Veröffentlicht am

Wiederaufladbare Zink-Luft-Batterien mit Kobaltkatalysator

Zink-Luft-Batterien sind eine vielversprechende Alternative zu teuren Lithium-Ionen-Batterien. Im Vergleich zur Lithium-Ionen-Technologie weisen Zink-Luft-Batterien eine höhere Energiedichte, sehr niedrige Produktionskosten und eine bessere Sicherheit auf. Da sie jedoch nur einen Entladezyklus haben, sind sie weniger akzeptiert.

Zink-Luft-Batterien verwenden geladene Zinkpartikel, um gleichzeitig große Mengen Strom zu speichern. Wenn Strom benötigt wird, wird das geladene Zink mit Sauerstoff aus der Luft (und dem Wasser) kombiniert, wodurch der gespeicherte Strom freigesetzt und Zinkoxid erzeugt wird. Dieser Prozeß ist als Sauerstoffreduktionsreaktion (SRR) bekannt.

Theoretisch kann dieses Zinkoxid wieder in Sauerstoff und Zinkionen umgewandelt werden, indem Elektrizität durch es geleitet wird. Dieser Prozeß wird wiederum als Sauerstoffentwicklungsreaktion (SER) bezeichnet. Mit diesen Reaktionen können Zink-Luft-Batterien wiederaufladbar gemacht werden, wodurch sie mit Lithium-Ionen-Batterien konkurriert.

Die größte Herausforderung beim Wiederaufladevorgang ist die Langsamkeit der Reaktionen und die dadurch verringerte Lebensdauer. Diese Batterien benötigen einen Katalysator, der möglicherweise die SRR- und OER-Reaktionen verbessern und ihre Kinetik schnell machen kann. Daher ist die Entwicklung hocheffizienter Katalysatoren für wiederaufladbare Zink-Luft-Batterien von größter Bedeutung.

In frühere Studien wurden Übergangsmetalloxide als bifunktionelle (Redox) SRR / SER-Katalysatoren vorgeschlagen, da sie Vakanzen für reversible Adsorption von Sauerstoff bereitstellen können. Die Methoden zur Erzeugung genau definierter Defekte für die reversible Adsorption von Sauerstoff in solchen Oxiden sind jedoch eine Herausforderung.

Eine Gruppe von Forschern und Ingenieuren aus China und Kanada haben diese Herausforderung angenommen. Unter Verwendung von Kobalt(II)-oxid-Nanoschichten, die auf rostfreiem Stahl oder Kohlenstoffgewebe aufgebracht wurden, wurde ein bifunktionellen Katalysator hergestellt. Ihre Forschungsergebnisse wurden in der Fachzeitschrift Nano Energy veröffentlicht.

Forschungsansatz

Herstellung des Katalysators

Verschiedene Nanostrukturen wurden unter Verwendung einfacher Wärmebehandlung und galvanischer Abscheidung hergestellt, um sie als bifunktionelle Elektrokatalysatoren zu testen. Die Art der hergestellten Nanostrukturen war:

  • Kobalthydroxid-Nanoschichten auf Edelstahl und Kohlenstoffgewebe
  • Geschichtetes Kobalt(II)-oxid-Nanoschicht auf Edelstahl- und Kohlenstoffgewebe
  • Kobalt(II)-oxid auf Edelstahl
  • Geschichtetes Kobalttetroxid-Nanoschicht auf Edelstahl

Materialcharakterisierung

Um die Eigenschaften der vorbereiteten Proben zu verstehen, wurden verschiedene Analysen und Tests durchgeführt:

Lade- und Entladetests

Spätere Entlade- und Ladezyklustests einzelner Zellen wurden durch das Batterietestsystem durchgeführt.

Ergebnisse

Durch einfache Wärmebehandlung wurden Sauerstoffdefekte geschaffen. Den Autoren zufolge zeigten die Kobaltoxid-Nanoschichten eine ausgezeichnete bifunktionelle ORR / OER-Leistung. Die durschgeführten Untersuchungen deuteten darauf hin, daß die reichlichen Sauerstoffdefekte und Kobaltzentren der Grund für eine verbesserte ORR / OER-Leistung waren. Später wurden die geschichteten Kobaltoxid-Nanoschichten auf Edelstahl als Elektrode in einer wiederaufladbaren Zink-Luft-Durchflußbatterie verwendet, und es wurde eine Rekordlebensdauer von über 1.000 Stunden bei nahezu unveränderter Spannung beobachtet. Galvanostatische Entlade- / Ladezyklen zeigten ebenfalls eine lange Lebensdauer und eine hohe Energieeffizienz.

Diese Untersuchungen bieten eine neue Methode zur Entwicklung hocheffizienter bifunktioneller ORR / OER-Katalysatoren, mit denen die Lebensdauer wiederaufladbarer Zink-Luft-Durchflußbatterie verlängert werden kann. Bei Frontis Energy hoffen wir wie immer, daß wir schon bald industrielle Anwendungen sehen werden.

(Foto: Ingenieurforum)

Referenz: https://doi.org/10.1016/j.nanoen.2020.105409 Wu et al., Cobalt (II) oxide nanosheets with rich oxygen vacancies as highly efficient bifunctional catalysts for ultra-stable rechargeable Zn-air flow battery, 2021