Veröffentlicht am

Möglichkeiten zur Energiespeicherung im EU-Markt

Der Energiespeicher isnd nicht nur wesentlicher Bestandteil für den zuverlässigen Betrieb moderner Stromnetze, sondern auch ein Schwerpunkt der globalen Energiewende. Energiespeicher sind die krtitische technologische Hürde bei der Einführung erneuerbarer Energie als alleinige Quelle der Stromversorgung. Hier werden ausgewählte Energiespeichermärkte in der EU bewertet. In den folgenden Blogbeiträgen werden diese detailliert beschrieben.

Deutschland ist mit über 80 MW installierter Wind- und Solarkapazität das absolut führende EU-Land in der Energiewende. Experten haben jedoch argumentiert, daß es unwahrscheinlich ist, den Gesamtbedarf Deutschlands an großtechnischen Energiespeichern in den nächsten 20 Jahren in nennenswerter Menge auszubauen. Dies ist auf eine Reihe von Faktoren zurückzuführen. Die geografische Lage Deutschlands und die zahlreichen Anschlüsse an benachbarte Stromnetze erleichtern den Export von Überschußstrom. Wenn Deutschland außerdem seine 2020-Ziele für Wind- und Solarkapazität (46 GW bzw. 52 GW) erreicht, würde das Angebot in der Regel 55 GW nicht überschreiten. Fast alles würde im Inland verbraucht und der Speicherbedarf wäre gering.

Bei der Bewertung der Energiespeicherung in Großbritannien stellt sich anders dar. Da es sich um einen isoliertes Inselstaat handelt, liegt der Schwerpunkt wesentlich stärker auf der Unabhängigkeit im Energiebereich. Dieses Bestreben ist nach Energieunabhängigkeit ist stärker, als das Ziel, einen kohlenstoffarmen Energiesektor aufzubauen. Die bestehende Gesetzgebung ist jedoch umständlich und birgt Hindernisse, die den Übergang zu einem kohlenstoffarmen Energiesektor − einschließlich Energiespeicherung − erheblich behindern. Die britische Regierung hat die Existenz gesetzgeberischer Hindernisse anerkannt und sich dazu verpflichtet, diese zu beseitigen. Im Rahmen dieser Bemühungen wird bereits eine Umstrukturierung ihres Strommarktes zu einem kapazitätsbasierten Markt durchgeführt. Die Aussichten für Energiespeicherung in Großbritannien sind vielversprechend, da nicht nur die Industrie, sondern auch die Öffentlichkeit und die Regierung erheblichen Druck ausüben, solche Anlagen in industriellem Maßstab weiterzuentwickeln. Der bevorstehende Brexit trübt diese Aussicht jedoch in merhfacher Hinsicht.

Italien, das einst stark von Wasserkraft abhängig war, bezieht derzeit 50% seines Stroms aus Erdgas, Kohle und Öl (34% Erdgas). Die Einführung einer Solar-FIT im Jahr 2005 führte zu einem deutlichen Wachstum in der Solarindustrie bevor das Programm im Juli 2014 endete. Italien belegt jetzt weltweit den 2. Platz bei der Pro-Kopf-Solarkapazität . In den letzten Jahren war ein deutlicher Anstieg der elektrochemischen Energiespeicherkapazität zu verzeichnen (>90 MW verfügbar). Dieser Anstieg wurde hauptsächlich von einzelnen TERNA Großprojekten angetrieben, TERNA ist Italiens Übertragungsnetzbetreiber (ÜNB). Diese Kapazität hat Italien zum führenden Anbieter von Energiespeicherkapazitäten in der EU gemacht. Der Markt wird jedoch bislang von den großen ÜNB dominiert. Die Kombination aus Abhängigkeit von importiertem Erdgas und mehr als 500.000 Photovoltaikanlagen, die keine FIT-Prämien mehr erheben, sowie die Erhöhung der Stromtarife, machen Italien zu einem erfolgversprehcenden Markt für Power-to-Gas für Privathaushalte.

Dänemark verfolgt aggressiv ein zu 100% erneuerbares Energieziel für alle Sektoren bis zum Jahr 2050. Zwar gibt es noch keine offizielle Gesetzgebung. Die Richtung wurde jedoch im Wesentlichen auf eines von zwei Szenarien eingegrenzt: ein auf Biomasse basierendes Szenario oder ein Wind + Wasserstoff-basiertes Szenario. Unter dem wasserstoffbasierten Szenario wären weitreichende Investitionen in die Erweiterung der Windkapazität und in die Kopplung dieser Kapazität mit Wasserstoff-Power-to-Gas-Systemen zur Speicherung überschüssiger Energie erforderlich. Angesichts des dänischen Fachwissens und der damit verbundenen Investitionen in die Windenergie ist zu erwarten, daß das künftige dänische Energiesystem auf dieser Stärke aufbaut und daher erhebliche Power-to-Gas-Investitionen erfordert.

In Spanien stagnierte der Ausbau erneuerbarer Energien aufgrund rückwirkender Richtlinienänderungen und Steuern auf den Verbrauch von solarbetriebenem Strom, die 2015 eingeführt wurden. Die Umsetzung des Königlichen Dekrets 900/2015 über den Eigenverbrauch machte Photovoltaikanlagen unrentabel und führte zu zusätzlichen Gebühren und Steuern für die Nutzung von Energiespeichergeräten. Wir haben keinen Hinweis darauf gefunden, daß in naher Zukunft ein Markt für Energiespeicher in Spanien entstehen wird.

