Veröffentlicht am

Multifunktionaler Iridium-Katalysator für Elektrolyse und Brennstoffzellen

Ein Großteil des globalen Energiebedarfs wird heute durch fossilen Brennstoffen abgedeckt. Gleichzeitig sagt die Internationale Energieagentur voraus, daß sich der weltweite Energiebedarf bis 2040 verdoppeln wird. Dies ist hauptsächlich durch den zusätzlichen Bedarf  in Schwellen- und Entwicklungsländern begründet.

Um den wachsenden globalen Energiebedarf zu bedienen und fossile Brennstoffe zu ersetzen, hat sich bei politischen Entscheidungsträgern die Meinung durchgesetzt, daß alternative, saubere und erneuerbare Energiequellen die beste Lösung sind. Solche erneuerbaren Energiequellen können Strom aus Solar-, Windenergie oder Geothermie sowie Wasserkraft sein. Fuer letztgenannte stehen jedoch keine zusätzlichen Standorte in Industrieländern zur Verfügung.

Während Sonnen- und Windenergie an den meisten Orten der Welt zu mehr oder weniger angemessenen Kosten verfügbar sind, ist ihr größter Nachteil, daß sie instet verfuegbar, schwer zu lagern und zu transportieren sind. Außerdem kann man damit keine Autos, Flugzeuge oder Schiffen betanken. Die Umwandlung von Sonnen- und Windenergie in Wasserstoffgas könnte ein eleganter Weg aus diesem Dilemma sein. Der Rohstoff Wasser stünde reichlich zur Verfügung. Die Diversifizierung des Energiemixes durch Hinzufügen von Wasserstoff zu erschwinglichen Kosten kann mit geringeren Emissionen zudem effizienter sein. Daher wächst das Interesse an Elektrolyse und Brennstoffzellen stetig.

Der gößte Anteil des heute verbrauchten Wasserstoffs wird durch Dampfreformierung von Erdgas hergestellt. Wasserstoff kann jedoch auch durch Elektrolyse von Wasser gewonnen werden. Elektrolyse erfolgt in zwei Elektrodenreaktionen: Der Wasserstoffreaktion (WR) an der Kathode und der Sauerstoffreaktion (OR) an der Anode.

Brennstoffzellen kehren die Elektrolysereaktionen um indem sie Wasserstoff und Sauerstoff wieder zusammenfügen, um Wasser zu erhalten. Damei wird elektrische Energie freigesetzt. Während es verschiedene Arten von Brennstoffzellen gibt, werden diejenigen, die üblicherweise mit Wasserstoff als Brennstoff verwendet werden, als Polymerelektrolytmembran-Brennstoffzellen oder PEMFC bezeichnet. Die PEM-Abkürzung wird auch häufig für Protonenaustauschermembranen verwendet, die aus Polymeren hergestellt werden können, beispielsweise Nafion™. In PEMFC wird die Energie durch die Wasserstoffoxidationsreaktion (WOR) an der Anode- und Sauerstoffreduktionsreaktion (ORR) an der Kathode freigesetzt. Um wirtschaftlich machbar zu werden, gibt es noch technische Herausforderungen von Wasserelektrolyzern und Brennstoffzellen, um zu überwinden. Einige technische Probleme führen zu einem ernsthaften Systemabbau.

Wasserstoff (H2) und Sauerstoff (O2) werden in die Brennstoffzelle gepumpt, wo sie durch zwei Elektroden und das Elektrolyt zu Wasser verbrannt werden.

Eine Studie, die Forscher der Technischen Universität Berlin und des Korea Institute of Science and Technology in Nature Communications veröffentlicht wurde, schlägt einen neuartigen Iridium-Elektrokatalysator mit multifunktionalen Eigenschaften und bemerkenswerter Reversibilität vor. Zwar ist Iridium ebenfalls ein Edelmetall der Platin-Gruppe-Metalle. Der neuartige Iridium-Katalysator wurde jedoch für die Prozesse ausgelegt, in denen sich elektrochemische Reaktionen schnell ändern, wie beispielsweise die Spannungsumkehr der Wasserelektrolyse- und PEMFC-Systeme. Dies würde die beiden Systeme in einem vereinen und somit ein großer wirtschaftlicher Nutzen gegenüber bestehenden Lösungen sein.

Bestehende Herausforderungen

Überraschend sich ändernde Betriebsbedingungen wie zum Beispiel das plötzliche Abschalten der Elektrolysespannung führen zu erhöhten Wasserstoffelektrodenpotentialen. Das führt wiederum zum Zerfall der Wasserstoff produzierenden Elektroden.

