schwer zu kontrollieren, was oft zu tötlichen Unfällen in den frühen Jahren des Haber-Bosch-Verfahrens führte. Dies hat viele Chemiker dazu motiviert, „mildere“ Alternativen zu finden. Schlußendlich bedeutete dies immer die Suche nach neuen Katalysatoren, um die Betriebstemperaturen und -drücke zu senken. Die Suche nach neuen Katalysatoren sollte am Ende Investitionen beim Bau von neuen Ammoniakanlagen senken. Da die Ammoniaksynthese zu den größten Kohlendioxidproduzenten gehört, würden dadurch auch die damit verbudenen Emissionen gesenkt werden.

Wie viele andere Chemiker vor ihnen, haben sich die Autoren von der Natur inspirieren lassen.  Die Familie der Nitrogenaseenzyme ist für die biologische Umwandlung von Luftstickstoff in Ammoniak verantwortlich, ein Prozess, der als Stickstoffixierung bezeichnet wird. Dieser Prozess ist in der modernen Welt die Quelle von Stickstoffatomen in Aminosäuren und Nukleotiden, also den elementaren Bausteinen des Lebens. Im Gegensatz zum Haber-Bosch-Prozess verwenden Nitrogenasen jedoch kein Wasserstoffgas als Quelle für Wasserstoffatome. Stattdessen übertragen sie Protonen (Wasserstoffionen; H+) und Elektronen (e) auf jedes Stickstoffatom, um N−H Bindungen herzustellen. Obwohl Nitrogenasen Stickstoff bei Umgebungstemperatur fixieren, verwenden sie acht Protonen und Elektronen pro Stoffmolekül. Dies ist bemerkenswert, weil Stöchiometrie der Reaktion nur sechs erfordert. Die Nitrogenasen stellen dadurch notwendigen thermodynamischen für die Fixierung bereit. Die Bereitstellung von überschüssigen Wasserstoffäquivalenten bedeutet, daß Nitrogenasen ein hohes chemischen Überpotential angewisen sind. Sie also verbrauchen viel mehr Energie, als tatsächlich für eigentliche Stickstoffixierung notwendig wäre.

Der nun veröffentliche Weg ist nicht der erste Versuch, die Nitrogenasereaktion nachzuahmen. Auch früher wurden Metalkomplexe zusammen mit Protonen- und Elektronenquellen verwendet, um Luftstickstoff in Ammoniak umzuwandeln. So hatten z.B. die selben Forscher zuvor 8 Molybdänkomplexe entwickelt, die die Stickstoffixierung auf diese Weise katalysieren. Dabei wurden  230 Ammoniakmoleküle pro Molybdänkomplex produziert. Die damit verbundenen Überpotentiale waren mit fast 1.300 kJ pro Mol Stickstoff erheblich. In der Realität is das Haber-Bosch-Verfahren also gar nicht so energieintensiv, wenn der richtige Katalysator zum Einsatz kommt.

Die Herausforderung für Katalyseforscher besteht nun darin, die besten biologischen und industriellen Ansätze für die Stickstoffixierung so zu kombinieren, daß das Verfahren normalen Umgebungstemperaturen und -drücken abläuft. Gleichzeitig muß der Katalysator das chemische Überpotential so weit reduzieren, das der Neubau von Haber-Bosch-Anlagen nicht mehr so viel Kaptial erfordert, wie zur Zeit noch. Das ist eine große Herausforderung, da bisher noch keine Kombination von Säuren (die als Protonenquelle dienen) und Reduktionsmitteln (die Elektronenquellen) gefunden wurde, die eine thermodynamischen Bedinugnen für die Fixierung auf dem Niveau von Wasserstoffgas liefert. D.h. die Kombination muß reaktiv genug sein, um N−H-Bindungen bei Raumtemperatur bilden zu können. In dem nun vorgeschlagenen Weg mit  Molybdän und Samarium haben die Forsche eine Strategie übernommen, bei der die Protonen- und Elektronenquellen nicht mehr getrennt eingesetzt werden. Dieser grundlegend neue Ansatz für die katalytische Ammoniaksynthese basiert auf einem Phänomen, das als koordinationsinduzierte Bindungsschwächung bekannt ist. In dem vorgeschlagenen Weg basiert das Phänomen auf dem Zusammenspiel von Samariumdiiodid (SmI2) und Wasser.

