Veröffentlicht am

Fluordotierung verbessert Ethanolbrennstoffzellen

Direktethanolbrennstoffzellen (DEBZ) sind Brennstoffzellen, die mit Ethanol als Brennstoff betrieben werden und direkt elektrische Energie erzeugen. Obwohl sie eigentlich sehr viel zu bieten haben, werden sie noch nicht industriell gefertigt. Ethanol wird aus Biomasse durch Hefen hergestellt. Seine Oxidationsprodukte – CO2 und H2O – sind daher umweltfreundlich. Die Anwendung von DEBZ könnte aufgrund der Energieeffizienz eine lukrative Lösung für Fahrzeuge sein, so sie denn in großen Stückzehen produziert werden. Unsere derzeitige Brennstoff-Infrastruktur ist für Ethanol durch die derzeitige Beimischung schon einsatzbereit. Die DEBZ-Nutzung wäre daher eine nachhaltige, umweltfreundliche und schnell einsetzbare Alternative zu aktuellen Verbrennungsmotoren. Darüber hinaus ist Ethanol flüssig, was die Verteilung, Lagerung und Verwendung erleichtert.

Laut einer von der Internationalen Energieagentur (IEA) gesponserten Studie stellen DEBZ hohe Leistungsdichten bereit, die zwischen 50 und 185 mW / cm² liegen. Derzeit sehen sich DEBZ mit mehrfache Herausforderungen konfrontiert. Dazu zählen wie langsame Redox-Kinetik, begrenzte Leistung und hohen Kosten für die benötigten Elektrokatalysatoren.

Die beiden Hauptreaktionen in DEBZ sind:

  1. Ethanoloxidationsreaktion (EOR)
  2. Sauerstoffreduktionsreaktion (SRR)

Die träge Reaktionsgeschwindigkeit hat die Verbreitung dieser Technologie bisher verhindert. Moderne DEBZ benötigen teure platinbasierte Materialien, um diese Reaktionen zu katalysieren. Sie oxidieren jedoch Ethanol nicht vollständig zu CO2. Das begrenzt die Energieeffizienz. Eine Dieses Problem kan behoben werden, indem nicht umgesetzter Brennstoff erneut injizieren eingespeist wird. Da dies die Komplexität der Brennstoffzelle erhöht, wäre eine bessere Lösung, effizientere Katalysatoren zu finden. Um das wahre Potenzial von DEBZ auszuschöpfen sollten am besten günstigere Katalysatoren für die beiden Reaktionen gefunden werden.

Die Forscher an der University of Central Florida und ihre Kollegen experimentierten mit Palladium-Stickstoff-Kohlenstoff-Katalysatoren (Pd-N-C) und versuchten, die Leistung durch Einführung von Fluoratomen zu verbessern. Das Team benutzte alkalische Membranen und platinfreie Katalysatoren. Diese waren sowohl kostengünstiger erzeugten auch eine hohe Ausgangsleistungsleistung.

Bisherige Forschung an elektrokatalytischen Systemen ergab, daß die lokale Elektrodenkoordinierung von zentraler Bedeutung für die Aktivität von Redox-Katalysatoren aus kohlenstoffbasierten Metallnanopartikeln ist. Die neue Studie zeigte, daß die Einführung von Fluoratomen in Pd-N-C-Katalysatoren die Elektrodenkoordinierung günstig beeinflußt. Dadurch wurde sowohl Aktivität erhöht als auch Haltbarkeit der Katalysatoren verbessert. Zusammengenommen wirkte sich das positiv auf die Gesamtleistung des Brennstoffzelle aus. Die experimentellen Ergebnisse der langfristigen Stabilität sind ein vielversprechender Fortschritt gegenüber praktischen Anwendungen solcher Katalysatoren in DEBZ.

Ergebnisse

Bei Experiment mit dem neuen Katalysator wurde festgestellt, daß die Fluoratome die Kohlenstoff-Stickstoff-Bindung schwächen und die Stickstoffatome in Richtung Palladium entlassen. Diese Elektronenübertragung regulierte effizient die Elektrodenkoordinierung des Palladiums, indem aktive Palladium-Stickstoff-Zenten für katalytische Reaktionen gebildet wurden.

