Veröffentlicht am

Doppelschichtübergänge in porösen Kohlenstoff-Nanoschichten

In elektrochemischen Zellen wie Brennstoffzellen oder Elektrolyseuren bilden sich Doppelschichten of den Elektrodenoberflächen. Diese Doppelschichten wirken sowohl als Kondensatoren als auch als Widerstände und haben daher Einfluß auf die Leistung elektrochemischer Zellen. Das Verständnis der Struktur und Dynamik der Doppelschichtenbildung wiederum könnte die Leistung von elektrochemischen Systemen erheblich verbessern. Das wuerde beispielsweise elektrochemische System zur Energiespeicherung und -umwandlung, zur Wasserentsalzung, in Sensoren usw effizienter machen.

Auf einer planaren Elektrode werden Elektrolytionen ebenso wie das Lösungsmittel an der Elektrodenoberfläche adsorbiert. Die resultierende Kapazität hängt von der Ladung, dem Lösungszustand und der Ionenkonzentration ab. Traditionell kann die Kapazität elektrochemischer Schnittstellen in zwei Arten unterteilt werden:

  1. Klassischer Doppelschichtkondensator: Die Ionen werden aufgrund ihrer Ladung adsorbiert. Die Ionenadsorption ist nicht spezifisch.
  2. Faraday-Pseudokondensator: Spezifische Ionen werden adsorbiert, beispielsweise durch chemische Wechselwirkungen auf der Elektrodenoberfläche. Dieser Vorgang kann mit einen Ladungstransfer einhergehen.

Die meisten anwendungsorientierten Elektroden sind jedoch nicht planar, sondern porös. Schichtmaterialien in solchen Situationen haben verschiedene Stufen der Elektrolytdurchdringung und damit unterschiedliche kapazitive Adsorptionsmechanismen. Das Verständnis der Elektrosorption in solchen Materialien erfordert eine holistische Betrachtung der elektrochemischen Kapazität und der Ladungspeicherung.

Ein Team von Forschern der North Carolina State University, der Paul-Sabatier-Universität in Toulouse und dem Karlsruhe-Institut für Technologie veröffentlichten neue Einblicke in die Elektrolytdurchdringung in nicht-planaren Elektrodenoberflächen in der Fachzeitschrift Nature Energy.

Elektrische Doppelschicht bei planaren Elektroden

Der Grad der Ionensolvatisierung (der Prozeß der sich neu organisierenden Lösungsmittelmoleküle und gelösten Ionen) an idealen (planaren) elektrochemischen Grenzflächen bestimmt die Ionenwechselwirkung mit der Elektrode. Es gibt zwei verschiedene Fälle:

  1. Ionen werden unspezifisch adsorbiert: Dies ist bei starker Ionensolvatisierung der Fall. Die Wechselwirkungen mit der Elektrode sind in erster Linie elektrostatisch. Diese Art von Wechselwirkung kann als Induktion betrachtet werden, das heißt die Ladung wird induziert, aber nicht übertragen.
  2. Ionen werden spezifisch adsorbiert: In diesem Fall werden Ionen nicht solvatiert und können spezifisch adsorbiert werden und auch chemische Bindung an die Elektrode eingehen. Dieser Vorgang kann als Ladungsübertragungsreaktion zwischen der Elektrode und dem adsorbierten Ion beschrieben werden. Die Ladungsübertragungsreaktion hängt jedoch von der Bindung zwischen Ion und Elektrode ab. Dies korreliert mit dem Zustand der Ionensolvatisierung. Man kann daher zu erwarten, daß die Ionensolvatisierung für das Verständnis der Ionen-Elektroden-Wechselwirkungen in einer nanoporösen Umgebung von entscheidender Bedeutung ist.

Doppelschichtkondensator auf Kohlenstoffbasis − der Durchdringungseffekt

Die Beziehung zwischen der Porosität von Kohlenstoffnano-Materialien hat Einfluß auf die spezifischen Kapazität von elektrochmischen Vorrichtungen.

Wenn sich in einer nanoporösen Umgebung elektrische Doppelschichten bilden, weicht das Kondensatormodell vom klassischen Doppelschichtmodell an planaren Oberflächen ab. Der Grad der Ionensolvatisierung in räumlichen Begrenzung wird durch die Porengröße in nanoporösen Materialien und durch den Schichtabstand in den Poren bestimmt, also den zweidimensionalen Schichtmaterialien.

