Veröffentlicht am Schreiben Sie einen Kommentar

Energiespeicherung in Spanien

Spaniens Energielandschaft

In unserem vorherigen Beitrag haben wir über die Aussichten der Energiespeicherung in Dänemark berichtet. Jetzt gehen wir wieder zurück nach Süden. Während allgemein angenommen wird, daß Solarenergie den Hauptanteil der erneuerbaren Energie in Spanien ausmacht, ist es tatsächlich die Windenergie mit mehr als dem Dreifachen der Solarerzeugung die wesentliche erneuerbare Energiequelle Spaniens. Spanien ist weltweit führend in der Windenergie. Im Jahr 2014 hatte Spanien weltweit die viertgrößte installierte Windkapazität, und die Windenergie machte 2015 18% der gesamten spanischen Stromerzeugung aus. Das geht so weit, daß es Überlegungen gab, den Stier als Symbol spanischen Nationalstolzes durch die Windmühle zu ersetzen. Gas und Kohle machen aber immer noch über ein Drittel der Stromerzeugung in Spanien aus.

Spaniens Stromproduktion 2015 (Quelle: International Energy Agency, 2015)

Während fossiles Öl in Spanien immer noch für Elektrizität verwendet wird, sollte beachtet werden, daß dies ausschließlich für die Gebiete außerhalb der iberischen Halbinsel gilt, also die Kanarische Inseln, Balearen, Cueta, Melilla und mehrere andere kleine Inseln.

Laut EU-Richtlinie 2009 von 28 müssen bis 2020 20% des spanischen Endenergieverbrauchs aus erneuerbaren Energiequellen stammen. Spanien wird dieses Ziel jedoch wahrscheinlich verfehlen. Anfang der 2000er Jahre war Spanien weltweit führend bei erneuerbaren Energien. Zum Beispiel war Spanien 2005 das erste Land, das PV-Anlagen für alle neuen Gebäude in Auftrag gab, und belegte weltweit den 5. Platz bei den gesamten Investitionen in erneuerbare Energien. Die Branche für erneuerbare Energien stagnierte jedoch in den letzten Jahren erheblich. Leider ist Spanien, das 2008 den Weltmarkt antrieb, aufgrund rückwirkender Richtlinienänderungen und neuer Steuern auf den Eigenverbrauch praktisch aus dem PV-Bild verschwunden.

Die Richtlinienänderungen und Eigenverbrauchssteuern beziehen sich auf das königliche Dekret 900/2015 über den Eigenverbrauch, ein Gesetz, das von der spanischen Regierung im Oktober 2015 erlassen wurde und das darauf abzielt, den Eigenverbrauch von Elektrizität finanziell zu bestrafen. Nach dem Gesetz müssen Solar-PV-Produzenten (z.B. private PV-Eigentümer) nicht nur eine Steuer auf die Energie zahlen, die sie selbst verbrauchen. Sondern sie müssen auch die gleichen Übertragungs- und Verteilungsgebühren zahlen, als hätten sie den Strom aus dem Netz gekauft. Zusätzlich zu diesen Gebühren und Steuern ist es Eigentümern von Systemen mit einer Leistung von 100 kW und weniger – den meisten Eigentümern von Wohnsystemen also – untersagt, überschüssigen Strom dem Netz zu verkaufen. Stattdessen müssen sie es kostenlos an das Netz weitergeben. Darüber hinaus ist dieses Gesetz rückwirkend. Das bedeutet, daß vorhandene PV-Systeme die Anforderungen erfüllen oder mit einer Strafe belegt werden müssen. Die Sanktionen nach dem Eigenverbrauchsgesetz reichen von nur 6 Mio. EUR bis maximal 60 Mio. EUR – etwa doppelt so hoch wie die Geldbuße für die illegale Entsorgung radioaktiver Abfälle. Die spanische Regierung sieht den Eigenverbrauch als Risiko für die Steuereinnahmen bei den derzeit hohen Strompreisen.

