Veröffentlicht am

Multifunktionaler Iridium-Katalysator für Elektrolyse und Brennstoffzellen

Ein Großteil des globalen Energiebedarfs wird heute durch fossilen Brennstoffen abgedeckt. Gleichzeitig sagt die Internationale Energieagentur voraus, daß sich der weltweite Energiebedarf bis 2040 verdoppeln wird. Dies ist hauptsächlich durch den zusätzlichen Bedarf  in Schwellen- und Entwicklungsländern begründet.

Um den wachsenden globalen Energiebedarf zu bedienen und fossile Brennstoffe zu ersetzen, hat sich bei politischen Entscheidungsträgern die Meinung durchgesetzt, daß alternative, saubere und erneuerbare Energiequellen die beste Lösung sind. Solche erneuerbaren Energiequellen können Strom aus Solar-, Windenergie oder Geothermie sowie Wasserkraft sein. Fuer letztgenannte stehen jedoch keine zusätzlichen Standorte in Industrieländern zur Verfügung.

Während Sonnen- und Windenergie an den meisten Orten der Welt zu mehr oder weniger angemessenen Kosten verfügbar sind, ist ihr größter Nachteil, daß sie instet verfuegbar, schwer zu lagern und zu transportieren sind. Außerdem kann man damit keine Autos, Flugzeuge oder Schiffen betanken. Die Umwandlung von Sonnen- und Windenergie in Wasserstoffgas könnte ein eleganter Weg aus diesem Dilemma sein. Der Rohstoff Wasser stünde reichlich zur Verfügung. Die Diversifizierung des Energiemixes durch Hinzufügen von Wasserstoff zu erschwinglichen Kosten kann mit geringeren Emissionen zudem effizienter sein. Daher wächst das Interesse an Elektrolyse und Brennstoffzellen stetig.

Der gößte Anteil des heute verbrauchten Wasserstoffs wird durch Dampfreformierung von Erdgas hergestellt. Wasserstoff kann jedoch auch durch Elektrolyse von Wasser gewonnen werden. Elektrolyse erfolgt in zwei Elektrodenreaktionen: Der Wasserstoffreaktion (WR) an der Kathode und der Sauerstoffreaktion (OR) an der Anode.

Brennstoffzellen kehren die Elektrolysereaktionen um indem sie Wasserstoff und Sauerstoff wieder zusammenfügen, um Wasser zu erhalten. Damei wird elektrische Energie freigesetzt. Während es verschiedene Arten von Brennstoffzellen gibt, werden diejenigen, die üblicherweise mit Wasserstoff als Brennstoff verwendet werden, als Polymerelektrolytmembran-Brennstoffzellen oder PEMFC bezeichnet. Die PEM-Abkürzung wird auch häufig für Protonenaustauschermembranen verwendet, die aus Polymeren hergestellt werden können, beispielsweise Nafion™. In PEMFC wird die Energie durch die Wasserstoffoxidationsreaktion (WOR) an der Anode- und Sauerstoffreduktionsreaktion (ORR) an der Kathode freigesetzt. Um wirtschaftlich machbar zu werden, gibt es noch technische Herausforderungen von Wasserelektrolyzern und Brennstoffzellen, um zu überwinden. Einige technische Probleme führen zu einem ernsthaften Systemabbau.

Wasserstoff (H2) und Sauerstoff (O2) werden in die Brennstoffzelle gepumpt, wo sie durch zwei Elektroden und das Elektrolyt zu Wasser verbrannt werden.

Eine Studie, die Forscher der Technischen Universität Berlin und des Korea Institute of Science and Technology in Nature Communications veröffentlicht wurde, schlägt einen neuartigen Iridium-Elektrokatalysator mit multifunktionalen Eigenschaften und bemerkenswerter Reversibilität vor. Zwar ist Iridium ebenfalls ein Edelmetall der Platin-Gruppe-Metalle. Der neuartige Iridium-Katalysator wurde jedoch für die Prozesse ausgelegt, in denen sich elektrochemische Reaktionen schnell ändern, wie beispielsweise die Spannungsumkehr der Wasserelektrolyse- und PEMFC-Systeme. Dies würde die beiden Systeme in einem vereinen und somit ein großer wirtschaftlicher Nutzen gegenüber bestehenden Lösungen sein.

Bestehende Herausforderungen

Überraschend sich ändernde Betriebsbedingungen wie zum Beispiel das plötzliche Abschalten der Elektrolysespannung führen zu erhöhten Wasserstoffelektrodenpotentialen. Das führt wiederum zum Zerfall der Wasserstoff produzierenden Elektroden.