Wasser ist stabiel aufgrund seiner starken Sauerstoff-Wasserstoff-Bindungen (O−H). Wenn das Sauerstoffatom im Wasser jedoch mit SmI2 koordiniert wird gubt es sein einziges Elektronenpaar auf und seine O−H-Bindungen werden geschwächt. Dadurch wird resultierende Mischung zu einer ergiebigen Quelle für Wasserstoffatome, also für Protonen und Elektronen. Die Forschor um Yuya Ashida verwenden sie diese Mischung mit einem Molybdänkatalysator, um Stickstoff zu fixieren. SmI2-Wasser-Gemische also  für diese Art der Katalyse besonders geeignet. In ihnen wurde zuvor eine beträchtliche koordinationsinduzierte Bindungsschwächung gemessen, die unter anderem zur Herstellung von Kohlenstoff-Wasserstoff-Bindungen eingesetzt wurde.

Die Ausweitung dieser Idee auf die katalytische Ammoniaksynthese ist aus zwei Gründen bemerkenswert. Erstens wird durch den Molybdänkatalysator die Ammoniaksynthese in wässriger Lösung erleichtert. Das ist erstaunlich, weil Molybdänkomplexe in Wasser häufig abgebaut werden. Zweitens bietet die Verwendung einer koordinationsinduzierten Bindungsschwächung eine neue Methode zur Stickstofixierung bei normalen Umgebungstemperaturen und -drücken. Dadurch wird zusätzlich die Verwendung potenziell gefährlicher Kombinationen von Protonen- und Elektronenquellen vermieden. Solche Kombinationen können sich z.B. spontan entzünden. Der Ansatz der Autoren funktioniert auch, wenn Ethylenglykol (HOCH2CH2OH) anstelle von Wasser verwendet wird. So werden die in Frage kommenden Protonen- und Elektronenquellen um einen möglichen Vorläufer erweitert.

Ashida und Kollegen schlagen einen Katalysezyklus für ihr Verfahren vor, bei dem der Molybdänkatalysator zunächst an Stickstoff koordiniert und die N−N-Bindung unter Bildung eines Molybdännitrido-Komplexes spaltet. Dieser Molybdännitrido-Komplex enthält eine Molybdän-Stickstoff-Dreifachbindung.  Das SmI2-Wasser-Gemisch liefert dann Wasserstoffatome zu diesem Komplex, wodurch schließlich Ammoniak produziert wird. Die Bildung von N−H-Bindungen mithilfe von Molybdännitridokomplexen stellt eine erhebliche thermodynamische Herausforderung dar, da die N−H-Bindungen ebenfalls durch das Molybdän geschwächt werden. Dennoch werden die Nachteile durch die Reduktion des chemisches Überpotential ausgeglichen. Das SmI2 erleichtert nicht nur den Transfer von Wasserstoffatomen, sondern hält auch das Metall in reduzierter Form vor. So wird die ungewollte Bildung von Molybdänoxid in wässriger Lösung verhindert.

