Veröffentlicht am

Echtzeitaufnahmen von Lande-Entladezyklen in Lithiumbatterien

Partikel in Lithium-Ionen-Batterien spielen eine wichtige Rolle bei Freisetzung von positiv und negativ geladenen Lithium-Ionen. Gleichzeitig is die Bewegung dieser Ionen ein limitierender Faktor für die Lade- und Entladezyklen. Um schnelladefähige Batterien zu entwickeln, müssen Ingenieure und Wissenschaftler besser verstehen, wie sich Ionen in Batterien bewegen. Forscher der Universität Cambridge im Vereinigten Königreich haben nun einen bildgebenden Ansatz im Fachblatt Nature veröffentlicht, der die Ionenbewegung in Batteriematerialien in Echtzeit verfolgt. Diese Technologie hilft, die Funktionsweise von Lithium-Ionen-Batterien im Submikrometerbereich besser zu verstehen. Dieses Verständnis wird letztendlich dabei helfen Batterien zu konstruieren, die sich in nur wenigen Minuten aufladen.

Wissenschaftler müssen den Ionenfluß in einer prorösen Matrix besser verstehen, um leistungsfähigere Batterien zu bauen. Allerdings würde nicht nur die Batterieforschung davon profitieren, sondern auch andere galvanische Zellen wie Brennstoffzellen oder Elektrolyseure. Bisher konnten traditionelle bildgebende Ansätze zur Untersuchung des LithiumIonenfluß’ die schnelle Dynamik in schnelladenden Batterien nicht erfassen.

Das Problem

In Lithium-Ionen-Batterien bestehen aus zwei poröse Elektroden aus Partikeln hergestellt werden: Kohlenstoff, einem Metalloxid und einem Bindemittel. Die Kohlenstoff- und Metalloxide fungieren als Elektronenleiter, während das Bindemittel die Partikel aneinander bindet. Ein Elektrolyt trennt die beiden Elektroden und dient als Leitmedium für Ionen, die von einer Elektrode zur anderen wandern.

Um die interne Ionendynamik von Batterien für jeden dieser Teilprozesse verfolgen zu können, müssen Batterieingenieure die physikalischen und chemischen Wechselwirkungen mindestens zehnmal schneller abbilden. Dies ist vergleichbar mit der der Belichtungszeit einer Kamera für Sportaufnahmen. Ist die Belichtungszeit zu lang, produziert die Kamera verschwommene Bilder. Von besonderem Interesse für die Batterieentwicklung sind die Geometrie der aktiven Partikel selbst und die Struktur der porösen Elektroden.

Jedes Batterie-Bildgebungsverfahren hat für jede Batteriefunktion eine spezielle Aufnahmezeit. Bisherige Bildgebungsverfahren benötigten einige Minuten, um ein Bild zu sammeln. Daher können traditionelle Verfahren nur Prozesse abbilden, die viele Stunden in Anspruch nehmen.

Was is neu an dem Konzept?

Bemerkenswert ist, daß die neuartige Technik der Forscher weniger als eine Sekunde benötigt, um ein Bild aufzunehmen, wodurch wesentlich schnellere Prozesse als bisher möglich untersucht werden können. Als bildgebendes Werkzeug ist es auch in der Lage, Batterien während des Betriebs zu untersuchen und verfügt über eine ausreichende räumliche Auflösung. Diese Auflösung im Submikrometerbereich ist erforderlich, um zu verfolgen, was in einem aktiven Partikel passiert. Darüber hinaus kann der Ansatz durch den Vergleich der Entwicklung von in der Elektrode räumlich getrennten aktiven Partikeln mit Ionenkonzentration die Ionendynamik auf der Elektrodenskala abbilden.

Methodik

Das Forschungerteam paßte ein bisher in den Biowissenschaften verwendetes Verfahren der Lichtmikroskopie an, um die Lithium-Ionen-Mobilität in Batteriematerialien zu verfolgen. Bei dem Verfahren wurde ein Laserstrahl auf elektrochemisch aktive Batteriepartikel gerichtet, die Lithium-Ionen speichern oder freisetzen. Anschließend wurde das Streulicht analysiert. Da zusätzliches Lithium gespeichert wurde, variierte die lokale Elektronenkonzentration in der Partikel. Dadurch ändert sich auch das Streumuster. Die lokale Änderung der Lithiumkonzentration korrelierte mit dem zeitlichen Verlauf der Streusignale und konnte zur Lokalisierung der Partikel genutzt werden.