Die N-reiche Palladiumoberfläche förderte die Spaltung der Kohlenstoffbindungen und ermöglichte die vollständige Ethanoloxidation. Während der SRR hat die N-reiche Palladiumoberfläche nicht nur die CO2-Adsorption reduziert, sondern erzeugte auch besser zugängliche katalytische Stellen für eine schnellere Sauerstoffadsorption.

Nach Angaben der Autoren wurde ein häufig auftretendes Problem in den DEBZ – die nicht abgeschlossenen Schlüsselreaktionen – behoben. Der neue Katalysator verbesserte die Gesamtleistung der Brennstoffzelle. Die Fluordotierung erhöhte auch die Haltbarkeit des Katalysators, indem die die Korrosion die Kohlenstoffkorrosion reduziert. Auch wurde die Palladiummigration und -aggregation gehemmt.

In einer DEBZ getestet, wurde mit dem neuen Katalysator eine maximale Leistungsdichte von 0,57 W / cm² erreicht. Die Brennstoffzelle lief für mehr als 5.900 Stunden stabil. Die vorgeschlagene Strategie der Fluordotierung führte unter Verwendung anderer kohlenstoffgestützter Metallkatalysatoren generell zu verbesserter Aktivität und Stabilität.

Ausblick

Der Hauptmangel alkalischer DEBZ ist ihre Haltbarkeit. Derzeit reicht sie für praktische Anwendungen nicht aus. Darüber hinaus haben die verwendeten Anionenaustauschermembranen zwei Probleme:

  • Die strukturelle Stabilität der Membran reicht nicht aus, um sie langfristig zu verwenden
  • Katalysatorcarbonisierung erfolgt in Anwesenheit von CO2 aufgrund seiner Reaktion mit Hydroxidionen, wodurch sich der Katalysator letztendlich abnutzt.

Obwohl die DEBZ in der vorgestellten Studie für bemerkenswerten 5.900 Stunden lief, mußte die Membran nach 1.200 Stunden ausgetauscht werden. Da das Austauschen der Membranen eine vollständige Demontage der Zelle erforder, ist dies langfristig keine praktable Lösung.

Daher sollte sich die zukuenftige Forschung auf die ionische Leitfähigkeit und der Stabilität anionischer Membranen unter alkalischen Bedingungen konzentrieren. Idealerweise wird die zur Erhöhung der ionischen Leitfähigkeit verwendete Hydroxidlösung vermieden, um die Energiedichte zu erhalten und die Komplexität der Vorrichtung zu reduzieren. Festoxidbrennstoffzellen bieten eine Lösung für diese Probleme, da der Kraftstoff in gasförmiger Form oxidiert wird. Ihre keramische Membran ist jedoch zu fragil für mobile Anwendungen.

Das publizierte Experiment ist ein signifikanter Fortschritt bei der Verbesserung der Leistungsdichte von DEBZ und bringt sie damit auf einen neuen Stand der Technik. Die weitere Forschung muß jedoch die zahlreichen kleineren Hindernisse bei der langfristigen Verwendung von anionischen Membranen angehen.

Experimentelle Analyse

Verwendete Materialien

Handelsübliche Pd/C-Partikel (10%, 8 nm PD-Partikel auf Aktivkohle) sowie Pt/C (20%, 3 Nm-Pt-Partikel auf Kohle) wurden als Basiskatalysatoren verwendet. Nafion™ -Lösung (5%), Kohlepapier (TGP-H-060) und Anionenaustauschermembranen (Fumasep FAS-PET-75) kamen ebenfalls zum Einsatz.

Synthese von Heteroatom X-dotiertem Kohlenstoff (X-C, X = N, P, S, B, F)

Kohlepartikel mit reich vorhandenen Sauerstoff-Gruppen und Melamin (C3H6N6) wurden gemischt und gemahlen und schließlich pyrolysiert. Nach dem Abkühlen auf Raumtemperatur wurde N-C durch Waschen mit Ethanol und Wasser erhalten. Die gleiche Methode wurde verwendet, um P-C, S-C, B-C und F-C aus Natriumhypophosphitsäure-, Schwefelpulver, Borsäure und Polyvinylidendifluorid zu synthetisieren.