Das neue Verfahren muß noch erhebliche betriebliche Hürden nehmen, bevor es großtechnisch eingesetzt werden kann. So wird z.B. SmI2 in großen Mengen verwendet, was viel Abfall erzeugt. Die Abtrennung von Ammoniak aus wässrigen Lösungen ist energetisch aufwendig. Würde das Verfahren jedoch zur Energiespeicherung in Kombination mit unserer Methode der Rückgewinnung eingesetzt, entfiele die Abtrennung aus der wässrigen Lösung. Letztlich verbleibt immernoch ein chemisches Überpotential von etwa 600 kJ/mol. Zukünftige Forschungen sollten sich darauf konzentrieren, Alternativen zu SmI2 zu finden. Diese könnten z.B. auf Metallen basieren, die häufiger als Samarium vorkommen und ebenfalls die koordinationsbedingte Bindungsschwächung zu fördern. Wie schon bei Fritz Haber und Carl Bosch wird es wohl auch bei der neu entwickelten Methode noch einige Zeit dauern, bis ein industriereifes Verfahren zur Verfügung steht.

(Foto: Wikipedia)

Veröffentlicht am

Grönlandeis trägt zu 25% des Meeresspiegelanstiegs bei

Kürzlich berichteten wir über den Verlust der Schneedecke in Europa. Nicht nur in Europa gibt es weniger Schnee und Eis, auch Grönlands Eisdecke schmilzt. Der Eispanzer Grönlands trägt 25% zum globalen Meeresspiegelanstieg bei. Damit ist es größte Beitrag der Kryosphäre. Der erhöhte Massenverlust des Grönlandeises während des 21. Jahrhunderts ist hauptsächlich auf den erhöhten Oberflächenwasserabfluß zurückzuführen, von dem ~93% aus der relativ kleinen Ablationszone des Eisschildrands stammen (~22% der Eisfläche). Da die Schneedecke im Sommer schmilzt, wird in der Ablationszone nacktes Gletschereis freigelegt. Blankes Eis dunkler und weniger porös ist als Schnee. Es absorbiert mehr als doppelt so viel Sonnenstrahlung und hält weniger Schmelzwasser zurück. Glattes Eis erzeugt also einen großen Anteil (~78%) des gesamten Abflusses Grönlands ins Meer, obwohl im Sommer nur ein kleiner Bereich der Eisdecke exponiert ist. Die genaue Erfassung der reduzierten Albedo und des vollen Ausmaßes von nacktem Eis in Klimamodellen ist für die Bestimmung des gegenwärtigen und zukünftigen Abflußbeitrags Grönlands zum Meeresspiegelanstieg von hoher Bedeutung.

Der Massenverlust des grönländischen Eisschildes hat in letzter Zeit aufgrund der erhöhten Oberflächenschmelze und des Abflusses zugenommen. Da Schmelze durch Oberflächenalbedo kritisch beeinflußt wird, ist das Verständnis um die Prozesse und potentielle Rückkopplungen im Zusammenhang mit der Albedo eine Voraussetzung für die genaue Vorhersage des Massenverlusts. Die so verursachte Strahlungsvariabilität in der Ablationszone ließ die Eisschicht fünfmal schneller schmelzen als bei hydrologischen und biologischen Prozessen, die ebenfalls Eis verdunkeln. In einem wärmeren Klima üben die Schwankungen der Schneegrenzen aufgrund der flacheren höhergelegenen Eisschicht eine noch größere Kontrolle auf die Schmelze aus. Diese Schwankungen hatten zur Folge, daß die im Sommer 2012, dem Rekordjahr der Schneeschmelze, die kartierte Eisfläche sich über die größte gemessene Fläche von 300.050 km2 erstreckte. Das heißt, daß nacktes Eis 16% der Eisfläche ausmachte. Die kleinste Ausdehnung des nackten Eises war 184.660 km2 und wurde im Jahr 2006 beobachtet. Dies entsprach 10% der Eisfläche ausgesetzt, also fast 40% weniger Fläche als 2012. Die beobachtete Schneedecke schwankte jedoch sehr stark und er Beobachtungszeitraum war für eine Trendeinschätzung zu kurz.

