Veröffentlicht am

Hocheffiziente Entsalzung durch Nanoröhrchen

Die Trennung flüssiger Kompartimente ist nicht nur für die Energiegewinnung biologischer Zellen von Bedeutung, da dort die Zellatmung stattfindet, sondern auch für elektrochemische Zellen und Entsalzung durch revertierte Osmose und andere Prozesse. Es ist also nur folgerichtig, daß die die angewandte Forschung sich intensiv damit beschäftigt. Wir haben schon in mehreren Artikeln über vielversprechende Versuche berichtet, Membranen billiger und effektiver zu machen. Auch Nanomaterialien sind schon intensiv beforscht worden.

In Folge klimatischer Veränderungen, hervorgerufen durch die globale Erwärmung, wird Wasserknappheit immer häufiger zu einem Problem in vielen Teilen der Welt. Am Meer gelegene Siedlungen können ihre Versorgung mit entsalztem Wasser aus Meerwasser und Brackwasserquellen sichern.

Jetzt haben Forscher des kalifornischen Lawrence Livermore National Laboratory (LLNL) Poren aus Kohlenstoffnanoröhrchen entwickelt, die so effizient Salz aus Wasser entfernen, daß sie mit kommerziellen Entsalzungsmembranen vergleichbar sind. Diese winzigen Poren haben einen Durchmesser von nur 0,8 Nanometern (nm). Ein menschliches Haar einen Durchmesser von 60.000 nm. Die Ergebnisse haben die Forscher in der Zeitschrift Science Advances publiziert.

Die vorherrschende Technologie zur Entfernung von Salz aus Wasser ist die Umkehrosmose. Dabei wird eine Dünnschicht-Verbundmembran (DVM) verwendet, um Wasser von Ionen zu trennen. Bisher war die Leistung dieser Membranen jedoch unbefriedigend. Beispielsweise sind DV-Membranen durch die Kompromisse zwischen Permeabilität und Selektivität eingeschränkt. Zudem weisen sie häufig eine unzureichende Abstoßung einiger Ionen und Spuren von Verunreinigungen auf.  Das erfordert zusätzliche Reinigungsstufen die wieder die Energiekosten erhöhen.

Wie so oft, haben sich die Forscher die Natur zum Vorbild genommen. Biologische Wasserkanäle, auch als Aquaporine bekannt, liefern eine Blaupause für die Strukturen, die eine höhere Leistung bieten können. Diese Aquaporine haben extrem enge innere Poren, die das Wasser zusammendrückt. Dadurch wird eine extrem hohe Wasserdurchlässigkeit mit Transportraten von mehr als 1 Milliarde Wassermolekülen pro Sekunde pro Pore ermöglicht. Kohlenstoffnanoröhren stellen aufgrund der geringen Reibung des Wassers auf den Innenflächen einen der vielversprechenden Ansatz für künstliche Wasserkanäle dar.

Die Forschergruppe entwickelte Nanoröhrchen-Porine, die sich selbst in nachgeahmte biologische Membranen einfügen. Diese künstlichen Wasserkanäle bilden die Funktionalität von Aquaporinkanälen nach. Die Forscher maßen den Wasser- und Chloridionentransport durch die künstlichen Porine mit einem Durchmesser von 0,8 nm. Computersimulationen und Experimente unter Verwendung de künstlichen Porine in Lipidmembranen zeigten einen verbesserten Fluß sowie eine starke Ionenabstoßung in den Kanäle von Kohlenstoffnanoröhrchen.

Mit diesem Verfahren kann man den genauen Wert der Wasser-Salz-Permselektivität in den engen Kohlenstoffnanoröhrchen bestimmen. Simulationen auf Atomebene bieten eine detaillierte molekulare Ansicht der neuartign Kanäle. Bei Frontis Energy freuen wir uns über diesen vielversprechenden Ansatz und hoffen schon bald ein kommerzielles Produkt auf dem Markt sehen zu können.

(Bild: Wikipedia)

Veröffentlicht am

Umgekehrte Elektrodialyse mit Nafion™-Membranen erzeugt erneuerbare Energie

Um dem weltweiten Bedarf an sauberen Energiequellen gerecht zu werden, stößt die durch umgekehrte Elektrodialyse (UED) gewonnene Energie mit Salzgehaltsgradienten in den letzten Jahren auf großes Interesse. Darüber hinaus wird Solelösung aus der Meerwasserentsalzung derzeit als Abfall betrachtet. Dank seines hohen Salzgehalts kann es jedoch als wertvolle Ressource für die UED genutzt werden. Die UED ist eine technische Anpassung der osmotischen Energieproduktion der Natur, bei der Ionen über die Zellmembran fließen, um die universelle biologische Währung ATP zu produzieren. Diese Energie wird auch durch die UED-Technologie gewonnen.