Synthese von Heteroatomfluor-dotierten Kohlenstoffkatalysatoren

N-C und Polyvinyliden-Difluorid wurden gemischt und gemahlen, bevor sie in eine Lösung von Aceton und Wasser hinzugefügt wurden. Nach der Ultraschallbehandlung wurde das Gemisch in einem Ölbad unter Rückfluß erhitzt, bis es vollständig getrocknet war. Um den fluorierten Katalysatorträger zu erhalten, wurde die Mischung pyrolysiert und nach dem Abkühlen auf Raumtemperatur wurden die Proben mit Ethanol und Reinstwasser gewaschen, gefolgt von Vakuumbehandlung. Die gleiche Methode wurde für die anderen Vorstufen verwendet.

Mikrowellenreduktion wurde verwendet, um den Palladiumkatalysator auf dem Katalysatorträger zu synthetisieren. Der Palladiumanteil in allen Proben war 1%, was durch Röntgenspektroskopie bestätigt wurde.

Elektrochemische Charakterisierungen.

Für die elektrischen Messungen wurden entweder eine glasartige Kohlenstoff-Ring-Platten-Elektrode oder eine rotierende Ringscheibenelektrode verwendet. Die Fumasep-Membran wurde als Anionenaustauschermembran verwendet, und durch Hydroxylgruppen modifiziert.

Literatur

Chang et al., 2021, Improving Pd–N–C fuel cell electrocatalysts through fluorination-driven rearrangements of local coordination environment. Nature Energy 6, 1144–1153 https://doi.org/10.1038/s41560-021-00940-4

Bildnachweis: P_Wei, Pixabay

Veröffentlicht am

Selbstregulierende Anoden in intelligenten Brennstoffzellen verbessern das Wassermanagement

Wasserstoffbrennstoffzellen werden häufig als Schlüsselelement beim Übergang zu nachhaltiger Energieerzeugung angesehen. Ihr Wirkungsgrad ist doppelt so hoch wie der von Verbrennungsmotoren. Brennstoffzellen wandeln die chemische Energie von Wasserstoff und Sauerstoff direkt in Strom und Wasser um. Daher spielt Wasser eine zentrale Rolle in Brennstoffzellen. Es sorgt für den Ionentransport und ist natürlich auch das Produkt der Reaktion selbst. In einer Anionenaustauschmembran-Brennstoffzelle (AAMBZ) muß das Wasser in der Anodenkatalysatorschicht (AKS) für die Sauerstoffreduktionreaktion auf die Kathodenkatalysatorschicht (KKS) diffundieren. Für einen höheren Effizienz der Wasserstoffdiffusion ist daher intelligentes Wassermanagement erforderlich, um so das Reaktionswasser aus der AKS zu entfernen und in der gesamten Membranelektrodenanordnung (MEA) auszubalancieren.

Es ist daher nur folgerichtig, daß ein besonderer Schwerpunkt der Brennstoffzellenforschung auf Wassermanagement liegt, um so bessere Reaktionsbedingungen sowohl für die Anode als auch für die Kathode zu ermöglichen. Die asymmetrische Befeuchtung von Reaktionsgasen wird allgemein als bester Lösungsansatz angesehen. Dadurch soll eine ausgeglichene Wasserbilanz zwischen den beiden Elektroden erreicht werden. Bei höheren Temperaturen verdampft jedoch überschüssiges Anodenwasser. Dieser Vorgang verursacht Wassermangel an der Kathode, die jedoch Wasser benötigt, um einwandfrei zu funktionieren. Um dem Wasserverlust entgegenzuwirken, wurde ein Komtrollsystem entwickelt, das den Rückfluß an der Anode und der Kathode steuert. Solche externen Steuerungsmechanismen erhöhen jedoch die Komplexität der Systemsteuerung.

Ein passives Steuerungssystem durch MEA-Modifikationen könnte das Wassermanagement erleichtern. Die Feuchtigkeitskontrolle in Brennstoffzellen kann durch besser dafür geeigneten Gasdiffusionsschichten erreicht werden. Verschiedener Arten von hydrophoben Materialien für die Anode und hydrophilen für die Kathode können so die gesamte Kraftstoffzellenleistung verbessern. Polyethylen-Tetrafluorethylen (PTFE)-Kopolymermembranen, wie Nafion™, haben eine hohe Wasserdurchlässigkeit. Diese Eigenschaft unterstützt den Wasserabfluß um so die Anodenüberflutung zu verhindern. Gleichzeitig wird so die Austrocknung der Kathode verhindert. Das Entwerfen einer geeigneten Mikrostruktur oder eine Veränderung des Ionomergehalts innerhalb der KKS könnte dem zuträglich sein. Insgesamt würde dadurch die Zelleistung und -handhabung verbessert.