Während der Lade-Entlade-Zyklen speichern und geben die „aktiven“ Materialien der Batterieelektroden Ionen ab. Die Forscher beschreiben in ihrer Veröffentlichung einen Echtzeit-Bildgebungsansatz, der von aktiven Partikeln gestreutes Licht verwendet, um Änderungen der Ionenkonzentration zu verfolgen. Die Intensität der Streuung schwankt mit der lokalen Ionenkonzentration. In ihrem Ansatz bildeten die Streumuster im Laufe der Zeit den Ionfluß des Systems ab. Da zusätzliche Ionen in einem Partikel gespeichert wurden, zeigten die Farben der Konturen die Veränderung der Streuintensität über die letzten 5 Sekunden an: Rot bedeutete eine Zunahme der Intensität, während Blau eine Abnahme andeutete. Die Verschiebungsmuster entsprachen dem Übergang des Materials von einer Phase zur nächsten.

Schlußvolgerungen

Das neue bildgebende Verfahren kann für fast alle aktiven Materialien verwendet werden, die Lithium oder andere Ionen speichern und wo sich die Ionenkonzentration ändert. Da Standardansätze die Änderungen der lokalen Ionenkonzentration während schneller Ladezyklen nicht direkt verfolgen konnten, konnten bisher auch keine schnelladenden Batterien entwickelt werden. Die neue Lösung wird es Elektrochemikern ermöglichen ihre erdachten Mechanismen des Ionentransports in der Praxis zu testen, da das Bildgebungsproblem überwunden gelöst wurde.

Einschränkungen dieses Ansatzes

Hervorzuheben ist, daß die räumliche Auflösung des neuen bildgebenden Verfahrens durch die Wellenlänge des Lichts begrenzt ist. Zur Auflösung feinerer Details sind kürzere Wellenlängen erforderlich. In der veröffentlichten Arbeit lag die Auflösung bei etwa 300 nm. Ein weiterer zu berücksichtigender Punkt ist, daß die Laserstreuung das Ergebnis der Wechselwirkung von Licht mit nur einem Objekt ist. Zudem ist die Streuung durch die Wechselwirkung von Licht mit den ersten atomaren Ebenen des Teilchens ein Problem. Als Ergebnis fängt diese Methode nur die Ionenbewegungen in der zwei Dimension bezogen auf diese Atomschichten ein. Langsamere Ansätze wie die Röntgentomographie können dagegen dreidimensionale Informationen zu sammeln.

Ausblick

Es wird spannend sein, die Erkenntnisse der Autoren für einzelne Partikel weiterzuverfolgen und poröse Elektroden unter den Schnelladebedingungen  zu untersuchen.

Dieser Ansatz könnte auch dazu dinen, Festelektrolyte zu untersuchen. Diese sind faszinierende, jedoch kaum verstandene Batteriematerialien. Angenommen, die Lichtstreuung von Festelektrolyten variiert mit der lokalen Ionenkonzentration, wie dies bei aktiven Materialien der Fall ist. In diesem Fall könnte der Ansatz verwendet werden, um die Veränderung der Ionenverteilung zu kartieren, sobald ein elektrischer Strom sie durchfließt. Auch andere Systeme mit gekoppeltem Ionen- und Elektronentransport, wie z.B. Katalysatorschichten in Brennstoffzellen und elektrochemische Gassensoren, könnten von der Methode der optischen Streuung profitieren.

Künftig könnten gründliche Streutests mit homogenen Partikeln helfen, den Zusammenhang zwischen Streuverhalten und Lithium-Ionen-Konzentration zu quantifizieren. Die Streusignale könnten dann unter Verwendung dieser Korrelation zur Bestimmung lokaler Ionenkonzentrationen verwendet werden. Die Verbindung zwischen verschiedenen Materialien wird jedoch nicht immer gleich sein. Künstliche Intelligenz könnte das Auffinden dieser Verbindungen beschleunigen und die Lichtstreuungsanalyse automatisieren.

Das bildgebende Verfahren der Autoren eröffnet auch die Möglichkeit, gleichzeitig chemische, physikalische und geometrische Veränderungen aktiver Partikel während des Betriebs zu messen. Der Unterschied zwischen der Streuung eines Partikels und der von anderen Materialien in einer Batterie (wie dem Bindemittel oder dem Elektrolyten) könnte verwendet werden, um die Partikelform und ihre Entwicklung zu bestimmen. Die Zeit, die für die Lichtstreuung eines Partikels benötigt wird, würde lokale Veränderungen der Lithiumkonzentration aufdecken. Diese Materialien speichern deutlich mehr Energie als gängige aktive Materialien. Ihre Verwendung könnte das Batteriegewicht weiter reduzieren. Dies wäre insbesondere bei Elektrofahrzeugen von Vorteil, da durch die zo erreichte höhere Energiedichte größere Reichweiten möglich wären.