In Brennstoffzellen kann an der Anode die Kraftstoffmangel auftreten, was zu einer Spannungsumkehr führt. Letztendlich bewirkt dies die Ermüdung der Brennstoffzellenkomponenten wie zum Beispiel des Katalysatorträgers, der Gasdiffusionsschicht und Flußfeldplatten. Um einen beständigen Wasseroxidationskatalysator an die Anode der PEMFCs einzuführen, um die Sauerstoffreaktion zu beschleunigen. Die Wasseroxidation konkurriert letztlich mit der Kohlenstoffkorrosion als Elektronenquelle.

Gestaltung eines einzigartigen multifunktionalen iridiumbasierten multifunktionalen Katalysators

Für die Studie wurde ein kristalliner multifunktionaler Iridium-Nanokatalysator unter Berücksichtigung der genannten Herausforderungen für Elektrolyse und Brennstoffzellen entworfen.

Der Grund, washalb ein Material basierend auf Iridium ausgewählt wurde, ist bemerkenswerte Katalyseaktivität der Sauerstoffreaktion bei gleichzeitig guter Wasserstoffbildung und -oxidation. Es ist ein hervorragendes Material für Anoden und Kathoden in Elektrolyseuren sowie für Brennstoffzellen-Anoden. Um eine Referenz fuer ihren IrNi-Nanopartikel auf Kohlenstoff mit hoher Kristallinität (IrNi/C-HT) zu haben, synthtisierten die Wissenschaftler eine Variante mit niedriger Kristallinität (IrNr/C-LT). Dabei wurde ein spezielles Imprägnierverfahren verwendet.

Die Forscher zeigten, daß die Oberfläche von IrNi/C-HT reversibel zwischen dem metallischen und mineralischen IrNiOx-Zustand umgewandelt wurde. Bei Sauerstoffentwicklung, das heißt bei anodische Wasseroxidation, bildeten die kristallinen Nanopartikel eine dünne IrNiOx-Atomschicht. Diese Oxidschicht verwandelte sich reversibel in metallisches Iridium, wenn sie auf kathodische Potentiale zurückkehrt. Die Umkehrung ermöglicht es dem Katalysator, seine hohe Wasserstoff-Redox-Aktivität wiederzuerlangen.

Die Experimente zeigten auch, daß die Leistung von IrNi/C-LT nach der Sauerstoffbildung stark abnimmt. Der Katalysatorabbau war auf die irreversible Zerstörung der amorphen IrNiOx-Oberfläche zurückzuführen.

In situ-Aufnahmen mithilfe der XANES-Spektroskopie und der Röntgenphotoelektronenspektroskopie (XPS) an der dünnen IrNiOx-Schicht bestätigten eine Zunahme der d-Bandlöcher während Sauerstoffreaktion. Diese wurden fuer die hervorragende Wasseroxidationseigenschaften IrNi/C-HT-Katalysators verantwortlich gemacht. Die dünne IrNiOx-Schicht wurde wie erwartet reversibel in die metallische Oberfläche umgewandelt. Die mechanistische Untersuchung der reversiblen katalytischen Aktivität der IrNiOx-Schicht der Brennstoffzelle wurde elektrochemisch und durch Massenspektrometrie mit induktiv gekoppeltem Plasma (ICP-MS) untersucht. Auch hier wurde gezeigt, daß die reversiblen IrNiOx-Schichten regeneriert wurden.

Darüber hinaus wurden die Leistung und katalytische Umkehrbarkeit synthetisierter Elektrokatalysatoren getestet. Die Wasserstoffoxidation und Sauerstoffbildung wurden in einer Brennstoffzelle unter Kraftstoffmangel untersucht. Unter Verwendung der Spannungsumkehrung wurde die Brennstoffzelle in einen Elektrolyseur umgewandelt.

Kraftstoffmangel wurde in einer PEM-Brennstoffzelle mit IrNi/C-HT und IrNi/C-LT herbeigeführt. Die anfängliche Brennstoffzellenleistung von IrNi/C-LT und -HT war jedoch aufgrund der auftrtenden Wasserstoffoxidation und der speziellen Metallzusammensetzung niedriger als der des kommerziellen Pt/C-Katalysators.

Es wurde außerdem gezeigt, daß der IrNi/C-HT-Katalysator seine bifunktionelle katalytische Aktivität in der Brennstoffzelle / dem Elektrolyseur  beibehielt. Der neue Ansatz soll nun zukünftige Forscher ermuntern, ebenfalls die Umkehrbarkeit von Nanokatalysatoren untersuchen. Eine Vielzahl von elektrochemischen Reaktionen werden so ermöglicht, angefangen mit der Spannungsumkehr in Brennstoffzellen und Elektrolyseuren.