Eine aktuelle Veröffentlichung in der Fachzeitschrift Cell Reports Physical Science hat sich mit diesem Thema auseinandergesetzt. Die vorgestellte Studie hat untersucht, wie mehrschichtiges KKS-Design mit der Gradientenkapillarkraft den Wasserhaushalt der Brennstoffzelle beeinflußt, um das Wasserbilanzproblem der Anoden zu lösen. Für den Zweck der Studie wurden Platin auf Kohlenstoff und Platin-Ruthenium auf Kohlenstoff als Anodenkatalysatoren ausgewählt. Ruthenium erhöht die Wasserstoffoxidationsreaktionsaktivität und besitzt auch vorteilhafte strukturelle Eigenschaften. Wassermanagement und Leistung der Brennstoffzellen sollten von der Struktur der AKS beeinflußt werden.

Mikrostrukturanalyse der AKS

Die AKS, bestehend aus verschiedenen Schichten von Pt / C und PtRu / C und einer gemischten Version mit einer ähnlichen Dicke von etwa 9 bis 10 μm wurden mit energierer dispergierender Röntgenspektroskopie (engl. EDX) analysiert.

PT / C AKS hatte Poren von weniger als 150 nm, während Poren von PtRu / C  zwischen 300-400 nm groß waren. Die gemischte AKS hatte eine Porengröße <200 nm.

Die Forscher kamen zu dem Schluß, daß PT / C und PtRu / C AKS eine stratifizierte Porengrößenverteilung in Form eines Gradienten über die Anionenaustauschermembran und die Gasdiffusionsschicht aufwiesen. Die gemischte AKS hatte jedoch über die gesamte MEA eine homogene Porenstruktur.

Membranelektrodenanordnung unter Verwendung einer Polymerelektrolytmembran

Feuchtigkeits-Adsorption und Desorptionsverhalten von AKS

Um die Feuchtigkeitsadsorption und -desorption zu untersuchen, wurde die Änderung des Feuchtigkeitsgehalts des Brennstoffzellens in bezug auf verschiedene relative Luftfeuchtigkeit geprüft.

Es wurde beobachtet, daß sich der Feuchtigkeitsgehaltspegel mit anstieg der relativen Luftfeuchtigkeit von 20% auf 80% ebenfalls um bis zu 50% erhöhte.

Mit länger anhaltenden relativen Luftfeuchtigkeit von 80% begann sich der Feuchtigkeitsgehalt von Pt / PtRu und PtRu / Pt AKS zu verringern. Dies war der Beweis für das selbstregulierende Wassermanagement.

Die Desorption kam bei einer relativen Luftfeuchtigkeit von 60% zu stande. Der Wassergehalt in der AKS zeigte in jeder relativen Feuchtigkeitseinstellung eine schnelle Adsorption und langsame Freisetzung.

Die physikalische Anpassung des Wasserverhaltens wurde in PtRu / Pt-AKS beobachtet. Dies wurde auf Gradientennanoporen zurückgeführt die den Wassertransport förderten, wenn Reaktionswasser in den AKS erzeugt wurde. Dieses Verhalten würde den Betrieb von Brennstoffzellen bei hoher Stromdichte erleichtern.

Brennstoffzellenleistung mit modifizierter AKS

Um den strukturellen Effekt auf das Wassermanagement während des Betriebs zu beurteilen, wurde die Leistung der Brennstoffzellen bei unterschiedlicher relativer Luftfeuchtigkeit und Temperatur untersucht.

Mit zunehmender relativer Luftfeuchtigkeit von 40% auf 80% wurde auch eine Erhöhung der maximalen Leistungsdichte beobachtet, während die Temperatur bei 50°C konstant blieb. Dies war auf eine höhere ionische Leitfähigkeit bei hoher Membranhydratation zurückzuführen.

Bei relativer Luftfeuchtigkeit von 100% verringerte sich jedoch eine maximale Leistungsdichte der Pt / PtRu-MEA und der gemischten MEA. Bei der invertierten MEA-Version mit PtRu / Pt wurde ein Anstieg auf 243 mW / cm² beobachtet. Dies deutete an, daß die Feuchtigkeitsdesorptionsfähigkeit der PtRu / Pt-MEA den Stofftransport während des Brennstoffzellenbetriebs förderte.