In Brennstoffzellen kann an der Anode die Kraftstoffmangel auftreten, was zu einer Spannungsumkehr führt. Letztendlich bewirkt dies die Ermüdung der Brennstoffzellenkomponenten wie zum Beispiel des Katalysatorträgers, der Gasdiffusionsschicht und Flußfeldplatten. Um einen beständigen Wasseroxidationskatalysator an die Anode der PEMFCs einzuführen, um die Sauerstoffreaktion zu beschleunigen. Die Wasseroxidation konkurriert letztlich mit der Kohlenstoffkorrosion als Elektronenquelle.

Gestaltung eines einzigartigen multifunktionalen iridiumbasierten multifunktionalen Katalysators

Für die Studie wurde ein kristalliner multifunktionaler Iridium-Nanokatalysator unter Berücksichtigung der genannten Herausforderungen für Elektrolyse und Brennstoffzellen entworfen.

Der Grund, washalb ein Material basierend auf Iridium ausgewählt wurde, ist bemerkenswerte Katalyseaktivität der Sauerstoffreaktion bei gleichzeitig guter Wasserstoffbildung und -oxidation. Es ist ein hervorragendes Material für Anoden und Kathoden in Elektrolyseuren sowie für Brennstoffzellen-Anoden. Um eine Referenz fuer ihren IrNi-Nanopartikel auf Kohlenstoff mit hoher Kristallinität (IrNi/C-HT) zu haben, synthtisierten die Wissenschaftler eine Variante mit niedriger Kristallinität (IrNr/C-LT). Dabei wurde ein spezielles Imprägnierverfahren verwendet.

Die Forscher zeigten, daß die Oberfläche von IrNi/C-HT reversibel zwischen dem metallischen und mineralischen IrNiOx-Zustand umgewandelt wurde. Bei Sauerstoffentwicklung, das heißt bei anodische Wasseroxidation, bildeten die kristallinen Nanopartikel eine dünne IrNiOx-Atomschicht. Diese Oxidschicht verwandelte sich reversibel in metallisches Iridium, wenn sie auf kathodische Potentiale zurückkehrt. Die Umkehrung ermöglicht es dem Katalysator, seine hohe Wasserstoff-Redox-Aktivität wiederzuerlangen.

Die Experimente zeigten auch, daß die Leistung von IrNi/C-LT nach der Sauerstoffbildung stark abnimmt. Der Katalysatorabbau war auf die irreversible Zerstörung der amorphen IrNiOx-Oberfläche zurückzuführen.

In situ-Aufnahmen mithilfe der XANES-Spektroskopie und der Röntgenphotoelektronenspektroskopie (XPS) an der dünnen IrNiOx-Schicht bestätigten eine Zunahme der d-Bandlöcher während Sauerstoffreaktion. Diese wurden fuer die hervorragende Wasseroxidationseigenschaften IrNi/C-HT-Katalysators verantwortlich gemacht. Die dünne IrNiOx-Schicht wurde wie erwartet reversibel in die metallische Oberfläche umgewandelt. Die mechanistische Untersuchung der reversiblen katalytischen Aktivität der IrNiOx-Schicht der Brennstoffzelle wurde elektrochemisch und durch Massenspektrometrie mit induktiv gekoppeltem Plasma (ICP-MS) untersucht. Auch hier wurde gezeigt, daß die reversiblen IrNiOx-Schichten regeneriert wurden.

Darüber hinaus wurden die Leistung und katalytische Umkehrbarkeit synthetisierter Elektrokatalysatoren getestet. Die Wasserstoffoxidation und Sauerstoffbildung wurden in einer Brennstoffzelle unter Kraftstoffmangel untersucht. Unter Verwendung der Spannungsumkehrung wurde die Brennstoffzelle in einen Elektrolyseur umgewandelt.

Kraftstoffmangel wurde in einer PEM-Brennstoffzelle mit IrNi/C-HT und IrNi/C-LT herbeigeführt. Die anfängliche Brennstoffzellenleistung von IrNi/C-LT und -HT war jedoch aufgrund der auftrtenden Wasserstoffoxidation und der speziellen Metallzusammensetzung niedriger als der des kommerziellen Pt/C-Katalysators.

Es wurde außerdem gezeigt, daß der IrNi/C-HT-Katalysator seine bifunktionelle katalytische Aktivität in der Brennstoffzelle / dem Elektrolyseur  beibehielt. Der neue Ansatz soll nun zukünftige Forscher ermuntern, ebenfalls die Umkehrbarkeit von Nanokatalysatoren untersuchen. Eine Vielzahl von elektrochemischen Reaktionen werden so ermöglicht, angefangen mit der Spannungsumkehr in Brennstoffzellen und Elektrolyseuren.

Bei Frontis Energy freuen wir uns auf den neuen Iridium-Katalysator in unserem Shop, sobald dieser verfügbar ist.

