Um Kosten zu reduzieren, werden die Katalysatoren für Niedertemperatur-Brennstoffzellen ständig verbessert. Nur wenn solche Brennstoffzellen mit Verbrennungsmotoren konkurrieren koennen, werden sie ein alternativer Antrieb im Strassenverkehr sein. Das US-Energieministeriums (DOE) als fuer die Kosten von mobilen Brennstoffzellen 30 USD / kW vorgegeben. Die aktuellen Kosten einer Protonenaustauschmembran-Brennstoffzelle liegen jedoch zwischen 45 und 51 USD / kW.
Angesichts der Herausforderung, die Produktionskosten für Brennstoffzellen zu senken, haben Forscher vorgeschlagen, den pH in Brennstoffzellen von einem saur auf alkalisch zu ändern. Dafür muß die Protonenaustauschmembran in einer Brennstoffzellen durch eine Anionenaustauschmembran ersetzt werden. Der große Vorteil von Anionenaustauschmembranen gegenüber Protonenaustauschmembranen ist der günstigere Preis. Darüber hinaus könnte ein breiteres Spektrum an Materialien verwendet, sowie die Kinetik der Sauerstoffreduktionsreaktion verbessert werden. Doch saure Bedingungen korrodieren Nichtedelmetalle schnell, während gleichzeitig die hohe Beladung mit Platingruppenmetallen-Katalysatoren reduziert werden muß.
Synthese des Fe-N-C-Elektrokatalysators und seiner Struktur
Forscher der University of South Carolina, Columbia (USA) veröffentlichten im Fachheft Nature Energy einen Artikel über die verbesserte Leistung kostengünstiger Fe-N-C-Kathodenkatalysatoren mit aktiven Fe-Nx-Zentren in Anionen-Brennstoffzellen. Der Fe-N-C-Katalysator wurde im Hinblick auf zwei wichtige Aspekte hergestellt: Erhöhung der durchschnittlichen Porengröße (im Bereich von 5-40 nm sowie 1 µm) und des Graphitierungsgrades. Beide Maßnahmen reduzieren die Hydrophobie der Katalysatorschicht. Um die Leistung ihres Katalysators zu optimieren, durchliefen die Forscher einen iterativen Erkenntnisprozeß unter Verwendung verschiedener Charakterisierungstechniken für ihren neuen Katalysator. Energiedispersive Spektroskopie wurde verwendet, um sicherzustellen, daß die Katalysatorzusammensetzung homogen war. Eisenatome im Katalysator waren als einzelne Atome vorhanden, was durch Rastertransmissionselektronenmikroskopie bestätigt wurde.
Katalysatorleistung und Integration in AEM-Brennstoffzellen
Die von den Wissenschaftlern durchgeführten elektrochemischen Analysen ergaben, daß der neue Fe-N-C-Katalysator durch direkte O2-Reduktion eine hohe ORR-Aktivität erreicht. Bei dieser Reduktionsreaktion reagieren vier Elektronen direkt einem Sauerstoffmolekül und ohne den Wasserstoffperoxid-Zwischenschritt zu Wasser. Die Ausbeute an Wasserstoffperoxid als Funktion des Potentials betrug über den gesamten Versuchsbereich weniger als 1% – ein sehr gutes Ergebnis für ein Nichtedelmetall. Die Stromdichte der Reaktion betrug 7 mA / cm2.
Der Fe-N-C-Katalysator wurde an der Kathode einer Anionen-Brennstoffzelle für Wasserstoff und Sauerstoff verwendet. Es wurde eine hohe Spitzenleistungsdichte von 2 W / cm2 beobachtet. Diese Leistung ist der höchste berichtete Wert für Polymermembran-Brennstoffzellen (Anionen- und Protonenmembranen) mit Nichtedelmetallen. Vor allem die 4-fach geringere Beladung mit dem Fe-N-C-Katalysator im Vergleich zu früheren Versuchen macht diesen Brennstoffzellentyp wirtschaftlich interessant. Darüber hinaus war der Elektrokatalysator bei Spannungen von 0,6 V über mehr als 100 Stunden stabil.