Das letzte untersuchte Land waren die Niederlande, die von der EU wegen mangelnder Fortschritte bei den Zielen für erneuerbare Energien kritisiert wurden. Da nur 10% des niederländischen Stroms aus erneuerbaren Quellen stammt, besteht derzeit nur eine geringe Nachfrage nach großtechnischen Energiespeichern. Während die Niederlande möglicherweise hinter den Zielen für erneuerbaren Strom zurückbleiben, waren sie führend bei der Einführung von Elektrofahrzeugen. Ein Trend, der sich bis 2025 fortsetzen wird. Es wird geschätzt, daß eine Million Elektrofahrzeuge auf niederländischen Straßen fahren werden. Parallel zum Anstieg der Elektrofahrzeuge gab es einen starken Anstieg von Li-Ionen-Anlagen mit einer Leistung von weniger als 100 kW zur Speicherung von Energie an Ladestationen für Elektrofahrzeuge. Es wird erwartet, daß diese Anwendungen weiterhin im Fokus der Energiespeicherung in den Niederlanden stehen werden.

Ähnlich wie in Italien sind die Niederländer in ihren Häusern in hohem Maße auf Erdgas angewiesen. Diese Tatsache, gepaart mit einem immer stärkeren Bedarf an energieunabhängigen und -effizienten Häusern, könnte die Niederlande zu einem Hauptmarkt für Power-to-Gas-Technologien für Privathaushalte machen.

Jon Martin, 2019

(Foto: NASA)

Veröffentlicht am

Schneller photoelektrischer Wasserstoff

Das Erreichen hoher Stromdichten bei gleichzeitig hoher Energieeffizienz ist eine der größten Herausforderungen bei der Verbesserung photoelektrochemischer Geräte. Höhere Stromdichten beschleunigen die Erzeugung von Wasserstoff und anderer elektrochemischer Brennstoffe.

Jetzt wurde ein kompaktes solarbetriebenes Gerät zur Wasserstofferzeugung entwickelt, das den Brennstoff in Rekordgeschwindigkeit erzeugt. Die Autoren um Saurabh Tembhurne beschreiben ein Konzept im Fachblatt Nature Energy, das es ermöglicht, konzentrierte Sonneneinstrahlung (bis zu 474 kW/m²) durch thermische Integration, Stofftransportoptimierung und bessere Elektronik zwischen Photoabsorber und Elektrokatalysator zu verwenden.

Die Forschungsgruppe der Eidgenössischen Technischen Hochschule in Lausanne (EPFL) errechnete die Zunahme der maximalen Wirkungsgrade, die theoretisch möglich sind. Danach überprüften sie die errechneten Werte experimentell unter Verwendung eines Photoabsorbers und eines Elektrokatalysators auf Iridium-Rutheniumoxid-Platin-Basis. Der Elektrokatalysator erreichte eine Stromdichte von mehr als 0,88 A/cm², wobei der erechneten Wirkungsgrad für die Umwandlung von Sonnenenenergie in Wasserstof mehr als 15% betrug. Das System war unter verschiedenen Bedingungen für mehr als zwei Stunden stabil. Als nächtes wollen die Forscher ihr System skalieren.

Der produzierte Wasserstoff kann in Brennstoffzellen zur Stromerzeugung verwendet werden weshalb sich das entwickelte System zur Energierspeicherung eignet. Die mit Wasserstoff betriebene Stromerzeugung gibt nur reines Wasser ab, die saubere und schnelle Erzeugung von Wasserstoff ist jedoch eine Herausforderung. Bei der photoelektrischen Methode werden Materialien verwendet, die denen von Solarmodulen ähneln. Die Elektrolyte basierten in dem neuen System auf Wasser, wobei auch Ammoniak denkbar wäre. Sonnenlicht, das auf diese Materialien fällt, löst eine Reaktion aus, bei der Wasser in Sauerstoff und Wasserstoff gespalten wird. Bisher konnten alle photoelektrischen Methoden jedoch nicht im industriellen Maßstab eingesetzt werden.

2 H2O → 2 H2 + O2; ∆G°’ = +237 kJ/mol (H2)

Das neu entwickelte System nahm mehr als das 400-fachen der Sonnenenergie auf, die normalerweise auf eine bestimmte Erdoberfläche fällt. Dazu benutzten die Forscher Hochleistungslampen, um die notwendige „Sonnenenergie“ bereitzustellen. Bestehende Solaranlagen konzentrieren die Sonnenenergie mithilfe von Spiegeln oder Linsen in ähnlichem Maße. Die Abwärme wird verwendet, um die Reaktionsgeschwindigkeit zu erhöhen.

Das Team sagt voraus, daß das Testgerät mit einer Grundfläche von etwa 5 cm in sechs Sonnenstunden schätzungsweise 47 Liter Wasserstoffgas produzieren kann. Dies ist die höchste Rate pro Flächeneinheit für solche solarbetriebenen elektrochemischen Systeme. Bei Frontis Energy hoffen wir, dieses System schon bald testen und anbieten zu können.