Die in Subnanometerporen eingezwängten Ionen lösen sich langsam im Elektrolyt, was zur Kapazitätserhöhung führt und eine Abweichung vom typischen linearen Oberflächeverhalten zur Folge hat. Während der negativen Polarisation poröser Kohlenstoffmaterialien mit den Porengrößen <1 nm wird eine Abnahme der Kapazität beobachtet. Der Einfluß auf die Kapazität wird durch die Ionen hervorgerufen, die am Ionentransport teilnehmen.

Diese Erkenntnisse sind wichtig, um die Kohlenstoffporenstruktur poröser Elektroden effektiv zu gestalten und ihre spezifische Kapazität zu erhöhen. Da Kohlenstoffmaterial kein idealer Leiter ist, ist es wichtig, seine spezifische elektrische Struktur zu berücksichtigen. Bei Graphit zum Beispiel nimmt die Verfügbarkeit der Ladungsträger während der Polarisation zu, was zu einer erhöhten Leitfähigkeit führt.

Einheitliches Modell der elektrochemischen Ladungspeicherung in Nanoporen

Da die elektrochemischen Grenzflächen in technologischen Anwendungen nicht planar sind, schlugen die Forscher eine detaillierte Bewertung und ein anderes Konzept der elektrochemischen Kapazität an solchen nicht idealen Schnittstellen vor. Die Gruppe untersuchte die Elektrosorption auf zweidimensionalen und dreidimensionalen Kohlenstoffoberflächen mit einer kontinuierlichen Verringerung der Porengröße bei zunehmenden Oberflächenkomplexität.

Das untersuchte Beispiel bezog sich auf die Ladungsspeichereigenschaften von Lithiumionen (Li+) in den Graphenblättchen organischer lithiumhaltiger Elektrolyte. Die Abhängigkeit von der Anzahl der Graphenschichten war dabei im Fokus. In einer einzelnen Graphenschicht ist die kapazitive Reaktion aufgrund der spezifischen Adsorption unabhängig vom elektrischen Potential. Mit einer Zunahme der Graphenblätter entstanden jedoch Redox-Spitzen, die durch die Einlagerung von Lithiumionen aufgrund umgekehrter Solvatisierung entstanden. Diese Lithiumeinlaferung ist normalerweise für Batterieverschleiß verantwortlich. Die Forscher vermuteten, daß bei der Adsorption der solvatierten Lithiumionen auf einem einzelnen Graphenblatt eine Einlagerung nach einer Übergangsphase erfolgte. Diese Einlagerung war nach Ansicht der Forscher mit einer kontinuierlichen Ladungsablagerung verbunden. Das kann zu einen nahtlosen Übergang wegen des erhöhten Ladungstransfers zwischen einem Elektrolytion und der Oberfläche führen. Diese Übergangsphase würde dann maßgeblich von der Porengröße und der Ionensolvatsierung beeinflußt.

In den vorgestellten Ergebnissen wurde ein einheitlicher Ansatz vorgeschlagen, der den kontinuierlichen Übergang zwischen einem Doppelschichtkondensator und poröser Ioneneinlagerung erklärt. Dieser Ansatz weicht von der traditionellen Sichtweise auf einzelne Ladungen und deren Speicherung in nanoporösen Materialien ab. Bisher wurde diese Art der Ladungsspeicherung als rein elektrostatisches oder rein faradaysches Phänomen angesehen.

Zusammenfasend kann man feststellen, daß sich mit zunehmender Ioneneinlagerung die Ionensolvatisierung verringert. Dies führt zu einer kontinuierlichen Doppelschichtbildung.