Spanien ist nach wie vor weltweit führend bei Sonnenwärmekraftwerken (2,5 MW). Es wurden jedoch keine neuen Anlagen gebaut, und derzeit befinden sich keine neuen Anlagen im Bau oder in Planung.

Marktausblick für Energiespeicherung

Obwohl die ersten Entwürfe des Gesetzes über den Eigenverbrauch strenge Bestimmungen gegen Batteriespeichersysteme enthielten, erlaubt die endgültige Version Energiespeichersysteme – allerdings unter Bedingungen, die sie unpraktisch machen. Für Eigentümer von Solar-Plus-Speichersystemen fallen zusätzliche Gebühren an, sie können jedoch auch nicht die Strommenge reduzieren, die sie von ihrem Versorgungsunternehmen unter Vertrag haben.

Zu diesem Zeitpunkt scheint es, als hätte das Eigenverbrauchsgesetz Investitionen in Projekte für erneuerbare Energien und / oder Energiespeicher in Spanien effektiv gestoppt.

Veröffentlicht am

Energiespeicherung in Dänemark

Dänemarks Stromportfolio

In unserem letzten Beitrag unserer Blogserie über Energiespeicher in Europa haben wir uns auf Italien konzentriert. Jetzt gehen wir zurück in den Norden Europas, nämlich nach Dänemark. Es überrascht nicht, daß Dänemark als Pionier der Windenergie bekannt ist. In den 1970er Jahren wurde fast ausschließlich Öl importiert, um den Energiebedarf zu decken. Die erneuerbaren Energien machen inzwischen mehr als die Hälfte des im Land erzeugten Stroms aus. Dänemark strebt bis 2035 100 Prozent erneuerbaren Strom und bis 2050 100% erneuerbaren Strom in allen Sektoren an.

Stromproduktion in Dänemark 2016

Die Nähe zu Skandinavien und zum europäischen Festland macht den Export und Import von Strom für den dänischen Systembetreiber Energinet.dk ziemlich einfach. Dies gibt Dänemark die nötige Flexibilität, um eine signifikante Durchdringung von intermittierenden Energiequellen wie Wind zu erreichen und gleichzeitig die Netzstabilität zu gewährleisten.

Obwohl die bisherigen Ergebnisse vielversprechend sind, wird es immer noch eines erheblichen Sprunges bedürfen, um zu 100 Prozent erneuerbare Energie zu gewinnen, und die offiziellen Richtlinien, nach denen Dänemark diesen Übergang steuert, müssen erst noch umgesetzt werden. Es gab jedoch Hinweise darauf, wie die endgültigen Richtlinien aussehen könnten. In ihrem Bericht  Energy Scenarios for 2020, 2035 and 2050 hat die dänische Energieagentur vier verschiedene Szenarien skizziert, um bis 2050 fossilfrei zu werden und gleichzeitig das 100%-ige Ziel für erneuerbaren Strom von 2035 zu erreichen oder Biomasse sind:

  • Windszenario − Wind als primäre Energiequelle, zusammen mit Solar-PV und Kraft-Wärme-Kopplung. Massive Elektrifizierung des Wärme- und Verkehrssektors.
  • Biomasse-Szenario − weniger Windeinsatz als im Wind-Szenario, wobei Kraft-Wärme-Kopplung Strom und Fernwärme liefert. Transport mit Biokraftstoffen.
  • Bio+ Szenario − Bestehende Kohle- und Gaserzeugung durch Bioenergie ersetzt, 50% des Stroms aus Wind. Wärme aus Biomasse und Strom (Wärmepumpen).
  • Wasserstoffszenario – Strom aus Wind, der zur Erzeugung von Wasserstoff durch Elektrolyse verwendet wird. Wasserstoff als Speichermedium für erneuerbare Energien sowie als Transportkraftstoff. Das Wasserstoffszenario würde eine massive Elektrifizierung des Wärme- und Transportsektors erfordern, während der Wind schneller eingesetzt werden müsste als das Windszenario.