(Foto: Wikipedia)

Veröffentlicht am

Ammoniak als Energiespeicher #3

Als treue Leserin oder treuer Leser unseres Blogs werden Sie sich bestimmt an unsere vorherigen Beiträge zum Thema Ammoniak als Energiespeicher erinnern. Darin beschreiben wir mögliche Wege zur Gewinnung von Ammoniak aus der Luft, sowie der Rückgewinnung der dabei aufgebrachten Energie in Form von Methan. Letzteres Verfahren haben wir zum Patent angemeldet (WO2019/079908A1). Da die weltweite Nahrungsmittelproduktion große Mengen Ammoniak als Dünger erfordert, ist die Technologie zur Gewinnung aus der Luft schon sehr ausgereift. Diese basiert im Wesentlichen noch immer auf dem Haber-Bosch-Verfahren, welches zu Beginne des letzten Jahrhunderts zur Industriereife gebracht wurde. Dabei wird atmosphärischer Stickstoff (N2) zu Ammoniak (NH3) reduziert. Trotz der Einfachheit der beteiligten Moleküle ist die Spaltung der starken Stickstoff-Stickstoff-Bindungen im N2 und die daruas folgende Stickstoff-Wasserstoff-Bindungen eine große Herausforderung für katalytische Chemiker. Die Reaktion findet in der Regel unter harschen Bedingungen statt und benötigt viel Energie, d.h. hohe Reaktionstemperaturen, hohe Drücke und komplizierte Kombinationen von Reagenzien, die zudem oft teuer und energieintensiv in der Herstellung sind.

Jetzt hat eine Forschergruppe um Yuya Ashida einen Artikel im renomierten Fachblatt Nature veröffentlicht, in dem sie zeigen, daß eine Samariumverbindung in wässriger Lösung mit einem Molybdänkatalysator kombiniert, Ammoniak aus Luftstickstoff bilden kann. Die Arbeit eröffnet neue Möglichkeiten auf der Suche nach Wegen zur Ammoniaksynthese, welche unter Umgebungsbedingungen ablaufen. Unter solchen Bedingungen wäre der Energieaufwand zur Herstellung von Ammoniak geringer und somit die Energieeffizienz bei Energiespeicherung höher. Im heutigen Haber-Bosch-Verfahren werden Luftstoff und Wasserstoffgas über einem eisenhaltigen Katalysator miteinander verbunden. Die weltweite Ammoniakproduktion liegt heute bei 250 bis 300 Tonnen pro Minute und liefert Düngemittel, mit denen fast 60% der Weltbevölkerung versorgt werden (The Alchemy of Air, erhältlich bei Amazon).

Vergleich von Ansätzen zur Herstellung von Ammoniak. Oben: Bei der industriellen Haber-Bosch-Synthese von Ammoniak (NH3) reagiert Stickstoffgas (N2) mit Wasserstoffmolekülen (H2), typischerweise in Gegenwart eines Eisenkatalysators. Das Verfahren erfordert hohe Temperaturen und Drücke, ist jedoch thermodynamisch ideal, weil nur wenig Energie für Nebenprozesse verschwendet wird. Mitte: Nitrogenase-Enzyme katalysieren die Reaktion von Stickstoff mit sechs Elektronen (e) und sechs Protonen (H+) unter Laborbedingungen zu Ammoniak. Zwei zusätzliche Elektronen und Protonen bilden jedoch ein Molekül H2, und die Umwandlung von ATP (der Zellbrennstoff) in ADP treibt die Reaktion an. Das Verfahren weist daher ein hohes chemisches Überpotential auf. Es verbraucht viel mehr Energie, als für die eigentliche Ammoniakbildungsreaktion benötigt wird. Unten: Bei der neue Reaktion, vorgeschlagen von Ashida und Kollegen, wird ein Gemisch aus Wasser und Samariumdiiodid (SmI2) mit Stickstoff unter Umgebungsbedingungen in Gegenwart eines Molybdänkatalysators in Ammoniak umwandelt. SmI2 schwächt die O−H-Bindungen des Wassers und erzeugt die Wasserstoffatome, die dann mit Distickstoff reagieren.

Im großtechnischen Maßstab wird  Ammoniak bei Temperaturen von über 400°C und Drücken von ungefähr 400 Atmosphären synthetisiert. Diese Bedingungen werden oft auch als „harsch“ bezeichnet. Anfägnlich waren dies harschen Bedingungen nur schwer zu kontrollieren, was oft zu tötlichen Unfällen in den frühen Jahren des Haber-Bosch-Verfahrens führte. Dies hat viele Chemiker dazu motiviert, „mildere“ Alternativen zu finden. Schlußendlich bedeutete dies immer die Suche nach neuen Katalysatoren, um die Betriebstemperaturen und -drücke zu senken. Die Suche nach neuen Katalysatoren sollte am Ende Investitionen beim Bau von neuen Ammoniakanlagen senken. Da die Ammoniaksynthese zu den größten Kohlendioxidproduzenten gehört, würden dadurch auch die damit verbudenen Emissionen gesenkt werden.