Bei einer Temperatur von 60°C und 100% relativer Luftfeuchtigkeit erreichte die PtRu / Pt-Brennstoffzelle eine maximale Leistungsdichte mit 252 mW / cm².

Für PtRu / Pt-MEA wurde auch ein Haltbarkeitstest durchgeführt. Dieser zeigte, daß nach einem Dauerbetrieb von mehr als 16 Stunden bei 100 mA / cm² der Spannungsabfall lediglich <4% betrug.

Schlußfolgerungen

Durch die Untersuchung wurde deutlich, daß die PtRu / Pt-AKS mit seiner homogenen Schicht eine bessere Selbstregulierung in bezug auf Brennstoffzellen-Wassermanagement hatte. Die Nanoporenstruktur der Katalysatorschicht ermöglichte es, Wasser durch Kapillarkräfte zu transportieren. Überschüssiges Wasser der Anode konnte in Richtung der Kathode transportiert werden, wo es bei der Reaktion half oder es wurde über die Gasdiffusionsschicht entfernt, um eine Überflutung der Anode zu verhindern. Darüber hinaus zeigte diese Katalysatorschicht aus PtRu / Pt auch  allgemein bessere Leistungsdaten.

Bei Frontis Energy glauben wir, daß die Forschungsergebnisse Probleme beim Wassermanagement in den Brennstoffzellen lösen könnten. Da es sich um ein passives Steuerungssystem handelt, das durch interne Designmodifikationen der Brennstoffzellen chrakterisiert ist, könnten komplizierte externe Systeme ersetzt oder ergänzt werden. Die Studie hilft sicherlich bei der automatisierten Steuerung von Brennstoffzellen, da die Ergebnisse sie intelligenter machen könnten.

Quelle: Self-adjusting anode catalyst layer for smart water management in anion exchange membrane fuel cells, Cell Reports Physical Science, Volume 2, Issue 3, 24 March 2021, 100377

Veröffentlicht am

Langlebige Platin-Palladium-Legierungen als Elektrokatalysator für PAM-Brennstoffzellen

Um den Verbrauch fossiler Energie zu verringern, könnten Protonenaustauschmembran-Brennstoffzellen (PAMBZ) eine vielversprechende saubere Stromquelle darstellen. Ihre Leistung hängt jedoch stark von der Effizienz und Haltbarkeit des verwendeten Elektrokatalysators ab. Solche Katalysatoren sind für die an den Elektroden auftretenden Wasserstoff- und Sauerstoffreaktionen notwendig. Edelmetalle wie Platin und Gold werden immer noch als die effizientesten Katalysatoren eingesetzt. Gleichzeitig sind ihre hohen Kosten eine großes Hindernis für die massenhafte Vermarktung vom PAMBZ.

Verschiedene Lösungen des Katalysatordesigns werden intensiv untersucht, um diese Technologie wirtschaftlich erfolgreich zu machen. Die Suche nach hoher Katalysatoraktivität und -haltbarkeit von Brennstoffzellen ist daher Schwerpunkt der aktuellen Forschung. Der aktuelle Stand der Technik sind Platin-Elektrokatalysatoren auf Kohlenstoffmaterialien mit unterschiedlichen Beladungen.

Hochaktive Legierungen mit der Platingruppe als Elektrokatalysator

Obwohl die jüngsten Forschungsergebnisse eine hohe Aktivität einiger Metallegierungskatalysatoren zeigen konnten, bleiben ungelöste Probleme. Ein Kernproblem ist nach wie vor die Nutzung hoher Mengen von Metallen der Platingruppe (MPG, bis zu 75% Pt), deren kurze Lebensdauer und schwache Leistung unter Einsatzbedingungen. Forscher der State University of New York in Binghamton, USA, und ihre Kollegen beschreiben der Fachzeitschrift Nature Communication einen neuen Snatz: Eine hochbeständige Katalysatorlegierung aus Platin und Palladium mit weniger als 50% Edelmetall und zudotierten 3d-Übergangsmetallen (Kupfer, Nickel oder Cobalt) in ternärer Zusammensetzung.

Die Forscher untersuchten das Problem der De-Legierung herkömmlicher Katalysatorlegierungen unter den Betriebsbedingungen. De-Legierung führt zu rückläufigen Leistungen. Zum ersten Mal wurde eine dynamische Re-Legierung als Weg zur Selbstheilung von Katalysators unter realistischen Betriebsbedingungen gezeigt, um die Lebensdauer der Brennstoffzellen zu verbessern.