Bei Frontis Energy freuen wir uns auf den neuen Iridium-Katalysator in unserem Shop, sobald dieser verfügbar ist.

Foto: Iridium / Wikipedia

Veröffentlicht am

Wiederaufladbare PAM-Brennstoffzelle mit Wasserstoffspeicherpolymer

Brennstoffzellen gehören zu den effizientesten und saubersten alternativen Energiequellen. Sie haben das Potential, Stromerzeuger auf Basis fossiler Brennstoffe zu ersetzen. Insbesondere Protonenaustauschmembran-Brennstoffzellen (PAMBZ) sind aufgrund ihrer hohen Leistungsdichte und Effizienz bei niedrigen Betriebstemperaturen (ca. 60–80°C) vielversprechende Energieumwandler für zahlreiche Anwendung im Transportsektor, als Energiespeicher oder zur Stromerzeugung in entlegenen Regionen. PAMBZ könnten zu einem der saubersten Energieträger werden. Dies liegt daran, dass Wasser das Endprodukt solcher Energieumwandlungssysteme ist. Derzeit werden in diesen Brennstoffzellen hauptsächlich Nafion™ -Membranen als Wasserstoffbarrieren verwendet, die für ihre Robustheit bekannt sind.

PFSA Protonenaustauschmembran

Eine ausreichende Versorgung mit Wasserstoff ist für die Anwendung von PAMBZ-Systemen von entscheidender Bedeutung. Derzeit sind teure Hochdrucktanks (70 MPa) für die Wasserstoffspeicherung der neueste Stand der Technik. Neben den Kosten gibt es auch noch andere Nachteile wie die mangelnde Beweglichkeit und Sicherheit. Um diese Probleme anzugehen, wurden alternative Wasserstoffspeichermaterialien eingehend untersucht. Beispielsweise können Metallhydride und organische Hydridmaterialien Wasserstoff durch kovalente Bindung fixieren und freisetzen.

Jetzt haben Dr. Junpei Miyake und Kollegen von der Universität von Yamanashi, Japan, ein wiederaufladbares PAMBZ-System (RCFC) vorgeschlagen, das ausschließlich aus Polymeren besteht. Die Arbeit wurde in Nature Communications Chemistry veröffentlicht. Die Strategie der Forscher bestand darin, eine Polymerfolie zur Wasserstoffspeicher (HSP, ein organisches Festkörperhydrid) als Wasserstoffspeichermedium in der Brennstoffzelle anzubringen. Mit diesem Ansatz wurden die Probleme wie Toxizität, Entflammbarkeit und Flüchtigkeit sowie Bedenken in Bezug auf andere Komponenten wie Kraftstoffbehälter, Pumpen und den Verdampfer gelöst. Die HSP-Struktur basiert auf Fluorenol / Fluorenon-Gruppen, die als Wasserstoffspeicher dienen.

Um die Leistung ihrer wiederaufladbaren HSP-basierten Brennstoffzelle zu testen, brachten die Wissenschaftler die HSP-Folie an der Membranelektrode der anodischen Katalysatorschicht an. Gleichzeitig wurde die Kathodenseite wie bei regulären PAMBZ betrieben. Die Forscher berichteten ebenfalls, daß auch ein Iridiumkatalysator auf die Innenseite der HSP-Folie angebracht wurde. Dadurch wurden die Freisetzung und Fixierung des Wasserstoffs verbessert.

Zur Leistungsbeschreibung wurden der Brennstoffzellenbetrieb an sich, die Zyklusleistung und Haltbarkeit über mehrere Zyklen von je sechs Schritten getestet. Zuerst wurde die HSP-Folie für zwei Stunden mit Wasserstoff beladen. Darauf folgten eine Stickstoffgasspülung, um den überschüssigen Wasserstoff von der Anode zu entfernen. Nach dem Erhitzen der Zelle auf 80°C, wurde der Wasserstoff aus der HSP-Folie freigestzt. Zusammen mit dem der Kathodenseite zugeführten Sauerstoff erzeugte die Brennstoffzelle konstanten elektrischen Strom.

Die Forschergruppe zeigte, daß die HSP-Folie in 20, 30, 60 bzw. 360 Minuten respektive 20%, 33%, 51% oder 96% des gesamten fixierten Wasserstoffgases freisetzte. Die Temperatur betrug 80°C in Gegenwart des Iridiumkatalysators. Der Iridiumkatalysator konnte auch bis zu 58 Mol-% Wasserstoff absorbieren, was jedoch erheblich niedriger war als der im HSP gespeicherte Wasserstoff. Die maximale Betriebszeit betrug ca. 10,2 s / mgHSP (ca. 509 s für 50 mg HSP) bei einer konstanten Stromdichte von 1 mA / cm2. Die RCFCs erreichten eine Zyklisierbarkeit von mindestens 50 Zyklen. Darüber hinaus erwies sich die Verwendung einer gasundurchlässigen sulfonierten Polyphenylenmembran (SPP-QP, eine weitere PEM) als gute Strategie zur Verlängerung der Operationszeit der RCFC.