Um die Machbarkeit einer Fe-N-C-Kathode für eine praktischere Anwendung zu bewerten, wurde die Brennstoffzelle mit Luft als Oxidationsmittel der Kathode getestet. Die erreichte Stromdichte betrug 3,6 mA / cm2 bei 0,1 V mit einer Spitzenleistungsdichte von über 1 W / cm2. Diese Ergebnisse sind erneut die höchsten berichteten Werte im Vergleich zu anderen Anionen-Brennstoffzellen mit Wasserstoff und Luft.
Brennstoffzellen im Vergleich mit den DOE-Kriterien
Um einen realistischeren Brennstoffzellenbetrieb mit hinsicht auf die DOE-Ziele zu simulieren, mußten verschiedene Zellkonfigurationen verglichen werden. Dafür wurden Zelle mit einer die Anode mit 0,6 mg Pt / cm2 und die Kathode mit 1 mg Fe-N-C pro cm2 untersucht. Die gepaarte Zelle wurde unter Bedingungen betrieben, die dem DOE-Protokoll ähnlich waren: 0,9 V, Zelltemperatur 80°C und 100 kPa Partialdruck von O2 und H2. Die Stromdichte bei 0,9 V betrug ca. 100 mA / cm2. Dies war mehr als das Doppelte des DOE-Ziels.
Schließlich wurde die nächste Konfiguration unter Verwendung des DOE2022-Protokolls entworfen. Dieses gibt vor, daß die gesamte Edelmetallbeladung weniger als 0,2 mg Pt / cm2 betragen sollte. Die Vorgabe wurde durch die Integration einer Fe-N-C-Kathode mit niedrig beladenen PtRu/C-Anoden (0,125 mg PtRu pro cm2) erreicht. Diese Zelle erreichte im Wasserstoff-Sauerstoff-Betrieb eine Spitzenleistungsdichte von 1,3 W / cm2. Die Umrechnung dieses Wertes auf eine spezifische Ausgangsleistung von 16 W pro mg Pt ergibt den höchsten Wert aller jemals berichteten Anionen-Brennstoffzellen.
Es wurde gezeigt, daß der Fe-N-C-Elektrokatalysator mit edelmetallbasierten Katalysatoren für Anionen-Brennstoffzellen konkurrieren kann. Diese Kombination war bemerkenswert leistungsfähig in Bezug auf Aktivität und Haltbarkeit.
Methodik und Elektrodenvorbereitung
- Ein rotierendes Ringscheibensystem (RRDE), wurde zur Evaluierung der elektrochemischen Leistung für die Sauerstoffreduktionsreaktion des Fe-N-C-Katalysators verwendet.
- Der Fe-N-C-Katalysator wurde mit dichter gepackten Fe-Nx-Zentren hergestellt. Ein höherer Kohlenstoffanteil führt auch zu einer höheren Anzahl von Katalysatorstellen in den Graphenschichten, die für die Insertion aktiver Zentren verfügbar sind.
- Zum Vergleich wurde eine Pt/C-Elektrode analysiert.
- In der elektrochemischen Zelle waren folgen Elektroden untergebracht:
- Arbeitselektrode – der Katalysator wurde auf die GC-Scheibe gegossen und mit 5% Nafion® stabilisiert;
- Als Gegenelektrode wurde ein Platingewebe und als Referenzelektrode Ag/AgCl verwendet, als Elektrolyt wurde 0,1 M KOH verwendet.
- Für die Tests in einer Anionen-Brennstoffzelle wurden Gasdiffusionselektroden verwendet: die Anode wurde mit niedrig beladenem PtRu/C-Material hergestellt (0,125 mg PtRu pro cm2, 0,08 mg Pt pro cm2), während für die Kathode der Fe-N-C-Katalysator verwendet wurde – beide wurden durcbh Aufsprühen von Katalysatortinte auf eine Gasdiffusionsschicht hergestellt.
Bild: iStock
Sie müssen angemeldet sein, um einen Kommentar zu veröffentlichen.