Foto: Iridium / Wikipedia

Veröffentlicht am

Selbstregulierende Anoden in intelligenten Brennstoffzellen verbessern das Wassermanagement

Wasserstoffbrennstoffzellen werden häufig als Schlüsselelement beim Übergang zu nachhaltiger Energieerzeugung angesehen. Ihr Wirkungsgrad ist doppelt so hoch wie der von Verbrennungsmotoren. Brennstoffzellen wandeln die chemische Energie von Wasserstoff und Sauerstoff direkt in Strom und Wasser um. Daher spielt Wasser eine zentrale Rolle in Brennstoffzellen. Es sorgt für den Ionentransport und ist natürlich auch das Produkt der Reaktion selbst. In einer Anionenaustauschmembran-Brennstoffzelle (AAMBZ) muß das Wasser in der Anodenkatalysatorschicht (AKS) für die Sauerstoffreduktionreaktion auf die Kathodenkatalysatorschicht (KKS) diffundieren. Für einen höheren Effizienz der Wasserstoffdiffusion ist daher intelligentes Wassermanagement erforderlich, um so das Reaktionswasser aus der AKS zu entfernen und in der gesamten Membranelektrodenanordnung (MEA) auszubalancieren.

Es ist daher nur folgerichtig, daß ein besonderer Schwerpunkt der Brennstoffzellenforschung auf Wassermanagement liegt, um so bessere Reaktionsbedingungen sowohl für die Anode als auch für die Kathode zu ermöglichen. Die asymmetrische Befeuchtung von Reaktionsgasen wird allgemein als bester Lösungsansatz angesehen. Dadurch soll eine ausgeglichene Wasserbilanz zwischen den beiden Elektroden erreicht werden. Bei höheren Temperaturen verdampft jedoch überschüssiges Anodenwasser. Dieser Vorgang verursacht Wassermangel an der Kathode, die jedoch Wasser benötigt, um einwandfrei zu funktionieren. Um dem Wasserverlust entgegenzuwirken, wurde ein Komtrollsystem entwickelt, das den Rückfluß an der Anode und der Kathode steuert. Solche externen Steuerungsmechanismen erhöhen jedoch die Komplexität der Systemsteuerung.

Ein passives Steuerungssystem durch MEA-Modifikationen könnte das Wassermanagement erleichtern. Die Feuchtigkeitskontrolle in Brennstoffzellen kann durch besser dafür geeigneten Gasdiffusionsschichten erreicht werden. Verschiedener Arten von hydrophoben Materialien für die Anode und hydrophilen für die Kathode können so die gesamte Kraftstoffzellenleistung verbessern. Polyethylen-Tetrafluorethylen (PTFE)-Kopolymermembranen, wie Nafion™, haben eine hohe Wasserdurchlässigkeit. Diese Eigenschaft unterstützt den Wasserabfluß um so die Anodenüberflutung zu verhindern. Gleichzeitig wird so die Austrocknung der Kathode verhindert. Das Entwerfen einer geeigneten Mikrostruktur oder eine Veränderung des Ionomergehalts innerhalb der KKS könnte dem zuträglich sein. Insgesamt würde dadurch die Zelleistung und -handhabung verbessert.

Eine aktuelle Veröffentlichung in der Fachzeitschrift Cell Reports Physical Science hat sich mit diesem Thema auseinandergesetzt. Die vorgestellte Studie hat untersucht, wie mehrschichtiges KKS-Design mit der Gradientenkapillarkraft den Wasserhaushalt der Brennstoffzelle beeinflußt, um das Wasserbilanzproblem der Anoden zu lösen. Für den Zweck der Studie wurden Platin auf Kohlenstoff und Platin-Ruthenium auf Kohlenstoff als Anodenkatalysatoren ausgewählt. Ruthenium erhöht die Wasserstoffoxidationsreaktionsaktivität und besitzt auch vorteilhafte strukturelle Eigenschaften. Wassermanagement und Leistung der Brennstoffzellen sollten von der Struktur der AKS beeinflußt werden.

Mikrostrukturanalyse der AKS

Die AKS, bestehend aus verschiedenen Schichten von Pt / C und PtRu / C und einer gemischten Version mit einer ähnlichen Dicke von etwa 9 bis 10 μm wurden mit energierer dispergierender Röntgenspektroskopie (engl. EDX) analysiert.

PT / C AKS hatte Poren von weniger als 150 nm, während Poren von PtRu / C  zwischen 300-400 nm groß waren. Die gemischte AKS hatte eine Porengröße <200 nm.