Bild: Pixabay

Veröffentlicht am

Fluordotierung verbessert Ethanolbrennstoffzellen

Direktethanolbrennstoffzellen (DEBZ) sind Brennstoffzellen, die mit Ethanol als Brennstoff betrieben werden und direkt elektrische Energie erzeugen. Obwohl sie eigentlich sehr viel zu bieten haben, werden sie noch nicht industriell gefertigt. Ethanol wird aus Biomasse durch Hefen hergestellt. Seine Oxidationsprodukte – CO2 und H2O – sind daher umweltfreundlich. Die Anwendung von DEBZ könnte aufgrund der Energieeffizienz eine lukrative Lösung für Fahrzeuge sein, so sie denn in großen Stückzehen produziert werden. Unsere derzeitige Brennstoff-Infrastruktur ist für Ethanol durch die derzeitige Beimischung schon einsatzbereit. Die DEBZ-Nutzung wäre daher eine nachhaltige, umweltfreundliche und schnell einsetzbare Alternative zu aktuellen Verbrennungsmotoren. Darüber hinaus ist Ethanol flüssig, was die Verteilung, Lagerung und Verwendung erleichtert.

Laut einer von der Internationalen Energieagentur (IEA) gesponserten Studie stellen DEBZ hohe Leistungsdichten bereit, die zwischen 50 und 185 mW / cm² liegen. Derzeit sehen sich DEBZ mit mehrfache Herausforderungen konfrontiert. Dazu zählen wie langsame Redox-Kinetik, begrenzte Leistung und hohen Kosten für die benötigten Elektrokatalysatoren.

Die beiden Hauptreaktionen in DEBZ sind:

  1. Ethanoloxidationsreaktion (EOR)
  2. Sauerstoffreduktionsreaktion (SRR)

Die träge Reaktionsgeschwindigkeit hat die Verbreitung dieser Technologie bisher verhindert. Moderne DEBZ benötigen teure platinbasierte Materialien, um diese Reaktionen zu katalysieren. Sie oxidieren jedoch Ethanol nicht vollständig zu CO2. Das begrenzt die Energieeffizienz. Eine Dieses Problem kan behoben werden, indem nicht umgesetzter Brennstoff erneut injizieren eingespeist wird. Da dies die Komplexität der Brennstoffzelle erhöht, wäre eine bessere Lösung, effizientere Katalysatoren zu finden. Um das wahre Potenzial von DEBZ auszuschöpfen sollten am besten günstigere Katalysatoren für die beiden Reaktionen gefunden werden.

Die Forscher an der University of Central Florida und ihre Kollegen experimentierten mit Palladium-Stickstoff-Kohlenstoff-Katalysatoren (Pd-N-C) und versuchten, die Leistung durch Einführung von Fluoratomen zu verbessern. Das Team benutzte alkalische Membranen und platinfreie Katalysatoren. Diese waren sowohl kostengünstiger erzeugten auch eine hohe Ausgangsleistungsleistung.

Bisherige Forschung an elektrokatalytischen Systemen ergab, daß die lokale Elektrodenkoordinierung von zentraler Bedeutung für die Aktivität von Redox-Katalysatoren aus kohlenstoffbasierten Metallnanopartikeln ist. Die neue Studie zeigte, daß die Einführung von Fluoratomen in Pd-N-C-Katalysatoren die Elektrodenkoordinierung günstig beeinflußt. Dadurch wurde sowohl Aktivität erhöht als auch Haltbarkeit der Katalysatoren verbessert. Zusammengenommen wirkte sich das positiv auf die Gesamtleistung des Brennstoffzelle aus. Die experimentellen Ergebnisse der langfristigen Stabilität sind ein vielversprechender Fortschritt gegenüber praktischen Anwendungen solcher Katalysatoren in DEBZ.

Ergebnisse

Bei Experiment mit dem neuen Katalysator wurde festgestellt, daß die Fluoratome die Kohlenstoff-Stickstoff-Bindung schwächen und die Stickstoffatome in Richtung Palladium entlassen. Diese Elektronenübertragung regulierte effizient die Elektrodenkoordinierung des Palladiums, indem aktive Palladium-Stickstoff-Zenten für katalytische Reaktionen gebildet wurden.

Die N-reiche Palladiumoberfläche förderte die Spaltung der Kohlenstoffbindungen und ermöglichte die vollständige Ethanoloxidation. Während der SRR hat die N-reiche Palladiumoberfläche nicht nur die CO2-Adsorption reduziert, sondern erzeugte auch besser zugängliche katalytische Stellen für eine schnellere Sauerstoffadsorption.