Derzeitige Klimamodelle sind in ihren Vorhersagen für Hochwasserjahre jedoch zu ungenau, was zu einer Unsicherheit bei der Schätzung des Abflußbeitrags Grönlands zum Anstieg des globalen Meeresspiegels führt. Um die Faktoren zu verstehen, die das Schmelzen beeinflussen, haben Jonathan Ryan von der Brown University in Providence, Rhode Island seine Kollegen die grönländische Schneegrenze betrachtet. In Höhen unterhalb der Schneegrenze ist das dunklere Eis nicht vom Schnee bedeckt. Diese Schneegrenze wird während der Jahreszeiten Grönlands nach oben oder nach unten verschoben. Die Forscher haben diese Landschaften zwischen 2001 bis 2017 mithilfe von Satellitenbildern kartiert. Die durchschnittliche Höhe der Schneegrenze lag am Ende des Sommers 2009 zwischen 1.330 m und im Jahr 2012 bei 1.650 m. Die Schwankungen in der Schneegrenze sind der wichtigste Faktor, wenn es darum geht wie viel Sonnenenergie die Eisplatte absorbiert. Modellierer müssen diesen Effekt berücksichtigen, um ihre Vorhersagen zu verbessern. Das Wissen darum, wie viel und wie schnell das grönländische Eis schmilzt wird uns helfen, bessere Schutzmaßnahmen einzuleiten. Bei Frontis Energy denken wir, daß der beste Schutz vor einem Anstieg des Meeresspiegels die Vermeidung und das Recyclen von CO2 sind.

(Foto: Wikipedia)

Veröffentlicht am

Wirtschaftliche Verluste in Europa durch klimawandelbedingte Hochwasser

In Europa stehen Überschwemmungen im Zusammenhang mit starken Schwankungen des Luftdrucks. Diese Schwankungen sind auch als Nordatlantische Oszillation bekannt. Stefan Zanardo und seine Kollegen von Risk Management Solutions in London in Großbritannien, analysierten historische Aufzeichnungen von schweren Überschwemmungen in Europa bis ins Jahr 1870.  Sie verglichen Muster des Atmosphärendrucks zum Zeitpunkt der Überschwemmungen. Wenn sich die Nordatlantische Oszillation im positiven Zustand befindet, treibt ein starkes Tiefdrucksystem in Island Wind und Sturm in ganz Nordeuropa an. Umgekehrt macht sie im negativen Zustand Südeuropa feuchter als sonst. Normalerweise treten Hochwasser in Nordeuropa auf. Sie verursachen den größten Schaden, wenn die Nordatlantische Oszillation im Winter positiv war. Zudem muss bereits ausreichend Regen gefallen sein, um den Boden mit Wasser zu sättigen. Die Luftdruckentwicklung in Europa kann sich mit dem künftigen Klimawandel ändern, und die öffentlichen Verwaltungen sollten dies bei der Bewertung des Hochwasserrisikos in einer Region berücksichtigen, so die Wissenschaftler.

Das ist wichtig, weil in Europa Hochwasser häufig für den Verlust von Menschenleben, für  erhebliche Sachschäden, Betriebsunterbrechungen verantwortlich sind. Durch die Klimaerwärmung wird sich diese Situation weiter verschlechtern. Die Risikoverteilung wird sich ebenfalls verändern. Das häufige Auftreten katastrophaler Hochwasserereignisse in den letzten Jahren hat ein starkes Interesse an diesem Problem sowohl im öffentlichen als auch im privaten Sektor ausgelöst. Im öffentlichen  Sektor wurde daran gearbeitet, Frühwarnsysteme zu verbessern. Diese Frühwarnsysteme haben in der Tat einen wirtschaftlichen Nutzen. Darüber hinaus wurden in den europäischen Ländern verschiedene Strategien zur Risikominimierung umgesetzt. Dazu zählen staatliche Eingriffe in den Hochwasserschutz, Massnamhen zur Erhöhung des Risikobewusstseins, sowie Risikotransfer durch eine bessere Verbreitung von Hochwasserversicherungen. Die Bekämpfung der Ursache, nämlich der globalen Erwärmung, hingt dagegen noch stark hinter den Erfordernissen hinterher.