Legierungszusammensetzung

Legierte Pt20PdnCu80−n-Nanopartikeln mit definierten Platin-, Palladium- und Kupferanteilen wurden synthetisiert. Der ausgewählte Satz von ternären Legierungen in den Nanopartikeln mit abstimmbaren Legierungszusammensetzungen- und anteilen enthielt einen Gesamtgehalt an Platin und Palladium von weniger als 50%. Das ist weniger, als bei herkömmlichen legierten MPG-Hochleistungsatalysatoren. Der Einbau von Palladium in Platin-Nanomaterialien resultierte in verminderter De-Legierung und damit in erhöhter Stabilität. Darüber hinaus ist Palladium ein guter Partner für Platin aufgrund ihrer katalytischen Synergie und deren Korrosionsbeständigkeit.

Um die Verbrauch von Platin- und Palladiumkernkatalysatoren zu reduzieren, wurde ein drittes, synergetisches Übergangsmetall für die Legierung eingesetzt. Nicht edle Metalle wie Kupfer, Kobalt, Nickel oder ähnliches wurden zu diesem Zweck verwendet. Die Platin-Palladium-Legierung mit Basismetallen ermöglichte es den Forschern, die thermodynamische Stabilität der Katalysatoren besser abzustimmen.

Morphologie und Phasenstruktur

Die thermochemische Behandlung von Kohlenstoff-Nanopartikeln war für die strukturelle Optimierung von entscheidender Bedeutung. Die Metallatome in den katalytischen Nanopartikeln waren lose in ein erweitertes Kristallgitter gepackt. Die oxidativen und reduktiven Behandlungen der Platin-Palladium-Legierung (MPG <50%) erlaubten einen thermodynamisch stabilen Zustand in Bezug auf Legierung, Relegierung und Kristallgitter. Der Relegierungsprozess homogenisierte nicht nur die inhomogene Zusammensetzung. Er lieferte auch einen wirksamen Weg zur Selbstheilung nach der Delegierung.

In Pt20PdnCu80–n-Nanolegierungen (n = 20, 40, 60, 80) wurden einzelne Würfelstrukturen beobachtet. Die Kupferdotierung der Platin-Palladium-Legierungen reduzierte die Gitterkonstante effektiv, was durch Hochenergie-Röntgenbeugung gezeigt wurde. Komprimierbarkeit und Aktivität des Pt20Pd20Cu60-Katalysators bestätigten den Zusammenhang zwischen den Gitterkonstanten und der Sauerstoffreduzierungsaktivität.

Die Forscher zeigten, daß der thermodynamisch stabile Pt20Pd20Cu60/Kohlenstoffkatalysator seine Komprimierbarkeit nach 20.000 Zyklen beibehielt. Auch seine hohe Aktivität und Haltbarkeit blieb stabil. Die Entdeckung, daß der Legierungskatalysator unter Betriebsbedingungen legiert bleibt, eine wichtige Erkenntnis im Hinblick auf die aktuell vollständig de-legierten MPG-Katalysatoren, die in der gegenwärtigen Literatur beschrieben wird.

Die Bedeutung beim Verständnis der thermodynamischen Stabilität des Katalysatorsystems ist eine potenzielle Paradigmenverschiebung des Designs, der Herstellung und der Verarbeitung von Legierung in Elektrokatalysatoren.

(Foto: Pixabay)

Veröffentlicht am

Wiederaufladbare Zink-Luft-Batterien mit Kobaltkatalysator

Zink-Luft-Batterien sind eine vielversprechende Alternative zu teuren Lithium-Ionen-Batterien. Im Vergleich zur Lithium-Ionen-Technologie weisen Zink-Luft-Batterien eine höhere Energiedichte, sehr niedrige Produktionskosten und eine bessere Sicherheit auf. Da sie jedoch nur einen Entladezyklus haben, sind sie weniger beliebt.

Zink-Luft-Batterien verwenden geladene Zinkpartikel, um gleichzeitig große Mengen Strom zu speichern. Wenn Strom benötigt wird, wird das geladene Zink mit Sauerstoff aus der Luft (und dem Wasser) reagiert, wodurch der gespeicherte Strom freigesetzt und Zinkoxid erzeugt wird. Dieser Prozeß ist als Sauerstoffreduktionsreaktion (SRR) bekannt.