Wie viele andere Chemiker vor ihnen, haben sich die Autoren von der Natur inspirieren lassen.  Die Familie der Nitrogenaseenzyme ist für die biologische Umwandlung von Luftstickstoff in Ammoniak verantwortlich, ein Prozess, der als Stickstoffixierung bezeichnet wird. Dieser Prozess ist in der modernen Welt die Quelle von Stickstoffatomen in Aminosäuren und Nukleotiden, also den elementaren Bausteinen des Lebens. Im Gegensatz zum Haber-Bosch-Prozess verwenden Nitrogenasen jedoch kein Wasserstoffgas als Quelle für Wasserstoffatome. Stattdessen übertragen sie Protonen (Wasserstoffionen; H+) und Elektronen (e) auf jedes Stickstoffatom, um N−H Bindungen herzustellen. Obwohl Nitrogenasen Stickstoff bei Umgebungstemperatur fixieren, verwenden sie acht Protonen und Elektronen pro Stoffmolekül. Dies ist bemerkenswert, weil Stöchiometrie der Reaktion nur sechs erfordert. Die Nitrogenasen stellen dadurch notwendigen thermodynamischen für die Fixierung bereit. Die Bereitstellung von überschüssigen Wasserstoffäquivalenten bedeutet, daß Nitrogenasen ein hohes chemischen Überpotential angewisen sind. Sie also verbrauchen viel mehr Energie, als tatsächlich für eigentliche Stickstoffixierung notwendig wäre.

Der nun veröffentliche Weg ist nicht der erste Versuch, die Nitrogenasereaktion nachzuahmen. Auch früher wurden Metalkomplexe zusammen mit Protonen- und Elektronenquellen verwendet, um Luftstickstoff in Ammoniak umzuwandeln. So hatten z.B. die selben Forscher zuvor 8 Molybdänkomplexe entwickelt, die die Stickstoffixierung auf diese Weise katalysieren. Dabei wurden  230 Ammoniakmoleküle pro Molybdänkomplex produziert. Die damit verbundenen Überpotentiale waren mit fast 1.300 kJ pro Mol Stickstoff erheblich. In der Realität is das Haber-Bosch-Verfahren also gar nicht so energieintensiv, wenn der richtige Katalysator zum Einsatz kommt.

Die Herausforderung für Katalyseforscher besteht nun darin, die besten biologischen und industriellen Ansätze für die Stickstoffixierung so zu kombinieren, daß das Verfahren normalen Umgebungstemperaturen und -drücken abläuft. Gleichzeitig muß der Katalysator das chemische Überpotential so weit reduzieren, das der Neubau von Haber-Bosch-Anlagen nicht mehr so viel Kaptial erfordert, wie zur Zeit noch. Das ist eine große Herausforderung, da bisher noch keine Kombination von Säuren (die als Protonenquelle dienen) und Reduktionsmitteln (die Elektronenquellen) gefunden wurde, die eine thermodynamischen Bedinugnen für die Fixierung auf dem Niveau von Wasserstoffgas liefert. D.h. die Kombination muß reaktiv genug sein, um N−H-Bindungen bei Raumtemperatur bilden zu können. In dem nun vorgeschlagenen Weg mit  Molybdän und Samarium haben die Forsche eine Strategie übernommen, bei der die Protonen- und Elektronenquellen nicht mehr getrennt eingesetzt werden. Dieser grundlegend neue Ansatz für die katalytische Ammoniaksynthese basiert auf einem Phänomen, das als koordinationsinduzierte Bindungsschwächung bekannt ist. In dem vorgeschlagenen Weg basiert das Phänomen auf dem Zusammenspiel von Samariumdiiodid (SmI2) und Wasser.

Wasser ist stabiel aufgrund seiner starken Sauerstoff-Wasserstoff-Bindungen (O−H). Wenn das Sauerstoffatom im Wasser jedoch mit SmI2 koordiniert wird gubt es sein einziges Elektronenpaar auf und seine O−H-Bindungen werden geschwächt. Dadurch wird resultierende Mischung zu einer ergiebigen Quelle für Wasserstoffatome, also für Protonen und Elektronen. Die Forschor um Yuya Ashida verwenden sie diese Mischung mit einem Molybdänkatalysator, um Stickstoff zu fixieren. SmI2-Wasser-Gemische also  für diese Art der Katalyse besonders geeignet. In ihnen wurde zuvor eine beträchtliche koordinationsinduzierte Bindungsschwächung gemessen, die unter anderem zur Herstellung von Kohlenstoff-Wasserstoff-Bindungen eingesetzt wurde.

Die Ausweitung dieser Idee auf die katalytische Ammoniaksynthese ist aus zwei Gründen bemerkenswert. Erstens wird durch den Molybdänkatalysator die Ammoniaksynthese in wässriger Lösung erleichtert. Das ist erstaunlich, weil Molybdänkomplexe in Wasser häufig abgebaut werden. Zweitens bietet die Verwendung einer koordinationsinduzierten Bindungsschwächung eine neue Methode zur Stickstofixierung bei normalen Umgebungstemperaturen und -drücken. Dadurch wird zusätzlich die Verwendung potenziell gefährlicher Kombinationen von Protonen- und Elektronenquellen vermieden. Solche Kombinationen können sich z.B. spontan entzünden. Der Ansatz der Autoren funktioniert auch, wenn Ethylenglykol (HOCH2CH2OH) anstelle von Wasser verwendet wird. So werden die in Frage kommenden Protonen- und Elektronenquellen um einen möglichen Vorläufer erweitert.