Zusammenhänge zwischen großräumigen Klimamustern, insbesondere der Nordatlantischen Oszillation, und Extremereignissen im Wasserkreislauf auf dem europäischen Kontinent wurden seit langem bekannt. Wie sich dieser Zusammenhang auf wirtschaftliche Risiken durch Hochwasserverluste auswirkt, wurde jedoch noch untersucht. Die zunehmende Hochwasserbelastung und alarmierende Klimawandel-Szenarien sorgen für wachsende Besorgnis über zukünftige wirtschaftliche Verluste durch Hochwasser. Zwar is bekannt, dass klimatische Muster auch meteorologische Ereignisse steuern. Es ist aber nicht immer klar, ob sich diese Verbindung auf das Auftreten von Hochwasserereignissen und die damit verbundenen wirtschaftlichen Verluste auswirkt. In Ihrer Studie zeigen die Forscher, dass tatsächlich ein signifikanter Zusammenhang zwischen der Nordatlantischen Oszillation und den Überschwemmungsverlusten besteht. Dazu verwendeten die Forscher aktuelle Daten aus Hochwasserdatenbanken sowie Katastrophenmodelle. Solche Modelle ermöglichen die Quantifizierung der wirtschaftlichen Verluste, die letztendlich durch die Nordatlantischen Oszillation verursacht werden. Diese Verluste variieren stark zwischen den Staaten der Nordatlantischen Oszillation.

Die Studie zeigt, dass die Nordatlantische Oszillation die durchschnittlichen Verluste auf lange Sicht gut vorhersagen kann. Auf der Grundlage der jüngsten Entwicklung der Vorhersagbarkeit der Nordatlantischen Oszillation argumentieren die Forscher, dass insbesondere die zeitlichen Schwankungen des Hochwasserrisikos, verursacht durch Klimaoszillationen, vorhergesagt werden können.  Das kann helfen, frühzeitig Gegenmaßnahmen zu ergreifen. Dadurch können Schäden durch Hochwasser vermidnert werden. Während die Wissenschaftler ihre Vorhersagen für die Nordatlantischen Oszillation verbessern, wird die Gesellschaft sich besser auf zukünftige Überschwemmungen vorbereiten können.

(Foto: Wikipedia, Stefan Penninger, Schweden)

Veröffentlicht am

Flüssigbrennstoff aus bio-elektrischen Reaktoren

Bei Frontis Energy haben wir viel darüber nachgedacht, wie man CO2 wiederverwerten kann. Während hochwertige Produkte wie Polymere für medizinische Anwendungen rentabler sind, ist die Nachfrage nach solchen Produkten zu gering, um CO2 in großen Mengen wiederzuverwertten. Das ist aber nötig, um die CO2-Konsentration unserer Atmosphäre auf ein vorindustrielles Niveau zu bringen. Biokraftstoffe, zum Beispiel aus Biomasse, wurden seit langem als Lösung vorgeschlagen. Leider benötigt Biomasse sie zu viel Ackerland. Zudem ist die zugrundeliegende Biochemie zu komplex, um sie in Ihrer Gesamtheit zu verstehen und so effektive Lösungen zu implementieren. Daher schlagen wir einen anderen Weg vor, um das Ziel der Dekarbonisierung unseres Planeten schnell zu erreichen. Das vorgeschlagene Verfahren beginnt mit einem gewünschten Zielkraftstoff und schlägt eine mikrobielle Vergesellschaftung vor, um diesen Kraftstoff herzustellen. In einem zweiten Schritt wird das mikrobielle Konsortium in einem bioelektrischen Reaktor (BER) untersucht.