Mehr denn je besteht Bedarf an nachhaltigen und umweltfreundlichen technologischen Lösungen, um mit der ständig wachsenden Nachfrage nach sauberem Wasser und sauberer Energie Schritt zu halten. Die traditionelle lineare Art der Energieproduktion ist nicht nachhaltig und der neue Ansatz der Kreislaufwirtschaft hat einen Platz gefunden, an dem Abfälle als wertvolle Ressource für einen anderen Prozess betrachtet werden können. In dieser Hinsicht ist die umgekehrte Elektrodialyse eine vielversprechende elektromembranbasierte Technologie zur Erzeugung von Strom aus konzentrierten Lösungen durch Ernte der freien Gibbs-Energie zum Mischen der Lösungen mit unterschiedlichem Salzgehalt. Insbesondere in Entsalzungsanlagen hergestellte Solelösungen, die derzeit als Abfall betrachtet werden, können als konzentrierte Ströme im RED-Stapel verwendet werden.

Avci et al. der Universität von Kalabrien haben kürzlich ihre Lösung für die Entsorgung von Sole mit UED-Stack veröffentlicht. Sie haben erkannt, dass zur Maximierung der erzeugten Leistung die hohe Permselektivität und Ionenleitfähigkeit von Membrankomponenten in UED wesentlich sind. Obwohl Nafion™-Membranen zu den bekanntesten kommerziellen Kationenaustauschmembranlösungen für elektrochemische Anwendungen gehören, wurden keine Untersuchungen zur Verwendung für RED-Prozesse durchgeführt. Dies war der erste gemeldete UED-Stapel mit Nafion™-Membranen.

Eine typische UED-Einheit ähnelt einer Elektrodialyseeinheit (ED), bei der es sich um eine kommerzialisierte Technologie handelt. ED verwendet eine Beschickungslösung und elektrische Energie, während Konzentrat und Verdünnung getrennt erzeugt werden. Im Gegensatz dazu verwendet UED konzentrierte und verdünnte Lösungen, die kontrolliert miteinander gemischt werden, um spontan elektrische Energie zu erzeugen. In einem UED-Stapel wiederholen sich UED-Zellen, die aus alternierenden Kationen- und Anionenaustauschermembranen bestehen, die für Anionen und Kationen selektiv sind. Der Salzgradient über jeder Ionenaustauschermembran erzeugt eine Spannungsdifferenz, die die treibende Kraft für den Prozess ist. Die Ionenaustauschermembranen sind eine der wichtigsten Komponenten eines UED-Stapels. Die Leistung von Nafion™-Membranen (Nafion™ 117 und Nafion™ 115) wurde unter Bedingungen eines hohen Salzgehaltsgradienten für die mögliche Anwendung in UED bewertet. Um die natürlichen Umgebungen des UED-Betriebs zu simulieren, wurden NaCl-Lösung sowie Mehrkomponenten-NaCl + MgCl2 getestet.

Die Bruttoleistungsdichte unter hohem Salzgehaltsgradienten und die Wirkung von Mg2+ auf die Effizienz bei der Energieumwandlung wurden in Einzelzellen-UED unter Verwendung von Nafion™ 117, Nafion™ 115, CMX und Fuji-CEM-80050 als Kationenaustauschermembranen bewertet. Zwei kommerzielle Kationenaustauschermembranen – CMX und Fuji-CEM 80050, die häufig für UED-Anwendungen verwendet werden, haben als Vergleich gedient.

Die Ergebnisse zeigen, dass unter der Bedingung von 0,5 M / 4,0 M NaCl-Lösungen das höchste Pd,max unter Verwendung einer Nafion™ -Membran erreicht wurde. Dieses Ergebnis wird auf ihre hervorragende Permselektivität im Vergleich zu anderen CEMs zurückgeführt. In Gegenwart von Mg2+ -Ionen wurde Pd,max eine Reduktion von 17 und 20% für Nafion™ 115 bzw. Nafion™ 117 aufgezeichnet. Beide Membranen behielten ihren geringen Widerstand bei; Unter dieser Bedingung wurde jedoch ein Verlust an Permselektivität gemessen. Es wurde jedoch berichtet, dass Nafion™ -Membranen andere kommerzielle Membranen wie CMX und Fuji-CEM-80050 für die UED-Anwendung übertrafen.

(Mima Varničić, 2020, photo: Wikipedia)