Zu den vorteilhaften Merkmalen des beschriebenen RCFC-Systems gehören seine verbessere Sicherheit, seine einfachere Handhabung und sein geringeres Gewicht. Diese Merkmale eignen sich beispielsweise perfekt für mobile Anwendungen in Brennstoffzellenfahrzeugen. Um wirtschaftlich einsetzbar zu sein, müssen jedoch die Wasserstoffspeicherkapazität und -kinetik (H2-Freisetzungs- / Fixierungsreaktionen) sowie die Katalysatorstabilität des RCFC-Systems weiter verbessert werden.

(Miroslava Varnicic, 2020)

Veröffentlicht am

Schneller photoelektrischer Wasserstoff

Das Erreichen hoher Stromdichten bei gleichzeitig hoher Energieeffizienz ist eine der größten Herausforderungen bei der Verbesserung photoelektrochemischer Geräte. Höhere Stromdichten beschleunigen die Erzeugung von Wasserstoff und anderer elektrochemischer Brennstoffe.

Jetzt wurde ein kompaktes solarbetriebenes Gerät zur Wasserstofferzeugung entwickelt, das den Brennstoff in Rekordgeschwindigkeit erzeugt. Die Autoren um Saurabh Tembhurne beschreiben ein Konzept im Fachblatt Nature Energy, das es ermöglicht, konzentrierte Sonneneinstrahlung (bis zu 474 kW/m²) durch thermische Integration, Stofftransportoptimierung und bessere Elektronik zwischen Photoabsorber und Elektrokatalysator zu verwenden.

Die Forschungsgruppe der Eidgenössischen Technischen Hochschule in Lausanne (EPFL) errechnete die Zunahme der maximalen Wirkungsgrade, die theoretisch möglich sind. Danach überprüften sie die errechneten Werte experimentell unter Verwendung eines Photoabsorbers und eines Elektrokatalysators auf Iridium-Rutheniumoxid-Platin-Basis. Der Elektrokatalysator erreichte eine Stromdichte von mehr als 0,88 A/cm², wobei der erechneten Wirkungsgrad für die Umwandlung von Sonnenenenergie in Wasserstof mehr als 15% betrug. Das System war unter verschiedenen Bedingungen für mehr als zwei Stunden stabil. Als nächtes wollen die Forscher ihr System skalieren.

Der produzierte Wasserstoff kann in Brennstoffzellen zur Stromerzeugung verwendet werden weshalb sich das entwickelte System zur Energierspeicherung eignet. Die mit Wasserstoff betriebene Stromerzeugung gibt nur reines Wasser ab, die saubere und schnelle Erzeugung von Wasserstoff ist jedoch eine Herausforderung. Bei der photoelektrischen Methode werden Materialien verwendet, die denen von Solarmodulen ähneln. Die Elektrolyte basierten in dem neuen System auf Wasser, wobei auch Ammoniak denkbar wäre. Sonnenlicht, das auf diese Materialien fällt, löst eine Reaktion aus, bei der Wasser in Sauerstoff und Wasserstoff gespalten wird. Bisher konnten alle photoelektrischen Methoden jedoch nicht im industriellen Maßstab eingesetzt werden.

2 H2O → 2 H2 + O2; ∆G°’ = +237 kJ/mol (H2)

Das neu entwickelte System nahm mehr als das 400-fachen der Sonnenenergie auf, die normalerweise auf eine bestimmte Erdoberfläche fällt. Dazu benutzten die Forscher Hochleistungslampen, um die notwendige „Sonnenenergie“ bereitzustellen. Bestehende Solaranlagen konzentrieren die Sonnenenergie mithilfe von Spiegeln oder Linsen in ähnlichem Maße. Die Abwärme wird verwendet, um die Reaktionsgeschwindigkeit zu erhöhen.

Das Team sagt voraus, daß das Testgerät mit einer Grundfläche von etwa 5 cm in sechs Sonnenstunden schätzungsweise 47 Liter Wasserstoffgas produzieren kann. Dies ist die höchste Rate pro Flächeneinheit für solche solarbetriebenen elektrochemischen Systeme. Bei Frontis Energy hoffen wir, dieses System schon bald testen und anbieten zu können.

(Foto: Wikipedia)