Mögliche Biosynthesewege zur elektrosynthetischen Kraftstoffgewinnung. CO2 kann für die Herstellung von Flüssigbrennstoff auf mehreren Wegen verwendet werden. Das Endprodukt, langkettige Alkohole, kann entweder direkt als Brennstoff verwendet oder zu Kohlenwasserstoffen reduziert werden. Es werden Beispiele für Bioelektrokraftstoff-Pfade gezeigt, bei denen CO2 und Strom als Ausgangsmaterial verwendet werde. Methan, Acetat oder Butanol sind die Endprodukte. Nachfolgende Verfahren sind 1, aerobe Methanoxidation, 2, direkte Verwendung von Methan, 3 heterotrophe Phototrophen, 4, Aceton-Butanol-Gärung, 5, Biomassegewinnung, 6, Butanol als direktes Endprodukt, 7, weitere Vergärung durch Hefen zu Fuselalkoholen

Unser heutiges atmosphärische CO2-Ungleichgewicht ist die direkte Folge der Verbrennung fossiler Kohlenstoffe. Diese Realität erfordert schnelle und pragmatische Lösungen, um einen weitere CO2-Anstieg zu verhindern. Die direkte Abscheidung von CO2 aus der Luft ist schon bald rentabel. Dadurch wird die Nutzung von Ackerland für den Anbau von Treibstoff verhindert. Die Herstellung von Kraftstoff für Verbrennungsmotoren mit CO2 also Ausgangsmaterial ist kurzfristig die beste Zwischenlösung, da sich dieser Kraftstoff nahtlos in die vorhandene städtische Infrastruktur integriert. Biokraftstoffe wurden in den letzten Jahren intensiv erforscht, insbesondere auf dem neuen Gebiet der synthetischen Biologie. So verführerisch die Anwendung gentechnisch veränderter Organismen (GVO) zu sein scheint, so sind doch traditionell gezüchtete mikrobielle Stämme bereits vorhanden und somit sofort verfügbar. Unter Vermeidung von GVO, wird CO2 bereits heute in BER zur Herstellung von C1-Kraftstoffen wie Methan verwendet. BER können auch zur Herstellung von Kraftstoffvorläufern wie Ameisensäure oder Synthesegas, sowie C1+ -Verbindungen wie Acetat, 2-Oxybutyrat, Butyrat, Ethanol und Butanol eingesetzt werden. Gleichzeitig lassen sich BER gut in die städtische Infrastruktur integrieren, ohne daß kostbares Ackerland benötigt wird. Mit Ausnahme von Methan ist jedoch keiner der vorgenannten bioelektrischen Kraftstoffen (BEKS) in reiner Form leicht brennbar. Während Elektromethan eine im Handel erhältliche Alternative zu fossilem Erdgas ist, ist seine volumetrische Energiedichte von 40-80 MJ/m3 niedriger als die von Benzin mit 35-45 GJ/m3. Abgesehen davon, wird Methan als Kraftstoff von den meisten Automobilnutzern nicht gekauft. Um flüssigen Brennstoff herzustellen, müssen Kohlenstoffketten mit Alkoholen oder besser Kohlenwasserstoffen als Endprodukten verlängert werden. Zu diesem Zweck ist Synthesegas (CO + H2) eine theoretische Option und kann durch die Fischer-Tropsch-Synthese gewonnen werden. Tatsächlich sind Synthesegasvorläufer aber entweder fossile Brennstoffe (z. B. Kohle, Erdgas, Methanol) oder Biomasse. Während fossile Kraftstoffe offensichtlich nicht CO2-neutral sind, benötigt man zur Herstellung von Biomasse Ackerland. Die direkte Umwandlung von CO2 und elektrolytischen Wasserstoff in C1+ -Kraftstoffe wird wiederum durch elektroaktive Mikroben im Dunkeln katalysiert (siehe Titelbild). Dadurch wird die Konkurrenz zwischen Nahrungsmittelanbau und Kraftstoffpflanzen vermieden. Leider wurde nur bislang wenig anwendbares zu elektroaktiver Mikroben erforscht. Im Gegensatz dazu gibt es eine Vielzahl von Stoffwechselstudien über traditionelle mikrobielle Kraftstoffproduzenten. Diese Studien schlagen häufig die Verwendung von GVO oder komplexen organischen Substraten als Vorläufer vor. Bei Frontis Energy gehen wir einen anderen weg. Wir ermitteln systematisch Stoffwechselwege für die Produktion von flüssigem BEKS. Der schnellste Ansatz sollte mit einem Screening von metabolischen Datenbanken mit etablierten Methoden der metabolischen Modellierung beginnen, gefolgt von Hochdurchatztestsin BER. Da Wasserstoff das Zwischenprodukt in der Bioelektrosynthese ist, besteht die effizienteste Strategie darin, CO2 und H2 als direkte Vorläufer mit möglichst wenigen Zwischenschritten zu benutzen. Skalierbarkeit und Energieeffizienz, also wirtschaftliche Machbarkeit, sind dabei entscheident.