Nach Angaben der Autoren wurde ein häufig auftretendes Problem in den DEBZ – die nicht abgeschlossenen Schlüsselreaktionen – behoben. Der neue Katalysator verbesserte die Gesamtleistung der Brennstoffzelle. Die Fluordotierung erhöhte auch die Haltbarkeit des Katalysators, indem die die Korrosion die Kohlenstoffkorrosion reduziert. Auch wurde die Palladiummigration und -aggregation gehemmt.

In einer DEBZ getestet, wurde mit dem neuen Katalysator eine maximale Leistungsdichte von 0,57 W / cm² erreicht. Die Brennstoffzelle lief für mehr als 5.900 Stunden stabil. Die vorgeschlagene Strategie der Fluordotierung führte unter Verwendung anderer kohlenstoffgestützter Metallkatalysatoren generell zu verbesserter Aktivität und Stabilität.

Ausblick

Der Hauptmangel alkalischer DEBZ ist ihre Haltbarkeit. Derzeit reicht sie für praktische Anwendungen nicht aus. Darüber hinaus haben die verwendeten Anionenaustauschermembranen zwei Probleme:

  • Die strukturelle Stabilität der Membran reicht nicht aus, um sie langfristig zu verwenden
  • Katalysatorcarbonisierung erfolgt in Anwesenheit von CO2 aufgrund seiner Reaktion mit Hydroxidionen, wodurch sich der Katalysator letztendlich abnutzt.

Obwohl die DEBZ in der vorgestellten Studie für bemerkenswerten 5.900 Stunden lief, mußte die Membran nach 1.200 Stunden ausgetauscht werden. Da das Austauschen der Membranen eine vollständige Demontage der Zelle erforder, ist dies langfristig keine praktable Lösung.

Daher sollte sich die zukuenftige Forschung auf die ionische Leitfähigkeit und der Stabilität anionischer Membranen unter alkalischen Bedingungen konzentrieren. Idealerweise wird die zur Erhöhung der ionischen Leitfähigkeit verwendete Hydroxidlösung vermieden, um die Energiedichte zu erhalten und die Komplexität der Vorrichtung zu reduzieren. Festoxidbrennstoffzellen bieten eine Lösung für diese Probleme, da der Kraftstoff in gasförmiger Form oxidiert wird. Ihre keramische Membran ist jedoch zu fragil für mobile Anwendungen.

Das publizierte Experiment ist ein signifikanter Fortschritt bei der Verbesserung der Leistungsdichte von DEBZ und bringt sie damit auf einen neuen Stand der Technik. Die weitere Forschung muß jedoch die zahlreichen kleineren Hindernisse bei der langfristigen Verwendung von anionischen Membranen angehen.

Experimentelle Analyse

Verwendete Materialien

Handelsübliche Pd/C-Partikel (10%, 8 nm PD-Partikel auf Aktivkohle) sowie Pt/C (20%, 3 Nm-Pt-Partikel auf Kohle) wurden als Basiskatalysatoren verwendet. Nafion™ -Lösung (5%), Kohlepapier (TGP-H-060) und Anionenaustauschermembranen (Fumasep FAS-PET-75) kamen ebenfalls zum Einsatz.

Synthese von Heteroatom X-dotiertem Kohlenstoff (X-C, X = N, P, S, B, F)

Kohlepartikel mit reich vorhandenen Sauerstoff-Gruppen und Melamin (C3H6N6) wurden gemischt und gemahlen und schließlich pyrolysiert. Nach dem Abkühlen auf Raumtemperatur wurde N-C durch Waschen mit Ethanol und Wasser erhalten. Die gleiche Methode wurde verwendet, um P-C, S-C, B-C und F-C aus Natriumhypophosphitsäure-, Schwefelpulver, Borsäure und Polyvinylidendifluorid zu synthetisieren.

Synthese von Heteroatomfluor-dotierten Kohlenstoffkatalysatoren

N-C und Polyvinyliden-Difluorid wurden gemischt und gemahlen, bevor sie in eine Lösung von Aceton und Wasser hinzugefügt wurden. Nach der Ultraschallbehandlung wurde das Gemisch in einem Ölbad unter Rückfluß erhitzt, bis es vollständig getrocknet war. Um den fluorierten Katalysatorträger zu erhalten, wurde die Mischung pyrolysiert und nach dem Abkühlen auf Raumtemperatur wurden die Proben mit Ethanol und Reinstwasser gewaschen, gefolgt von Vakuumbehandlung. Die gleiche Methode wurde für die anderen Vorstufen verwendet.