Ashida und Kollegen schlagen einen Katalysezyklus für ihr Verfahren vor, bei dem der Molybdänkatalysator zunächst an Stickstoff koordiniert und die N−N-Bindung unter Bildung eines Molybdännitrido-Komplexes spaltet. Dieser Molybdännitrido-Komplex enthält eine Molybdän-Stickstoff-Dreifachbindung.  Das SmI2-Wasser-Gemisch liefert dann Wasserstoffatome zu diesem Komplex, wodurch schließlich Ammoniak produziert wird. Die Bildung von N−H-Bindungen mithilfe von Molybdännitridokomplexen stellt eine erhebliche thermodynamische Herausforderung dar, da die N−H-Bindungen ebenfalls durch das Molybdän geschwächt werden. Dennoch werden die Nachteile durch die Reduktion des chemisches Überpotential ausgeglichen. Das SmI2 erleichtert nicht nur den Transfer von Wasserstoffatomen, sondern hält auch das Metall in reduzierter Form vor. So wird die ungewollte Bildung von Molybdänoxid in wässriger Lösung verhindert.

Das neue Verfahren muß noch erhebliche betriebliche Hürden nehmen, bevor es großtechnisch eingesetzt werden kann. So wird z.B. SmI2 in großen Mengen verwendet, was viel Abfall erzeugt. Die Abtrennung von Ammoniak aus wässrigen Lösungen ist energetisch aufwendig. Würde das Verfahren jedoch zur Energiespeicherung in Kombination mit unserer Methode der Rückgewinnung eingesetzt, entfiele die Abtrennung aus der wässrigen Lösung. Letztlich verbleibt immernoch ein chemisches Überpotential von etwa 600 kJ/mol. Zukünftige Forschungen sollten sich darauf konzentrieren, Alternativen zu SmI2 zu finden. Diese könnten z.B. auf Metallen basieren, die häufiger als Samarium vorkommen und ebenfalls die koordinationsbedingte Bindungsschwächung zu fördern. Wie schon bei Fritz Haber und Carl Bosch wird es wohl auch bei der neu entwickelten Methode noch einige Zeit dauern, bis ein industriereifes Verfahren zur Verfügung steht.

(Foto: Wikipedia)

Veröffentlicht am

Ammoniak als Energiespeicher #2

Kürzlich berichteten wir an dieser Stelle über Pläne australischer Unternehmer und ihrer Regierung, Ammoniak (NH3) als Energiespeicher für überschüssige Windenergie zu benutzen. Wir schlugen vor, Ammoniak und CO2 aus Abwasser in Methangas (CH4) umzuwandeln, da dieses stabiler und leichter zu transportieren ist. Das Verfahren folgt der chemischen Gleichung:

8 NH3 + 3 CO2 → 4 N2 + 3 CH4 + 6 H2O

Jetzt haben wir dazu einen wissenschaftlichen Artikel im Onlinemagazin Frontiers in Energy Research veröffentlicht. Darin zeigen wir zunächst, daß der Prozess thermodynamisch möglich ist, und zwar indem methanogene Mikroben den durch Elektrolyse gebildeten Wasserstoff (H2) aus dem Reaktiongleichgewicht entfernen. Dadurch nähern sich die Redoxpotentiale der oxidativen (N2/NH3) und der reduktiven Halbreaktionen (CO2/CH4) so weit an, daß der Prozess spontan ablaufen kann. Er benötigt nur noch einen Katalysator, der in Form von Mikroben aus dem Abwasser gewonnen wird.

Pourbaix-Diagramm der Ammoniumoxidation, Wasserstoffbildung und CO2-Reduktion. Ab pH 7 wird die an Methanogenese gekoppelte Ammoniumoxidation thermodynamisch möglich.

Dazu haben wir zunächst nach entsprechenden Mikroben gesucht. Für unsere Experimente in mikrobiellen Elektrolysezellen haben wir Mikroorganismen aus Sedimenten des Atlantischen Ozeans vor Namibia als Impfmaterial benutzt. Meeressedimente sind besonders geeignet, da diese vergleichsweise reich an Ammoniak, frei von Sauerstoff (O2) und relativ arm an organischem Kohlenstoff sind. Der Ausschluß von Sauerstoff is wichtig, da dieser normalerweise als Oxidationsmittel zur Entfernung von Ammoniak dient:

2 NH3+ + 3 O2 → 2 NO2 + 2 H+ + 2 H2O

Der Prozess ist auch als Nitrifikation bekannt und hätte eine Art elektrochemischen Kurzschluß bewirkt, da dabei die Elektronen vom Ammoniak direkt auf den Sauerstoff übertragen werden. Dadurch wäre die Anode (die positive Elektronen-akzeptierende Elektrode) umgangen worden und die Energie des Ammoniaks wäre dann im Wasser gespeichert. Die anodische Wasseroxidation verbraucht aber viel mehr Energie, als die Oxidation von Ammoniak. Zudem sind Edelmetalle zur Wasseroxidation notwendig. Ohne Sauerstoff an der Anode zu produzieren, konnten wir zeigen, daß die Oxidation von Ammonium (die gelöste Form des Ammoniaks) an die Produktion von Wasserstoff gekoppelt ist.

Oxidation von Ammonium zu Stickstoffgas ist gekoppelt an Wasserstoffproduktion in mikrobiellen Elektrolysereaktoren. Die angelegten Potentiale sind +550 mV bis +150 mV

Dabei war es wichtig, daß das elektrochemische Potential an der Anode negativer, als die +820 mV der Wasseroxidation waren. Zu diesem Zweck haben wir einen Potentiostat benutzt, der das elektrochemische Potential konstant zwischen +550 mV und +150 mV hielt. Bei all diesen Potentialen wurde an der Anode N2 und an der Kathode H2 produziert. Da die einzige Elektronenquelle in der Anodenkammer Ammonium war, konnten die Elektronen zur Wasserstoffproduktion also nur von der Ammoniumoxidation stammen. Zudem war Ammonium auch die einzige Stickstoffquelle für die Produktion von N2. Demzufolge ware die Prozesse also gekoppelt.