Zunächst produziert ein elektrotropher Acetogen Acetat, das von heterotrophen Algen im darauffolgenden Schritt verwendet wird.

Das größte Problem bei der die BEKS-Produktion ist das mangelnde Wissen über Wege, die CO2 und elektrolytisches H2 verwenden. Diese Lücke besteht trotz umfangreicher Stoffwechseldatenbanken wie KEGG und KBase, wodurch die Auswahl geeigneter BEKS-Stämme einem Stochern im Nebel gleichkommt. Trotz der hohen Komplexität wurden Stoffwechselmodelle verwendet, um Wege zur Kraftstoffproduktion in Hefen und verschiedenen Prokaryoten aufzuzeigen. Trotz ihrer Unzulänglichkeiten wurden Stoffwechelatenbanken breits eingesetzt, um Artwechselwirkungen zu modellieren, z.B. mit ModelSEED / KBase (http://modelseed.org/) in einer heterotrophen Algenvergesellschaftung, mit RAVEN / KEGG oder mit COBRA. Ein erster systematischer Versuch für acetogene BEKS-Kulturen, bewies die die Verwendbarkeit von KBase für BER. Diese Forschung war eine Genomstudie der vorhandenen BEKS-Konsortien. Dieselbe Software kann auch in umgekehrt eingesetzt werden, beginnend mit dem gewünschten Brennstoff. Im Ergebnis werden dann die erforderlichen Organismen benannt. Wir beschrieben nun einige BEKS-Kulturen.

Mögliche Kombinationen für die BEKS-Produktion mit Clostridien, 3, oder heterotrophe Algen, 7. Die Weiterverarbeitung erfolt durch Hefen.