Agora Energiewende und DTU Management Engineering haben postuliert, dass dieser Szenariobericht tatsächlich zeigt, dass die Umstellung des dänischen Energiesektors auf 100 Prozent erneuerbare Energien bis 2050 auf mehreren Wegen technisch machbar ist. Die dänischen Entscheidungsträger müssen jedoch vor 2020 entscheiden, ob sich das Energiesystem in ein auf Brennstoff basierendes Biomassesystem oder ein auf Strom basierendes Windenergiesystem umwandeln soll (sie müssen entscheiden, welches der vier Szenarien verfolgt werden soll).

Energiespeicher in Dänemark

Unabhängig davon, für welches energiepolitische Szenario Dänemark sich entscheidet, wird die Speicherung von Energie ein zentraler Aspekt einer erfolgreichen Energiewende sein. Derzeit sind in Dänemark drei EES-Anlagen in Betrieb, die alle elektrochemisch (Batterien) sind. Eine vierte EES-Anlage – das HyBalance-Projekt – befindet sich derzeit im Bau und wird den von Windkraftanlagen erzeugten Strom durch PEM-Elektrolyse (Protonenaustauschmembran) in Wasserstoff umwandeln.

Projektname

Technologie

Kapazität (kW)

Entladedauer (h)

Status

Nutzung

RISO Syslab Redox Flußbatterie Elektrochemisch Flußbatterie 15 8 In betrieb Stabilisierung erneuerbarer Energien
Vestas Lem Kær ESS Demo 1.2 MW Elektrochemisch Lithiumionakku 1.200 0.25 In betrieb Frequenzregulierung
Vestas Lem Kær ESS Demo 400 kW Elektrochemisch Lithiumionakku 400 0.25 In betrieb Frequenzregulierung
HyBalance Wasserstoffspeicher Wasserstoff Power-to-Gas 1.250 In betrieb Integration enerneuerbarer Energie
BioCat Power-to-Gas Methanspeicher Methan Power-to-Gas 1.000 Stillgelegt Netzeinspritzung & Frequenzregulierung

Das HyBalance-Projekt ist das Pilotprojekt von Power2Hydrogen, einer Arbeitsgruppe, die sich aus wichtigen Akteuren der Industrie und akademischen Forschungseinrichtungen zusammensetzt, um das große Potenzial für Wasserstoff aus Windenergie zu demonstrieren. Die Anlage wird bis zu 500 kg Wasserstoff pro Tag produzieren, der für den Transport und den Netzausgleich verwendet wird.

Bemerkenswert ist das stillgelegte BioCat Power-to-Gas-Projekt, ein Pilotprojekt, das von 2014 bis 2016 in Hvidovre, Dänemark, betrieben wurde. Das Projekt, eine gemeinsame Zusammenarbeit von Electrochaea und mehreren Industriepartnern (finanziert von Energienet.dk), war eine 1 MWe Power-to-Gas-Anlage (Methan), die gebaut wurde, um die kommerziellen Möglichkeiten von Methan Power-to-Gas zu demonstrieren. Das BioCat-Projekt war Teil des Ziels von Electrochaea, die Kommerzialisierung Ende 2016 zu erreichen. Bis Anfang 2017 wurden jedoch keine weiteren Aktualisierungen vorgenommen.

Marktausblick für Energiespeicher – Dänemark

Der Energiespeichermarkt in Dänemark wird am stärksten auf Wachstum ausgerichtet sein, wenn die Politik dem Wasserstoffszenario folgt, in dem in allen Sektoren massive Mengen Wasserstoff erzeugt werden müssen, um den Einsatz fossiler Brennstoffe zu verhindern.

Durch erneuerbare Energien erzeugte Gase (Wasserstoff, Methan) haben das Potenzial, das Stromnetz auf zwei Arten auszugleichen: Ausgleich von Angebot und Nachfrage („intelligentes Netz“) und Ausgleich durch physische Speicherung. Das Smart Grid, ein intelligentes Stromnetz, in dem Produktion und Verbrauch zentral verwaltet werden, bietet Elektrolyse-Technologien eine bedeutende Chance als kurzfristiger „Pufferspeicher“ (Sekunden bis Minuten). Die Massenspeicherung von durch erneuerbare Energien erzeugten Gasen kann als langfristige Speicherlösung (Stunden, Tage, Wochen, Monate) dienen, um die Flexibilität in einem fossilfreien Energienetz aufrechtzuerhalten (Dänische Partnerschaft für Wasserstoff- und Brennstoffzellen).