Mikrowellenreduktion wurde verwendet, um den Palladiumkatalysator auf dem Katalysatorträger zu synthetisieren. Der Palladiumanteil in allen Proben war 1%, was durch Röntgenspektroskopie bestätigt wurde.

Elektrochemische Charakterisierungen.

Für die elektrischen Messungen wurden entweder eine glasartige Kohlenstoff-Ring-Platten-Elektrode oder eine rotierende Ringscheibenelektrode verwendet. Die Fumasep-Membran wurde als Anionenaustauschermembran verwendet, und durch Hydroxylgruppen modifiziert.

Literatur

Chang et al., 2021, Improving Pd–N–C fuel cell electrocatalysts through fluorination-driven rearrangements of local coordination environment. Nature Energy 6, 1144–1153 https://doi.org/10.1038/s41560-021-00940-4

Bildnachweis: P_Wei, Pixabay

Veröffentlicht am

Langlebige Platin-Palladium-Legierungen als Elektrokatalysator für PAM-Brennstoffzellen

Um den Verbrauch fossiler Energie zu verringern, könnten Protonenaustauschmembran-Brennstoffzellen (PAMBZ) eine vielversprechende saubere Stromquelle darstellen. Ihre Leistung hängt jedoch stark von der Effizienz und Haltbarkeit des verwendeten Elektrokatalysators ab. Solche Katalysatoren sind für die an den Elektroden auftretenden Wasserstoff- und Sauerstoffreaktionen notwendig. Edelmetalle wie Platin und Gold werden immer noch als die effizientesten Katalysatoren eingesetzt. Gleichzeitig sind ihre hohen Kosten eine großes Hindernis für die massenhafte Vermarktung vom PAMBZ.

Verschiedene Lösungen des Katalysatordesigns werden intensiv untersucht, um diese Technologie wirtschaftlich erfolgreich zu machen. Die Suche nach hoher Katalysatoraktivität und -haltbarkeit von Brennstoffzellen ist daher Schwerpunkt der aktuellen Forschung. Der aktuelle Stand der Technik sind Platin-Elektrokatalysatoren auf Kohlenstoffmaterialien mit unterschiedlichen Beladungen.

Hochaktive Legierungen mit der Platingruppe als Elektrokatalysator

Obwohl die jüngsten Forschungsergebnisse eine hohe Aktivität einiger Metallegierungskatalysatoren zeigen konnten, bleiben ungelöste Probleme. Ein Kernproblem ist nach wie vor die Nutzung hoher Mengen von Metallen der Platingruppe (MPG, bis zu 75% Pt), deren kurze Lebensdauer und schwache Leistung unter Einsatzbedingungen. Forscher der State University of New York in Binghamton, USA, und ihre Kollegen beschreiben der Fachzeitschrift Nature Communication einen neuen Snatz: Eine hochbeständige Katalysatorlegierung aus Platin und Palladium mit weniger als 50% Edelmetall und zudotierten 3d-Übergangsmetallen (Kupfer, Nickel oder Cobalt) in ternärer Zusammensetzung.

Die Forscher untersuchten das Problem der De-Legierung herkömmlicher Katalysatorlegierungen unter den Betriebsbedingungen. De-Legierung führt zu rückläufigen Leistungen. Zum ersten Mal wurde eine dynamische Re-Legierung als Weg zur Selbstheilung von Katalysators unter realistischen Betriebsbedingungen gezeigt, um die Lebensdauer der Brennstoffzellen zu verbessern.

Legierungszusammensetzung

Legierte Pt20PdnCu80−n-Nanopartikeln mit definierten Platin-, Palladium- und Kupferanteilen wurden synthetisiert. Der ausgewählte Satz von ternären Legierungen in den Nanopartikeln mit abstimmbaren Legierungszusammensetzungen- und anteilen enthielt einen Gesamtgehalt an Platin und Palladium von weniger als 50%. Das ist weniger, als bei herkömmlichen legierten MPG-Hochleistungsatalysatoren. Der Einbau von Palladium in Platin-Nanomaterialien resultierte in verminderter De-Legierung und damit in erhöhter Stabilität. Darüber hinaus ist Palladium ein guter Partner für Platin aufgrund ihrer katalytischen Synergie und deren Korrosionsbeständigkeit.