Im darauffolgenden Schritt wollten wir zeigen, daß dieser Prozess auch eine nützliche Anwendung hat. Stickstoffverbindungen kommen oft in Abwässern vor. Sie bestehen vorwiegend aus Ammonium. Es finden sich aber auch Medikamente und deren Abbauprodukte darunter. Gleichzeitig werden 1-2% der weltweit produzierten Energie im Haber-Bosch-Prozess verbraucht. Im Haber-Bosch-Prozess wird N2 der Luft entnommen, um Stickstoffdünger herzustellen. Weitere 3% unserer produzierten Energie werden dann verwendet, den so gewonnen Stickstoff wieder aus dem Abwasser zu entfernen. Diese sinnlose Energieverschwendung erzeugt 5% unserer Treibhausgase. Dabei könnte Abwasser sogar eine Energiequelle sein⁠. Tatsächlich wird ein kleiner Teil seiner Energie schon seit mehr als einem Jahrhundert als Biogas zurückgewonnen. Während der Biogasgewinnung wird organisches Material aus Klärschlamm durch mikrobiellen Gemeinschaften zersetzt und in Methan umgewandelt:

H3C−COO + H+ + H2O → CH4 + HCO3 + H+; ∆G°’ = −31 kJ/mol (CH4)

Die Reaktion erzeugt CO2 und Methan im Verhältnis von 1:1. Das CO2 im Biogas macht es nahazu wertlos. Folglich wird Biogas häufig abgeflammt. Die Entfernung von CO2 würde das Produkt enorm aufwerten und kann durch Auswaschen erreicht werden. Auch stärker reduzierte Kohlenstoffquellen können das Verhältnis vom CO2 zum CH4 verschieben. Dennoch bliebe CO2 im Biogas. Durch die Zugabe von Wasserstoff in Faultürme würde dieses Problem gelöst. Der Prozess wird als Biogasaufbereitung bezeichnet. Wasserstoff könnte durch Elektrolyse erzeugt werden:

2 H2O → 2 H2 + O2; ∆G°’ = +237 kJ/mol (H2)

Dafür wären aber, wie schon eingangs erläutert, teure Katalysatoren notwendig und der Energieverbrauch wäre höher. Der Grund ist, daß die Elektrolyse von Wasser in bei einer hohen Spannung von 1,23 V stattfindet. Eine Möglichkeit, dies zu umgehen, bestünde darin, das Wasser durch Ammonium zu ersetzen:

2 NH4+ → N2 + 2 H+ + 3 H2; ∆G°’ = +40 kJ/mol (H2)

Mit Ammonium erfolgt die Reaktion bei nur 136 mV wodurch man entsprechend viel Energie einsparen könnte. Mit geeigneten Katalysatoren könnte somit Ammonium als Reduktionsmittel für die Wasserstoffproduktion dienen. Mikroorganismen im Abwasser können solche Katalysatoren sein. Unter Auschluß von Sauerstoff werden Methanogene im Abwasser aktiv und verbrauchen den produzierten Wasserstoff:

4 H2 + HCO3 + H+ → CH4 + 3 H2O; ∆G°’ = –34 kJ/mol (H2)

Die methanogene Reaktion hält die Wasserstoffkonzentration so niedrig (üblicherweise unter 10 Pa), daß die Ammoniumoxidation spontan, also mit Energiegewinn abläuft:

8 NH4+ + 3 HCO3 → 4 N2 + 3 CH4 + 5 H+ + 9 H2O; ∆G°’ = −30 kJ/mol (CH4)

Genau dies ist die eingangs beschriebene Reaktion. Bioelektrische Methanogene wachsen an der Kathode und gehören zur Gattung Methanobacterium. Angehörige dieser Gattung sind besonders auf niedrige H2-Konzentrationen spezialisiert.

Der geringe Energiegewinn ist auf die geringe Potentialdifferenz von Eh = +33 mV der CO2-Reduktion gegenüber der Ammoniumoxidation zurückzuführen (siehe Pourbaix-Diagramm oben). Es reicht kaum aus, um die notwendige Energie von ∆G°’= +31 kJ/mol für die ADP-Phosphorylierung bereitzustellen. Darüber hinaus ist die Stickstoffbindungsenergie von Natur aus hoch, was starke Oxidationsmittel wie O2 (Nitrifikation) oder Nitrit (Anammox) erfordert.

Anstelle starker Oxidationsmittel kann eine Anode z.B. bei +500 mV die Aktivierungsenergie für die Ammoniumoxidation bereitgestellen. Allzu positive Redoxpotentiale treten jedoch in anaeroben Umgebungen natürlich nicht auf. Daher haben wir getestet ob die Ammoniumoxidation an die hydrogenotrophe Methanogenese gekoppelt werden kann, indem ein positives Elektrodenpotential ohne O2 angeboten wird. Tatsächlich konnten wir dies in unserem Artikel nachweisen und haben das Verfahren zum Patent angemeldet. Mit unserem Verfahren könnte man z.B. Ammonium profitabel aus Industrieabwässern entfernen. Er ist auch zur Energiespeicherung geeignet, wenn man z.B. Ammoniak mithilfe überschüssiger Windenergie synthetisiert.