Ohne das Wasserstoffszenario wird das Potenzial für wasserstoffbasierte Energiespeicher in Dänemark begrenzt sein. In ihrem Bericht „Potenzial von Wasserstoff in Energiesystemen“ aus dem Jahr 2016 kam die Power2Hydrogen-Arbeitsgruppe zu dem Schluß, daß:

  • Wasserstoffelektrolyseure würden keine wesentliche Verbesserung der Flexibilität für die Integration erneuerbarer Energien gegenüber dem heutigen ausreichend flexiblen System bewirken.
  • Bis zum Jahr 2035 wurde mit der Zunahme der Windproduktion der Schluss gezogen, dass Wasserstoffelektrolyseure tatsächlich die Systemflexibilität verbessern und eine noch umfassendere Penetration der Windenergie in das System ermöglichen würden.

Das Potenzial für durch erneuerbare Energien erzeugte Gase in Demark ist extrem hoch. Es ist sehr wahrscheinlich, dass Power-to-Gas-Systeme der Dreh- und Angelpunkt der Energiewende in Dänemark sein werden. Kurzfristig scheint es wenig Möglichkeiten zu geben, mittel- bis langfristig wird es jedoch umfangreiche Möglichkeiten geben, wenn sich die offizielle Energiewende auf das Wasserstoffszenario oder eine ähnliche Politik auf der Basis erneuerbarer Gase konzentriert.

(Jon Martin, 2019)

Veröffentlicht am

Herausforderungen der Windenergie

Viele Menschen glauben, daß es keinen Verbesserungsbedarf gibt, weil Windkraftanlagen seit Jahrzehnten funktionieren.  Die Windenergie hat das Potenzial, eine der weltweit kostengünstigen Energiequellen zu sein. In einem kürzlich im Fachmagazin Science erschienenen wissenschaftlichen Artikel wurde die Wissenschaft aufgefordert, sich drei großen Herausforderungen in den Naturwissenschaften zu widmen, um die Innovation der Windenergie voranzutreiben. Dabei wurden im Wesentlichen drei Richtungen identifiziert:

  1. Die bessere Ausnutzung von Windströmungen
  2. Struktur- und Systemdynamik von Windrädern
  3. Netzzuverlässigkeit der Windkraft

Um bei der besseren Ausnutzung von Windströmungen voranzukommen, müssen die Dynamik der Bewegung der Luftmasse und ihre Wechselwirkungen mit Land und Turbinen verstanden werden. Um mehr Energie zu gweinnen, haben Windenergieanlagen an Größe zugenommen. Wenn sich Windenergieanlagen mit anderen Windenergieanlagen größere Gebieten teilen, veraendert sich zuh zunehmend die dort vorherrschende Strömung. Unser Wissen über Windströmungen in komplexem Gelände und bei unterschiedlichen atmosphärischen Bedingungen ist sehr lückenhaft. Wir müssen diese Bedingungen genauer modellieren, damit der Betrieb großer Windkraftanlagen am produktivaer und günstigster wird.

Wenn die Höhe von Windkraftanlagen zunimmt, müssen wir die Dynamik des Windes in diesen Höhen und Maßstäben verstehen. Die Verwendung vereinfachter physikalischer Modelle und grundlegender Beobachtungstechnologien in der Vergangenheit ermöglichte die Installation von Windkraftanlagen und die Vorhersage der Leistung in einer Vielzahl von Geländetypen. Die Herausforderung besteht darin, diese unterschiedlichen Bedingungen so zu modellieren, daß Windkraftanlagen so optimiert werden, daß sie sowohl kostengünstig und steuerbar sind, als auch am richtigen Ort installiert werden.