Theoretisch kann dieses Zinkoxid durch Elektrizität wieder in Sauerstoff und Zinkionen umgewandelt werden. Dieser Prozeß wird wiederum als Sauerstoffentwicklungsreaktion (SER) bezeichnet. Mit diesen Reaktionen können Zink-Luft-Batterien wiederaufladbar gemacht werden, wodurch sie wie Lithium-Ionen-Batterien funktionieren.

Die größte Herausforderung beim Wiederaufladevorgang ist die Langsamkeit der Reaktionen und die dadurch verringerte Lebensdauer. Diese Batterien benötigen einen Katalysator, der möglicherweise die SRR- und OER-Reaktionen verbessern und ihre Kinetik schnell machen kann. Daher ist die Entwicklung hocheffizienter Katalysatoren für wiederaufladbare Zink-Luft-Batterien von größter Bedeutung.

In frühere Studien wurden Übergangsmetalloxide als bifunktionelle (Redox) SRR / SER-Katalysatoren vorgeschlagen, da sie Vakanzen für reversible Adsorption von Sauerstoff bereitstellen können. Die Methoden zur Erzeugung genau definierter Defekte für die reversible Adsorption von Sauerstoff in solchen Oxiden sind jedoch eine Herausforderung.

Eine Gruppe von Forschern und Ingenieuren aus China und Kanada haben diese Herausforderung angenommen. Unter Verwendung von Kobalt(II)-oxid-Nanoschichten, die auf rostfreiem Stahl oder Kohlenstoffgewebe aufgebracht wurden, wurde ein bifunktionellen Katalysator hergestellt. Ihre Forschungsergebnisse wurden in der Fachzeitschrift Nano Energy veröffentlicht.

Forschungsansatz

Herstellung des Katalysators

Verschiedene Nanostrukturen wurden unter Verwendung einfacher Wärmebehandlung und galvanischer Abscheidung hergestellt, um sie als bifunktionelle Elektrokatalysatoren zu testen. Die Art der hergestellten Nanostrukturen war:

  • Kobalthydroxid-Nanoschichten auf Edelstahl und Kohlenstoffgewebe
  • Geschichtetes Kobalt(II)-oxid-Nanoschicht auf Edelstahl- und Kohlenstoffgewebe
  • Kobalt(II)-oxid auf Edelstahl
  • Geschichtetes Kobalttetroxid-Nanoschicht auf Edelstahl

Materialcharakterisierung

Um die Eigenschaften der vorbereiteten Proben zu verstehen, wurden verschiedene Analysen und Tests durchgeführt:

Lade- und Entladetests

Spätere Entlade- und Ladezyklustests einzelner Zellen wurden durch das Batterietestsystem durchgeführt.

Ergebnisse

Durch einfache Wärmebehandlung wurden Sauerstoffdefekte geschaffen. Den Autoren zufolge zeigten die Kobaltoxid-Nanoschichten eine ausgezeichnete bifunktionelle ORR / OER-Leistung. Die durschgeführten Untersuchungen deuteten darauf hin, daß die reichlichen Sauerstoffdefekte und Kobaltzentren der Grund für eine verbesserte ORR / OER-Leistung waren. Später wurden die geschichteten Kobaltoxid-Nanoschichten auf Edelstahl als Elektrode in einer wiederaufladbaren Zink-Luft-Durchflußbatterie verwendet, und es wurde eine Rekordlebensdauer von über 1.000 Stunden bei nahezu unveränderter Spannung beobachtet. Galvanostatische Entlade- / Ladezyklen zeigten ebenfalls eine lange Lebensdauer und eine hohe Energieeffizienz.

Diese Untersuchungen bieten eine neue Methode zur Entwicklung hocheffizienter bifunktioneller ORR / OER-Katalysatoren, mit denen die Lebensdauer wiederaufladbarer Zink-Luft-Durchflußbatterie verlängert werden kann. Bei Frontis Energy hoffen wir wie immer, daß wir schon bald industrielle Anwendungen sehen werden.

(Foto: Ingenieurforum)

Referenz: https://doi.org/10.1016/j.nanoen.2020.105409 Wu et al., Cobalt (II) oxide nanosheets with rich oxygen vacancies as highly efficient bifunctional catalysts for ultra-stable rechargeable Zn-air flow battery, 2021