Veröffentlicht am

Bessere Wärmetauscher für Solarthermie

Solarthermieanlagen sind ein gutes Beispiel für den Teilchen-Welle-Dualismus der im Planckschen Wirkungsquantum h ausgedrückt wird: E = hf. Dabei is h die Planck-Konstante, f ist die Frequenz des Lichts und E ist die daraus resultierende Energie. Demnach ist also der Energieetrag umso höher, je höher die Frequenz der Lichtwellen ist. Solarthermische Metallkollektoren wandeln die Energie von hochfrequentem Licht um, indem eine Fülle von niederfrequentem Licht durch Compton-Verschiebungen erzeugen. Glas- oder Keramikbeschichtungen mit hoher Durchlässigkeit für sichtbares Licht und Licht im UV-Bereich fangen das vom Metall erzeugte das niederfrequente Licht auf, weil sie infrarotes Licht wirksam absorbieren (sogenannte Wärmeblocker). Nach dem Sammeln der Wärme verbessert sich der Wirkungsgrad der Solarthermieanlage mit zunehmender Größe erheblich. Darin liegt auch der größte Vorteil solcher Anlagen verglichen mit Photovoltaik. Ein Nachteil ist allerdings die nachgeordnete Verwandlung von Wärme in Elektrizität mithilfe von Turbinen und Wärmetauschern − ein Problem nicht nur in Solarthermieanlagen.

Zur Bereitstelung des heißen Gases (superkritisches CO2) sind Wärmetauscher notwending. Diese Wärmetauscher übertragen die von einem Kraftwerk erzeugte Wärmeenergie auf die Arbeitsflüssigkeit in einer Wärmekraftmaschine (meistens eine Dampfturbine), die Wärme in mechanische Energie umwandelt. Die mechanische Energie wiederum wird zur Stromerzeugung genutzt. Diese Wärmetauscher werde bei ~800 Kelvin betrieben und könnten jedoch effizienter sein, läge die Temperatur bei 1.000 Kelvin. Der gesamte Prozess der Umwandlung von Wärme in Elektrizität wird als Leistungszyklus bezeichnet. und ist ein kritischer Prozess in der Stromerzeugung durch Solarthermieanlgane. Den Wärmetauschern kommt dabei eine Schlüsselrolle zu.

Für Wärmetauscher wäre Keramik ein idealer Werkstoff weil er extreme Temperaturschwankungen aushalten kann. Anders als Metalle, ist Keramik aber nicht so einfach formbar. Relativ grobe Formen sind aber schnell und einfach gemacht. Metalle dagegen können leicht geformt werden und weisen eine hohe mechanische Belastbarkeit auf. Metalle und Keramiken werden schon seit Jahrhunderten für ihre charakteristischen Eigenschaften geschätzt. Zum Beispiel haben Bronze und Eisen eine gute Stoßfestigkeit und sind so formbar, daß sie zu komplexen Formen wie Waffen und Schlössern verarbeitet wurden. Keramiken, wie die zur Herstellung von Töpferwaren verwendeten Materialien, wurden zu einfachen Formen geformt. Ihre Beständigkeit gegen Hitze und Korrosion machte Keramik zu geschätzten Werkstoffen. Ein neuer Verbundwerkstoff aus Metall und Keramik kombiniert diese Eigenschaften auf erstaunliche Weise. Eine Forschergruppe um Mario Caccia berichtete nun im angesehen Fachmagazin Nature über ein Metall-Keramik-Verbundwerkstoff mit Eigenschaften, die es für Wärmetauscher in Solarthermieanlagen verwendbar macht.

Die Geschichte solcher Verbundwerkstoffe reicht bis in die Mitte des 20. Jahrhunderts zurück. Das Aufkommen von Düsentriebwerken erzeugte einen Bedarf an Materialien, die eine hohe Beständigkeit gegen Hitze und Oxidation aufweisen. Zudem besaßen sie die Fähigkeit, schnelle Temperaturänderungen zu bewältigen. Ihre ausgezeichnete mechanische Festigkeit, die diese von vorhandenen Metallen oft übertraf, wurde von der neu entstanden Luftfahrtindustrie sehr geschätzt. Es wundert daher nicht, daß die US-Luftwaffe mehr Forschung zur Herstellung von Metall-Keramik-Verbundstoffen finanzierte. Das Wort „Cermet“ wurde geprägt. Cermets wurden seitdem für mehrere Anwendungen entwickelt, in den meisten Fällen wurden sie jedoch für kleine Teile oder Oberflächen verwendet. Der nun veröffentlichte Verbundstoff hält extremen Temperaturen, hohen Drücken und schnellen Temperaturwechseln stand. Er könnte den Wirkungsgrad von Wärmetauscher in Solarthermieanlagen um 20% erhöhen.

Um den Verbundwerkstoff herzustellen, produzierten die Autoren zunächst eine Vorstufe, die hernach einer weiteren Verarbeitung unterzogen wurde. Dieses Vorgehen läßt sich am besten mit dem Töpfern der ungebrannten Version eines Tontopfs vergleichen. Die Autoren verdichteten Wolframkarbid-Pulver in die ungefähre Form des gewünschten Gegenstandes (z.B. einen Wärmetauscher) und erhitzten es bei 1.400 °C für 2 Minuten, um die Teile miteinander zu verbinden. Sie bearbeiteten dann diese poröse Vorform weiter, um die gewünschte endgültige Form zu erzeugen.

