Veröffentlicht am

Polyelektrolytschichten bestimmen die Effizienz von Entsalzungsmembranen

Zunehmende Wasserknappheit und Verschmutzung mit schädlichen Chemikalien in geringer Konzentration (micropollutants) sind verantwortlich für die zunehmende Verteuerung von Trinkwasser. Entsalzung von Meerwasser und eine bessere Aufbereitung von Abwasser sind nötig, um diesem Trend entgegenzuwirken. Membranen sind in der Lage den größten Teil von Wasserverunreinigungen zu entfernen. Der Energieaufwand dafür ist jedoch enorm. Daher müssen moderne Membranen möglichst effizient sein, um mit wenigen Durchläufen und unter geringem osmotischen Druck ein befriedigendes Ergebnis zu erzielen.

Nanofiltrationsmembranen bestehend aus Polyelektrolytschichten sind ein vielversprechender Ansatz, um Wasser effizienter aufzureinigen. Entsprechend hat die Zusammenstellung von Polyelektrolytschichten ein starkes Interesse bei der Herstellung von Nanofiltrationsmembranen hervorgerufen. Diese Membranen werden schichtweise hergestellt, was eine gute Anpassung der Membraneigenschaften auf unterschiedliche Anwendungen ermöglicht.

Im Handel erhältliche Nanofiltrationsmembranen sind im Allgemeinen ein Kompromiß zwischen hoher Wasserpermeabilität und guter Entsalzung. Durch diesen Kompromiß werden entweder die Qualität oder Menge des gereinigten Wasser negativ beeinträchtigt. Nanofiltrationsmembranen, die schichtweise produziert werden, können diesen Kompromiß aufgrund der Produktion von Nanoschichten vorteilhaft beeinflussen. Dazu ist es wichtig zu wissen, welche Komponente die entscheidende Rolle im Beschichtungsprozeß spielt.

Eine Forschergruppe der Technischen Universität Eindhoven in den Niederlanden hatte es sich daher zur Aufgabe gemacht, diese Schichtkomponenten genauer zu untersuchen. Dabei haben sie die Polyelektrolytkonzentration genauer betrachtet. Es ist bekannt, daß eine höhere Polyelektrolytkonzentration dickere Schichten produziert. Ihre Auswirkung auf die Membranleistung war aber bisher unbekannt. Die Forscher haben in ihrer nun publizierten Arbeit zwei bekannte starke Polyelektrolyte verwendet:  PDADMAC und PSS (Polydiallyldimethylammoniumchlorid und Poly(styrol-co-divinylbenzol)sulfonsäure). Die Membranleistung wurde hinsichtlich der Wasserpermeabilität, dem nötigen Molekulargewicht und der Entsalzung untersucht.

In der ersten Doppelschicht zeigten die mit einer 50 mM Salzlösung beschichteten Membranen eine niedrigere Wasserpermeabilität und Molekulargewichtschwelle, sowie bessere Entsalzung (Magnesiumsulfat) aufgrund der höheren Polyelektrolytkonzentration. Nach einer bestimmten Anzahl von Doppelschichten erreichen das nötigen Molekulargewicht und die Entsalzungseffizienz für alle Polyelektrolytkonzentration ein Plateau. Je höher die Polyelektrolytkonzentration, desto eher wurde auch der Plateauwert erreicht.

Die mit der 1 M Salzkonzentration beschichteten Membranen hatten mit einer Ausnahme eine niedrigere oder vergleichbare Entsalzungseffizienz. Die Wissenschaftler schlußfolgerten, daß die Polyelektrolytkonzentration die Membranleistung signifikant verändert. Jedoch wurde bei sieben oder mehr Doppelschichten ein Plateau erreicht. Die dickeren Schichten wiesen eine geringere Wasserdurchlässigkeit auf als diejenigen, die mit Polyelektrolytlösungen unter Verwendung einer 50 mM Salzlösung beschichtet wurden. Aufgrund der geringen Schwellung der so beschichteten Membranen wiesen all eine bessere Entsalzungseffizienz auf, mit Ausnahme von Magnesiumchlorid.

Die Ergebnisse zeigen, daß die Erhöhung der Polyelektrolytkonzentration die Menge der Polyelektrolytadsorption ebenfalls erhöht. Dies führte aufgrund einer höheren Beschichtungsdicke zu niedrigeren Permeabilitäten mit reinem Wasser. Innerhalb des untersuchten Konzentrationsbereichs führte das jedoch nicht zu niedrigeren Molekulargewichtschwellen oder besserer Entsalzung. Darüber hinaus verursachte die zusätzliche Polyelektrolytadsorption weniger Verknüpfungen zwischen den einzelnen Schichten. Die höhere Diffusivität von PDADMAC im Vergleich zu PSS führte zu hoch positiv geladenen Membranen, was wiederum zu einer besseren Entsalzung von Magnesiumchlorid und Natriumchlorid führte.

Durch eine Zunahme der Membranoberflächenladung beeinflußte die Erhöhung der Polyelektrolytkonzentration und die Salzkonzentration den Ladungsausschluß  signifikant, was zu besserer Entsalzung führte. Der Größenausschluß wurde jedoch nicht geändert, was zu denselben Plateauwerten führte. Die nun vorgestelten Untersuchungen erlauben es Chemikern in Zukunft, besser abgestimmte Entsalzungsmembranen herzustellen, was den Energiebedarf und den Bedarf and Rohmaterial bei der Herstellung verringern wird.

Bild: Shutterstock