Die Struktur- und Systemdynamik von Windrädern ist ebenfalls mangelhaft erforscht. Windkraftanlagen sind heute die größten flexiblen, rotierenden Maschinen der Welt. Die Schaufellängen überschreiten routinemäßig 80 Meter. Ihre Türme ragen weit über 100 Meter hinaus. Um dies zu verbildlchen, können drei Airbus A380 in den Bereich eines Windenergierotors passen.  Da diese Anlagen immer größer und schwerer werden und unter zunehmenden strukturellen Belastungen arbeiten, sind neue Materialien und Herstellungsprozesse erforderlich. Das rührt daher, daß die Skalierbarkeit, der Transport, die strukturelle Integrität und das Recycling der verwendeten Materialien an ihre Grenzen stoßen.

Darüber hinaus wirft das Wechselspiel zwischen Turbinen- und atmosphärischer Dynamik mehrere wichtige Forschungsfragen auf. Viele vereinfachte Annahmen, auf denen frühere Windenergieanlagen basieren, gelten nicht mehr. Die Herausforderung besteht nicht nur darin, die Atmosphäre zu verstehen, sondern auch herauszufinden, welche Faktoren sowohl für die Effizienz der Stromerzeugung als auch für die strukturelle Sicherheit entscheidend sind.

Zudem ist unser heutiges Stromnetz nicht für den Betrieb großer zusätzlicher Windresourcen ausgelegt. In Zukunft muß es sich  daher grundlegend von dem heutigen unterscheiden. Es wird ein hoher Zuwachs an variabler Wind- und Sonnenkraft erwartet. Für die Aufrechterhaltung eines funktionierenden, effizienten und zuverlässigen Netzes müssen diese Stromerzeuger vorhersehbar und steuerbar sein. Außerdem müssen erneuerare Stromerzeuger in der Lage sein, nicht nur Strom, sondern auch stabilisierende Netzdienste bereitzustellen. Der Weg in die Zukunft erfordert eine integrierte Systemforschung an den Schnittstellen von Atmosphärenphysik, Windturbinendynamik, Anlagensteuerung und Netzbetrieb. Dazu gehören auch neue Energiespeicherlösungen wie Power-to-Gas.

Windenergieanlagen und deren Stromspeicher können wichtige Netzdienste wie Frequenzsteuerung, Rampensteuerung und Spannungsregelung bereitstellen. Innovative Steuerungen könnten die Eigenschaften von Windenergieanlagen nutzen, um die Energieerzeugung der Anlage zu optimieren und gleichzeitig diese wesentlichen Dienstleistungen bereitzustellen. Beispielsweise können modern Datanverarbeitungstechnologien großen Datenmengen für Sensoren liefern, die dann auf die gesamte Anlage angwendet werden. Daurch kan die Energieerfassung verbessert werden, was widerum die Betriebskosten deutlich senken kann. Der Weg zur Verwirklichung dieser Zukunft erfordert umfangreiche Forschungen an den Schnittstellen von atmosphärischer Strömungsmodellierung, individueller Turbinendynamik und Windkraftanlagensteuerung mit dem Betrieb größerer elektrischer Systeme.

Fortschritte in den Naturwissenschaften sind unerläßlich, um Innovationen voranzutreiben, Kosten zu senken und eine reibungslose Integration in das Stromnetz zu erreichen. Zusätzlich müssen auch Umweltfaktoren beim Ausbau der Windenergie berücksichtigt werden. Um erfolgreich zu sein, muß der Ausbau der Windenergienutzung verantwortungsbewußt erfolgen, um die Zerstörung der Landschaft so gering wie möglich halten. Investitionen in Wissenschaft und interdisziplinäre Forschung in diesen Bereichen werden mit Sicherheit helfen, akzeptablen Lösungen für alle Beteiligten zu finden.