Die Forscher kamen zu dem Schluß, daß PT / C und PtRu / C AKS eine stratifizierte Porengrößenverteilung in Form eines Gradienten über die Anionenaustauschermembran und die Gasdiffusionsschicht aufwiesen. Die gemischte AKS hatte jedoch über die gesamte MEA eine homogene Porenstruktur.

Membranelektrodenanordnung unter Verwendung einer Polymerelektrolytmembran

Feuchtigkeits-Adsorption und Desorptionsverhalten von AKS

Um die Feuchtigkeitsadsorption und -desorption zu untersuchen, wurde die Änderung des Feuchtigkeitsgehalts des Brennstoffzellens in bezug auf verschiedene relative Luftfeuchtigkeit geprüft.

Es wurde beobachtet, daß sich der Feuchtigkeitsgehaltspegel mit anstieg der relativen Luftfeuchtigkeit von 20% auf 80% ebenfalls um bis zu 50% erhöhte.

Mit länger anhaltenden relativen Luftfeuchtigkeit von 80% begann sich der Feuchtigkeitsgehalt von Pt / PtRu und PtRu / Pt AKS zu verringern. Dies war der Beweis für das selbstregulierende Wassermanagement.

Die Desorption kam bei einer relativen Luftfeuchtigkeit von 60% zu stande. Der Wassergehalt in der AKS zeigte in jeder relativen Feuchtigkeitseinstellung eine schnelle Adsorption und langsame Freisetzung.

Die physikalische Anpassung des Wasserverhaltens wurde in PtRu / Pt-AKS beobachtet. Dies wurde auf Gradientennanoporen zurückgeführt die den Wassertransport förderten, wenn Reaktionswasser in den AKS erzeugt wurde. Dieses Verhalten würde den Betrieb von Brennstoffzellen bei hoher Stromdichte erleichtern.

Brennstoffzellenleistung mit modifizierter AKS

Um den strukturellen Effekt auf das Wassermanagement während des Betriebs zu beurteilen, wurde die Leistung der Brennstoffzellen bei unterschiedlicher relativer Luftfeuchtigkeit und Temperatur untersucht.

Mit zunehmender relativer Luftfeuchtigkeit von 40% auf 80% wurde auch eine Erhöhung der maximalen Leistungsdichte beobachtet, während die Temperatur bei 50°C konstant blieb. Dies war auf eine höhere ionische Leitfähigkeit bei hoher Membranhydratation zurückzuführen.

Bei relativer Luftfeuchtigkeit von 100% verringerte sich jedoch eine maximale Leistungsdichte der Pt / PtRu-MEA und der gemischten MEA. Bei der invertierten MEA-Version mit PtRu / Pt wurde ein Anstieg auf 243 mW / cm² beobachtet. Dies deutete an, daß die Feuchtigkeitsdesorptionsfähigkeit der PtRu / Pt-MEA den Stofftransport während des Brennstoffzellenbetriebs förderte.

Bei einer Temperatur von 60°C und 100% relativer Luftfeuchtigkeit erreichte die PtRu / Pt-Brennstoffzelle eine maximale Leistungsdichte mit 252 mW / cm².

Für PtRu / Pt-MEA wurde auch ein Haltbarkeitstest durchgeführt. Dieser zeigte, daß nach einem Dauerbetrieb von mehr als 16 Stunden bei 100 mA / cm² der Spannungsabfall lediglich <4% betrug.

Schlußfolgerungen

Durch die Untersuchung wurde deutlich, daß die PtRu / Pt-AKS mit seiner homogenen Schicht eine bessere Selbstregulierung in bezug auf Brennstoffzellen-Wassermanagement hatte. Die Nanoporenstruktur der Katalysatorschicht ermöglichte es, Wasser durch Kapillarkräfte zu transportieren. Überschüssiges Wasser der Anode konnte in Richtung der Kathode transportiert werden, wo es bei der Reaktion half oder es wurde über die Gasdiffusionsschicht entfernt, um eine Überflutung der Anode zu verhindern. Darüber hinaus zeigte diese Katalysatorschicht aus PtRu / Pt auch  allgemein bessere Leistungsdaten.

Bei Frontis Energy glauben wir, daß die Forschungsergebnisse Probleme beim Wassermanagement in den Brennstoffzellen lösen könnten. Da es sich um ein passives Steuerungssystem handelt, das durch interne Designmodifikationen der Brennstoffzellen chrakterisiert ist, könnten komplizierte externe Systeme ersetzt oder ergänzt werden. Die Studie hilft sicherlich bei der automatisierten Steuerung von Brennstoffzellen, da die Ergebnisse sie intelligenter machen könnten.

Quelle: Self-adjusting anode catalyst layer for smart water management in anion exchange membrane fuel cells, Cell Reports Physical Science, Volume 2, Issue 3, 24 March 2021, 100377