Hefen gehören zu den Mikroorganismen mit dem größten Potenzial für die Produktion von flüssigem Biokraftstoff. Bäckerhefe (Saccharomyces cerevisiae) ist das prominenteste Beispiel. Hefen sind zwar für die Ethanolfermentation bekannt, produzieren aber auch Fuselöle wie Butan, Phenyl- und Amylderivate, Aldehyde und Alkohole. Im Gegensatz zu Ethanol, das durch Zuckerfermentation gebildet wird, wird Fuselöl im Aminosäurestoffwechsel synthetisiert, gefolgt von Aldehydreduktion. Es wurden viele Enzyme identifiziert, die an der Reduktion von Aldehyden beteiligt sind, wobei Alkoholdehydrogenasen am häufigsten beobachtet werden. Die entsprechenden Reduktionsreaktionen erfordern reduziertes NADH⁠, es ist jedoch nicht bekannt, ob an Kathoden gebildetes H2 daran beteiligt sein kann.
Clostridien, beispielsweise Clostridium acetobutylicum und C. carboxidivorans, können Alkohole wie Butanol, Isopropanol, Hexanol und Ketone wie Aceton aus komplexen Substraten (Stärke, Molke, Cellulose usw.) oder aus Synthesegas herstellen. Der Clostridienstoffwechsel wurde vor einiger Zeit aufgeklärt und unterscheidet sich von Hefe. Er erfordert nicht zwangsläufig komplexe Substrate für die NAD+-Reduktion, denn es wurde gezeigt, daß Wasserstoff, Kohlenmonoxid und Kathoden Elektronen für die Alkoholproduktion abgeben können. CO2 und Wasserstoff wurden in einem GMO-Clostridium verwendet, um hohe Titer von Isobutanol herzustellen. Typische Vertreter für die Acetatproduktion aus CO2 und H2 sind C. ljungdahlii, C. aceticum und Butyribacterium methylotrophicum. Sporomusa sphaeroides produziert Acetat in BES. Clostridien dominierten auch in Mischkulturen in BER, die CO2 in Butyrat umwandelten. Sie sind daher vorrangige Ziele für eine kostengünstige Produktion von Biokraftstoffen. In Clostridien werden Alkohole über Acetyl-CoA synthetisiert. Diese Reaktion ist reversibel, wodurch Acetat als Substrat für die Biokraftstoffproduktion mit extrazellulärer Energieversorgung dienen kann. In diesem Fall wird die ATP-Synthese durch Elektronenbifurkation aus der Ethanoloxidation oder durch Atmung und Wasserstoffoxidation betrieben. Ob die Elektronenbifurkation oder Atmung mit Alkoholen oder der Ketonsynthese verknüpft sind ist nicht bekannt.
Phototrophe wie Botryococcus produzieren auch C1+ Biokraftstoffe. Sie synthetisieren eine Reihe verschiedener Kohlenwasserstoffe, darunter hochwertige Alkane und Alkene sowie Terpene. Hohe Titer wurden jedoch nur mithilfe von GVOs produziert, was in vielen Ländern aus rechtlichen Gründen ökonomisch schwer möglich ist. Darüber hinaus erfordert die Dehydratisierung / Deformylierung vom Aldehyd zum Alkan oder Alken molekularen Sauerstoff, was deren Produktion in BER unmoeglich macht, da Saurstoff bevorzugt die Kathode oxidiert. Der Olefinweg von Synechococcus hängt auch von molekularem Sauerstoff ab, wobei das Cytochrom P450 an der Fettsäuredecarboxylierung beteiligt ist. Die Anwesenheit von molekularem Sauerstoff beeinflußt die BES-Leistung auch durch den sofortigen Produktabbau. Im Gegensatz dazu zeigen unsere eigenen Vorversuche (siehe Titelfoto) und ein Korrosionsexperiment, daß Algen mit einer Kathode als Elektronendonor im Dunkeln leben können, selbst wenn geringe Mengen Sauerstoff vorhanden waren. Die an der Herstellung einiger Algenkraftstoffe beteiligten Enzyme sind zwar bekannt (wie die Deformylierung von Olefinen und Aldehyden), es ist jedoch nicht bekannt, ob diese Wege durch Wasserstoffnutzung beschritten werden können (möglicherweise über Ferredoxine). Ein solcher Zusammenhang wäre ein vielversprechender Hinweis für Kohlenwasserstoff-erzeugenden Cyanobakterien, die an Kathoden wachsen können. Unsere zukünftige Forschungen wird zeigen, ob wir hier richtig liegen.
Bei Frontis Energy glauben wir, daß eine Reihe anderer Mikroorganismen Potenzial zur BEKS-Produktion haben. Um nicht GVO zurückgreifen zu müssen, müssen BER-kompatible Mischkulturen über rechnergestützte Stoffwechselmodelle aus vorhandenen Datenbanken identifiziert werden. Mögliche Intermediate sind z.Z. unbekannt. Der Kenntnis ist aber Voraussetzung für profitable BEKS-Reaktoren.