Zu solchen Projekten gehören Untersuchungen, die die Auswirkungen des Windes auf wild lebende Tiere charakterisieren und verstehen. Auch wissenschaftliche Forschung, die Innovationen und die Entwicklung kostengünstiger Technologien ermöglicht, um die Auswirkungen von Wildtieren auf Windkraftanlagen an Land und vor der Küste wird derzeit intensiv betrieben.  Dazu muß verstanden werden, wie Windenergie so platziert werden kann, daß die lokalen Auswirkungen minimiert werden und gleichzeitig ein wirtschaftlicher Nutzen für die betroffenen Gemeinden entsteht.

Diese großen Herausforderungen der Windforschung bauen aufeinander auf. Die Charakterisierung der Betriebszone von Windenergieanlagen in der Atmosphäre wird für die Entwicklung der nächsten Generation noch größerer, kostengünstiger Windenergieanlagen von entscheidender Bedeutung sein. Das Verständnis sowohl der dynamischen Steuerung der Anlagen als auch der Vorhersage der Art des atmosphärischen Zuflusses ermöglichen eine bessere Steuerung.

Frontis Enegy unterstützt als innovatives Unternehmen den Übergang in eine CO2-neutrale Energieerzeugung.

(Foto: Fotolia)

Veröffentlicht am

Ammoniak als Energiespeicher #2

Kürzlich berichteten wir an dieser Stelle über Pläne australischer Unternehmer und ihrer Regierung, Ammoniak (NH3) als Energiespeicher für überschüssige Windenergie zu benutzen. Wir schlugen vor, Ammoniak und CO2 aus Abwasser in Methangas (CH4) umzuwandeln, da dieses stabiler und leichter zu transportieren ist. Das Verfahren folgt der chemischen Gleichung:

8 NH3 + 3 CO2 → 4 N2 + 3 CH4 + 6 H2O

Jetzt haben wir dazu einen wissenschaftlichen Artikel im Onlinemagazin Frontiers in Energy Research veröffentlicht. Darin zeigen wir zunächst, daß der Prozess thermodynamisch möglich ist, und zwar indem methanogene Mikroben den durch Elektrolyse gebildeten Wasserstoff (H2) aus dem Reaktiongleichgewicht entfernen. Dadurch nähern sich die Redoxpotentiale der oxidativen (N2/NH3) und der reduktiven Halbreaktionen (CO2/CH4) so weit an, daß der Prozess spontan ablaufen kann. Er benötigt nur noch einen Katalysator, der in Form von Mikroben aus dem Abwasser gewonnen wird.

Pourbaix-Diagramm der Ammoniumoxidation, Wasserstoffbildung und CO2-Reduktion. Ab pH 7 wird die an Methanogenese gekoppelte Ammoniumoxidation thermodynamisch möglich.

Dazu haben wir zunächst nach entsprechenden Mikroben gesucht. Für unsere Experimente in mikrobiellen Elektrolysezellen haben wir Mikroorganismen aus Sedimenten des Atlantischen Ozeans vor Namibia als Impfmaterial benutzt. Meeressedimente sind besonders geeignet, da diese vergleichsweise reich an Ammoniak, frei von Sauerstoff (O2) und relativ arm an organischem Kohlenstoff sind. Der Ausschluß von Sauerstoff is wichtig, da dieser normalerweise als Oxidationsmittel zur Entfernung von Ammoniak dient:

2 NH3+ + 3 O2 → 2 NO2 + 2 H+ + 2 H2O

Der Prozess ist auch als Nitrifikation bekannt und hätte eine Art elektrochemischen Kurzschluß bewirkt, da dabei die Elektronen vom Ammoniak direkt auf den Sauerstoff übertragen werden. Dadurch wäre die Anode (die positive Elektronen-akzeptierende Elektrode) umgangen worden und die Energie des Ammoniaks wäre dann im Wasser gespeichert. Die anodische Wasseroxidation verbraucht aber viel mehr Energie, als die Oxidation von Ammoniak. Zudem sind Edelmetalle zur Wasseroxidation notwendig. Ohne Sauerstoff an der Anode zu produzieren, konnten wir zeigen, daß die Oxidation von Ammonium (die gelöste Form des Ammoniaks) an die Produktion von Wasserstoff gekoppelt ist.