Als nächstes erhitzten die Autoren die Vorform in einer chemisch reduzierenden Atmosphäre (ein Gemisch aus 4% Wasserstoff in Argon) bei 1.100 °C. Bei der selben Temperatur tauchten sie die Vorform in ein Becken mit flüssigem Zirkonium und Kupfer (Zr2Cu) ein. Schließlich wurde die Vorform durch Erhitzen auf 1.350 °C entfernt. Bei diesem Prozess verdrängt das Zirkonium das Wolfram aus dem Wolframkarbid, wodurch Zirkoniumkarbid (ZrC), sowie Wolfram und Kupfer erzeugt werden. Das flüssige Kupfer wird aus der ZrC-Matrix verdrängt, wenn sich das Material verfestigt, so dass das endgültige Objekt aus ungefähr 58% ZrC-Keramik und 36% Wolframmetall mit geringen Mengen an Wolframkarbid und Kupfer besteht. Das Schöne an der Methode ist, dass die poröse Vorform in einen nicht poröses ZrC / Wolfram-Verbundwerkstoff mit den gleichen Abmessungen umgewandelt wird. Dabei beträgt die Gesamtvolumenänderung etwa 1–2%.

Der elegante Herstellungsprozess wird durch die Robustheit des Endprodukts aufgewertet. Bei 800 °C leitet das ZrC / Wolfram-Cermet die Wärme 2 bis 3 Mal besser als Eisenlegierungen auf Nickelbasis. Solche Legierungen werden derzeit z.B. in Hochtemperatur-Wärmetauschern verwendet. Neben der verbesserten Wärmeleitfähigkeit ist zudem die mechanische Festigkeit des ZrC / Wolfram-Verbunds höher als die von Nickellegierungen. Die mechanischen Eigenschaften werden durch Temperaturen bis mindestens 800 °C nicht beeinflusst, selbst wenn das Meterial zuvor einer Erwärmung unterzogen wurde, z.B. bei Kühlzyklen zwischen Raumtemperatur und 800 °C. Im Gegensatz dazu verlieren Eisenlegierungen, wie z.B. rostfreie Stähle, und Nickellegierungen bei Temperaturen zwischen 500 °C und 800 °C mindestens 80% ihrer Festigkeit.

(Foto: Wikipedia)


Veröffentlicht am

Windkraft, ein kurzer Überblick über Europa, USA und Kanada

Windkraft ist die Umwandlung von Windenergie in mechanische oder elektrische Energie. Windkraftanlagen erzeugen elektrische Energie und Windmühlen erzeugen mechanische Energie. Windpumpen werden als Wasserpumpen oder Entwässerung eingezetzt. Windsegel teiben Segelboote an und helfen beim Lenken.

Die Windkraft ist seit ihrer ersten Verwendung in Segelschiffen weit verbreitet. Seit mehr als 2.000 Jahren werden Windräder als mechanische Energiequelle genutzt. 1887 wurde die erste Umwandlung der mechanischen Energie einer Windmühle in elektrische Energie in Schottland von James Blythe durchgeführt. Windenergie ist sauberer, sicherer und und sehr oft auch günstiger als fossile Kraftstoffe. Aus diesem Grund ist die Windenergieerzeugung eine der am schnellsten wachsenden erneuerbaren Ressourcen der Welt. So wurde z.B. im Jahr 2015 38% der erneuerbaren Energie in der EU sowie den USA durch Windanlagen erzeugt.

EU-weiter Verbrauch von erneuerbaren Energieen. WSH ist der Gesamtanteil erneuerbarer Energie am eurpäischen Energiemarkt. „Hydro“ ist der Anteil an Wasserkraft an erneuerbaren Energieen

Windparks sind Gruppen von Windturbinen, die zusammenarbeiten, um zusammen große Mengen an elektrischer Energie zu erzeugen. Es gibt zwei Arten von Windparks, Onshore- und Offshorewindparks. Mit konstantem und zuverlässig starkem Wind liefern Offshore-Windparks eine gleichmäßig große Menge an Energie. Die Kosten für den Bau dieser Offshore-Windparks können jedoch nicht mit denen der Onshore-Windparks konkurrieren.

Erzeugung erneuerbarer Energie in den USA und Kanada.

 

Veröffentlicht am

Wie decarbonisiert man die Atmosphäre schneller?

In der Wissenschaftsgemeinde ist eine hitzige Diskussion über den schnellsten Weg zur Decarbonisierung unserer Atmosphäre entbrannt. Der neueste Artikel von Lovins et al. (Rocky Mountain Insititute, Colorado, USA) soll belegen, daß erneuerbare Energie dies schneller erreicht, als Atomkraft. In der in Energy Research & Social Science publizierten Analyse belegen die Autoren dies in ihrer Untersuchung des Energiemarktes der letzten 17 Jahre. Der Artikel steht im Widerspruch zu zahlreichen anderen Artikeln, in denen Atomkraft als effektivere Methode zur Decarbonisierung genannt wird. So haben es zum Beispiel Cao et al. im Forschungsjournal Science berichtet.