Um die Verbrauch von Platin- und Palladiumkernkatalysatoren zu reduzieren, wurde ein drittes, synergetisches Übergangsmetall für die Legierung eingesetzt. Nicht edle Metalle wie Kupfer, Kobalt, Nickel oder ähnliches wurden zu diesem Zweck verwendet. Die Platin-Palladium-Legierung mit Basismetallen ermöglichte es den Forschern, die thermodynamische Stabilität der Katalysatoren besser abzustimmen.

Morphologie und Phasenstruktur

Die thermochemische Behandlung von Kohlenstoff-Nanopartikeln war für die strukturelle Optimierung von entscheidender Bedeutung. Die Metallatome in den katalytischen Nanopartikeln waren lose in ein erweitertes Kristallgitter gepackt. Die oxidativen und reduktiven Behandlungen der Platin-Palladium-Legierung (MPG <50%) erlaubten einen thermodynamisch stabilen Zustand in Bezug auf Legierung, Relegierung und Kristallgitter. Der Relegierungsprozess homogenisierte nicht nur die inhomogene Zusammensetzung. Er lieferte auch einen wirksamen Weg zur Selbstheilung nach der Delegierung.

In Pt20PdnCu80–n-Nanolegierungen (n = 20, 40, 60, 80) wurden einzelne Würfelstrukturen beobachtet. Die Kupferdotierung der Platin-Palladium-Legierungen reduzierte die Gitterkonstante effektiv, was durch Hochenergie-Röntgenbeugung gezeigt wurde. Komprimierbarkeit und Aktivität des Pt20Pd20Cu60-Katalysators bestätigten den Zusammenhang zwischen den Gitterkonstanten und der Sauerstoffreduzierungsaktivität.

Die Forscher zeigten, daß der thermodynamisch stabile Pt20Pd20Cu60/Kohlenstoffkatalysator seine Komprimierbarkeit nach 20.000 Zyklen beibehielt. Auch seine hohe Aktivität und Haltbarkeit blieb stabil. Die Entdeckung, daß der Legierungskatalysator unter Betriebsbedingungen legiert bleibt, eine wichtige Erkenntnis im Hinblick auf die aktuell vollständig de-legierten MPG-Katalysatoren, die in der gegenwärtigen Literatur beschrieben wird.

Die Bedeutung beim Verständnis der thermodynamischen Stabilität des Katalysatorsystems ist eine potenzielle Paradigmenverschiebung des Designs, der Herstellung und der Verarbeitung von Legierung in Elektrokatalysatoren.

(Foto: Pixabay)

Veröffentlicht am

Grüner Wasserstoff produziert mit Sonnenlicht und Nanopartikeln

Der Energiebedarf steigt und der Rohstoff für die Wirtschaft mit fossilen Brennstoffen nimmt ab. Darüber hinaus verschlechtert die Emission von Gasen aus dem Verbrauch fossiler Brennstoffe die Luftqualität erheblich. Die aus diesen fossilen Brennstoffen erzeugten Kohlenstoffnebenprodukte beeinflussen das Klima erheblich.

Daher besteht die Notwendigkeit, eine erneuerbare Energiequelle zu finden, die je nach Anforderung leicht hergestellt, gespeichert und verwendet werden kann. Wasserstoff kann eine vielversprechende Energieressource sein, da er eine reichlich verfügbare, ungiftige Ressource ist und leicht zum Speichern überschüssiger elektrischer Energie verwendet werden kann.