Oxidation von Ammonium zu Stickstoffgas ist gekoppelt an Wasserstoffproduktion in mikrobiellen Elektrolysereaktoren. Die angelegten Potentiale sind +550 mV bis +150 mV

Dabei war es wichtig, daß das elektrochemische Potential an der Anode negativer, als die +820 mV der Wasseroxidation waren. Zu diesem Zweck haben wir einen Potentiostat benutzt, der das elektrochemische Potential konstant zwischen +550 mV und +150 mV hielt. Bei all diesen Potentialen wurde an der Anode N2 und an der Kathode H2 produziert. Da die einzige Elektronenquelle in der Anodenkammer Ammonium war, konnten die Elektronen zur Wasserstoffproduktion also nur von der Ammoniumoxidation stammen. Zudem war Ammonium auch die einzige Stickstoffquelle für die Produktion von N2. Demzufolge ware die Prozesse also gekoppelt.

Im darauffolgenden Schritt wollten wir zeigen, daß dieser Prozess auch eine nützliche Anwendung hat. Stickstoffverbindungen kommen oft in Abwässern vor. Sie bestehen vorwiegend aus Ammonium. Es finden sich aber auch Medikamente und deren Abbauprodukte darunter. Gleichzeitig werden 1-2% der weltweit produzierten Energie im Haber-Bosch-Prozess verbraucht. Im Haber-Bosch-Prozess wird N2 der Luft entnommen, um Stickstoffdünger herzustellen. Weitere 3% unserer produzierten Energie werden dann verwendet, den so gewonnen Stickstoff wieder aus dem Abwasser zu entfernen. Diese sinnlose Energieverschwendung erzeugt 5% unserer Treibhausgase. Dabei könnte Abwasser sogar eine Energiequelle sein⁠. Tatsächlich wird ein kleiner Teil seiner Energie schon seit mehr als einem Jahrhundert als Biogas zurückgewonnen. Während der Biogasgewinnung wird organisches Material aus Klärschlamm durch mikrobiellen Gemeinschaften zersetzt und in Methan umgewandelt:

H3C−COO + H+ + H2O → CH4 + HCO3 + H+; ∆G°’ = −31 kJ/mol (CH4)

Die Reaktion erzeugt CO2 und Methan im Verhältnis von 1:1. Das CO2 im Biogas macht es nahazu wertlos. Folglich wird Biogas häufig abgeflammt. Die Entfernung von CO2 würde das Produkt enorm aufwerten und kann durch Auswaschen erreicht werden. Auch stärker reduzierte Kohlenstoffquellen können das Verhältnis vom CO2 zum CH4 verschieben. Dennoch bliebe CO2 im Biogas. Durch die Zugabe von Wasserstoff in Faultürme würde dieses Problem gelöst. Der Prozess wird als Biogasaufbereitung bezeichnet. Wasserstoff könnte durch Elektrolyse erzeugt werden:

2 H2O → 2 H2 + O2; ∆G°’ = +237 kJ/mol (H2)

Dafür wären aber, wie schon eingangs erläutert, teure Katalysatoren notwendig und der Energieverbrauch wäre höher. Der Grund ist, daß die Elektrolyse von Wasser in bei einer hohen Spannung von 1,23 V stattfindet. Eine Möglichkeit, dies zu umgehen, bestünde darin, das Wasser durch Ammonium zu ersetzen:

2 NH4+ → N2 + 2 H+ + 3 H2; ∆G°’ = +40 kJ/mol (H2)

Mit Ammonium erfolgt die Reaktion bei nur 136 mV wodurch man entsprechend viel Energie einsparen könnte. Mit geeigneten Katalysatoren könnte somit Ammonium als Reduktionsmittel für die Wasserstoffproduktion dienen. Mikroorganismen im Abwasser können solche Katalysatoren sein. Unter Auschluß von Sauerstoff werden Methanogene im Abwasser aktiv und verbrauchen den produzierten Wasserstoff:

4 H2 + HCO3 + H+ → CH4 + 3 H2O; ∆G°’ = –34 kJ/mol (H2)

Die methanogene Reaktion hält die Wasserstoffkonzentration so niedrig (üblicherweise unter 10 Pa), daß die Ammoniumoxidation spontan, also mit Energiegewinn abläuft:

8 NH4+ + 3 HCO3 → 4 N2 + 3 CH4 + 5 H+ + 9 H2O; ∆G°’ = −30 kJ/mol (CH4)

Genau dies ist die eingangs beschriebene Reaktion. Bioelektrische Methanogene wachsen an der Kathode und gehören zur Gattung Methanobacterium. Angehörige dieser Gattung sind besonders auf niedrige H2-Konzentrationen spezialisiert.

Der geringe Energiegewinn ist auf die geringe Potentialdifferenz von Eh = +33 mV der CO2-Reduktion gegenüber der Ammoniumoxidation zurückzuführen (siehe Pourbaix-Diagramm oben). Es reicht kaum aus, um die notwendige Energie von ∆G°’= +31 kJ/mol für die ADP-Phosphorylierung bereitzustellen. Darüber hinaus ist die Stickstoffbindungsenergie von Natur aus hoch, was starke Oxidationsmittel wie O2 (Nitrifikation) oder Nitrit (Anammox) erfordert.

Anstelle starker Oxidationsmittel kann eine Anode z.B. bei +500 mV die Aktivierungsenergie für die Ammoniumoxidation bereitgestellen. Allzu positive Redoxpotentiale treten jedoch in anaeroben Umgebungen natürlich nicht auf. Daher haben wir getestet ob die Ammoniumoxidation an die hydrogenotrophe Methanogenese gekoppelt werden kann, indem ein positives Elektrodenpotential ohne O2 angeboten wird. Tatsächlich konnten wir dies in unserem Artikel nachweisen und haben das Verfahren zum Patent angemeldet. Mit unserem Verfahren könnte man z.B. Ammonium profitabel aus Industrieabwässern entfernen. Er ist auch zur Energiespeicherung geeignet, wenn man z.B. Ammoniak mithilfe überschüssiger Windenergie synthetisiert.

Veröffentlicht am

Windenergie

Windkraft ist die Umwandlung von Windenergie in mechanische oder elektrische Energie. Windkraftanlagen erzeugen elektrische Energie und Windmühlen erzeugen mechanische Energie. Windpumpen werden als Wasserpumpen oder Entwässerung eingezetzt. Windsegel teiben Segelboote an und helfen beim Lenken.

Die Windkraft ist seit ihrer ersten Verwendung in Segelschiffen weit verbreitet. Seit mehr als 2.000 Jahren werden Windräder als mechanische Energiequelle genutzt. 1887 wurde die erste Umwandlung der mechanischen Energie einer Windmühle in elektrische Energie in Schottland von James Blythe durchgeführt. Windenergie ist sauberer, sicherer und und sehr oft auch günstiger als fossile Kraftstoffe. Aus diesem Grund ist die Windenergieerzeugung eine der am schnellsten wachsenden erneuerbaren Ressourcen der Welt. So wurde z.B. im Jahr 2015 38% der erneuerbaren Energie in der EU sowie den USA durch Windanlagen erzeugt.

EU-weiter Verbrauch von erneuerbaren Energieen. WSH ist der Gesamtanteil erneuerbarer Energie am eurpäischen Energiemarkt. „Hydro“ ist der Anteil an Wasserkraft an erneuerbaren Energieen

Windparks sind Gruppen von Windturbinen, die zusammenarbeiten, um zusammen große Mengen an elektrischer Energie zu erzeugen. Es gibt zwei Arten von Windparks, Onshore- und Offshorewindparks. Mit konstantem und zuverlässig starkem Wind liefern Offshore-Windparks eine gleichmäßig große Menge an Energie. Die Kosten für den Bau dieser Offshore-Windparks können jedoch nicht mit denen der Onshore-Windparks konkurrieren.

Erzeugung erneuerbarer Energie in den USA und Kanada.