Wasserstoff erzeugt in Kombination mit Sauerstoff in einer Brennstoffzelle Strom und die Nebenprodukte sind Wasser und Wärme. Basierend auf der Methode zur Herstellung von Wasserstoff wird es in blauen Wasserstoff und grünen Wasserstoff eingeteilt. Blauer Wasserstoff wird aus fossilen Brennstoffen wie Methan, Benzin und Kohle hergestellt, während grüner Wasserstoff aus nicht fossilen Brennstoffen / Wasser erzeugt wird. Der sauberste Weg zur Herstellung von umweltfreundlichem Wasserstoff ist die Elektrolyse von Wasser, bei der Wasser elektrolysiert wird, um Wasserstoff und Sauerstoff zu trennen. Erneuerbare Energie kann als Leistungselektrolyseur zur Erzeugung von Wasserstoff aus Wasser verwendet werden. Die solarbetriebene photoelektrochemische Wasserspaltung ist eine der gängigen Methoden. Bei der photoelektrochemischen Wasserspaltung wird Wasserstoff aus Wasser unter Verwendung von Sonnenlicht erzeugt.

PEC-Zellen bestehen aus einer funktionierenden Photoelektrode und einer Gegenelektrode. Die Photoelektrode besteht aus Halbleitermaterial mit einer Bandlücke, um Sonnenlicht zu absorbieren und ein Elektron-Loch-Paar zu erzeugen. Die durch Licht erzeugten Ladungen sind für die Oxidation von Wasser und dessen Reduktion zu Wasserstoff verantwortlich. Die PEC leiden unter Geräten mit geringer Stabilität und Effizienz.

Das Forschungsteam des Instituts National de la Recherche Scientifique (INRS) hat zusammen mit Forschern des Instituts für Chemie und Prozesse für Energie, Umwelt und Gesundheit (ICPEES), einem gemeinsamen Forschungslabor der CNRS-Universität Straßburg, einen Weg zur signifikanten Verbesserung des Effizienz der Wasserdissoziation zur Erzeugung von Wasserstoff durch Entwicklung lichtempfindlicher nanostrukturierter Elektroden im Sonnenlicht.

Eine Vergleichsstudie zwischen Kobalt- und Nickeloxid-Nanopartikeln, die auf durch Anodisierung hergestellten TiO2-Nanoröhren abgeschieden wurden, wurde durchgeführt. Die TiO2-Nanoröhren wurden mit CoO- (Kobaltoxid) und NiO- (Nickeloxid) -Nanopartikeln unter Verwendung des reaktiven Pulslaser-Abscheidungsverfahrens dekoriert. Die Oberflächenbeladungen von CoO- oder NiO-Nanopartikeln wurden durch die Anzahl der Laserablationsimpulse gesteuert. Die Effizienz von CoO- und NiO-Nanopartikeln als Cokatalysatoren für die photoelektrochemische Wasserspaltung wurde durch Cyclovoltammetrie sowohl unter simuliertem Sonnenlicht als auch unter Beleuchtung mit sichtbarem Licht und durch externe Quanteneffizienzmessungen untersucht

Die gesamte Forschungsarbeit wurde in folgenden Schritten durchgeführt:

Schritte zur Verbesserung der Effizienz der Wasserstoffproduktion
Schritte zur Verbesserung der Effizienz der Wasserstoffproduktion

(Quelle: Favet et al., Solar Energy Materials and Solar Cells, 2020)

In dieser Studie wurden Kobalt (CoO) – und Nickel (NiO) -Oxide als wirksame Cokatalysatoren für die Spaltung von Wassermolekülen angesehen. Beide Cokatalysatoren verbesserten die photoelektrochemische Umwandlung von Photonen aus ultraviolettem und sichtbarem Licht.

Es wurde jedoch festgestellt, dass CoO-Nanopartikel unter Beleuchtung mit sichtbarem Licht der beste Cokatalysator sind, wobei die Photoumwandlungseffizienz fast zehnmal höher ist als bei TiO2. Die Leistung von CoO-Nanopartikeln wurde im sichtbaren Spektralbereich (λ> 400 nm) verbessert. Der mögliche Grund kann eine Folge ihrer sichtbaren Bandlücke sein, die es ihnen ermöglicht, mehr Photonen im Bereich von 400 bis 500 nm zu gewinnen und die durch Licht erzeugten Elektronen effektiv auf TiO2-Nanoröhren zu übertragen.

Bei Frontis Energy sind wir von dieser neuen Entdeckung zur Verbesserung der Wasserstoffproduktion aus Sonnenlicht begeistert und hoffen, bald eine industrielle Anwendung zu sehen.

(Bild: Engineersforum)

(Quelle: Favet et al., Solar Energy Materials and Solar Cells, 2020)