Die Forschung liefert bisher nicht verfügbare Einblicke in Batteriematerialien. Diese Methode zur direkten Überwachung von Veränderungen aktiver Partikel während des Betriebs wird bisherige Ansätze ergänzen, die auf zerstörenden Batterietests beruhen. Infolgedessen hat das Verfahren das Potenzial, den Batteriedesignprozeß zu verändern.

Merryweather, et al., 2021 “Operando optical tracking of single-particle ion dynamics in batteries”, Nature, 594, 522–528, doi:10.1038/s41586-021-03584-2

Bild: Pixabay / cebbi

Veröffentlicht am

Energiespeicherung in den Niederlanden

Stromerzeugung

In unserem vorherigen Blogbeitrag der Frontis-Reihe zu europäischen Energiespeichermärkten haben wir uns Spanien genauer angesehen. Im letzten Beitrag unserer Reihe zeigen wir nun, wo die Niederlande positioniert sind. Die Niederlande sind neben Dänemark eines von nur zwei Netto-Gasexportländern in der EU. Der inländische Energieverbrauch spiegelt die Fülle der Ressource wider. Über 50% des in den Niederlanden erzeugten Stroms stammt aus Erdgas. Mit einem Anteil von weiteren 31% an Kohle konzentrieren sich die Niederlande stark auf fossilen Strom. Erneuerbare Energien machen weniger als 10% des erzeugten Stroms aus.

Bis 2020 sollen erneuerbare Energien 14% der gesamten niederländischen Energieversorgung ausmachen, wie von der EU in der Richtlinie über erneuerbare Energien (2009/28 / EG) vorgeschrieben. Dies entspricht einem Elektrizitätssektor mit über 30% erneuerbarer Energieerzeugung.

Gegen die Niederlande wurde Kritik an den erzielten Fortschritten geübt. Nach Prognosen in ihrem Nationalen Aktionsplan für erneuerbare Energien 2009 hätten die Niederlande 2014 fast 20% erneuerbaren Strom erreichen sollen. Diese schwachen Fortschritte führten zu einer Erklärung der EU-Kommission in ihrem zweiten Bericht von 2017 über den Zustand der Energieunion, in dem die Die EU-Kommission gab an, daß die Niederlande der einzige Mitgliedstaat waren, der 2013/2014 keine durchschnittlichen erneuerbaren Energieateile aufwies, die gleich oder höher waren als die entsprechenden Zielvorgaben des Aktionsplans.

Die EU-Kommission erklärte außerdem, daß die Niederlande eines der drei Länder (andere: Frankreich, Luxemburg) mit den größten Anstrengungen zur Erreichung der Ziele für 2020 seien.

Bestehende Energiespeicher

Bisher verfügen die Niederlande über eine Energiespeicherkapazität von fast 20 MW, die entweder in Betrieb (14 MW), vertraglich (1 MW) oder im Bau (4 MW) ist.

Alle Energiespeicher in den Niederlanden sind elektrochemisch, mit Ausnahme des vertraglich vereinbarten 1 MW Hydrostar-Unterwasser-Druckluftspeicherprojekts in Aruba (Karibik). Hydrostar ist ein kanadisches Unternehmen, das sich auf Unterwasser-Druckluftspeichertechnologien spezialisiert hat.

Die überwiegende Mehrheit der 20 MW installierten Energiespeicherkapazität in den Niederlanden verteilt sich auf nur drei Anlagen: das niederländische Advancion Energy Storage Array (10 MW Li-Ion), das Amsterdam ArenA (4 MW Li-Ion) und das Bonaire Wind-Diesel-Hybrid-Projekt (3 MW Ni-Cd-Batterie).

Das niederländische Advancion Energy Storage Array wurde Ende 2015 in Betrieb genommen und liefert dem niederländischen Übertragungsnetzbetreiber TenneT 10 MWh Speicher. Das Projekt, das 50% der gesamten niederländischen Energiespeicherkapazität ausmacht, bietet eine Frequenzregelung, indem in den Batterien gespeicherter Strom verwendet wird, um auf Ungleichgewichte im Netz zu reagieren.

Das 4 MW Amsterdam ArenA Lithium-Ionen-Projekt wurde 2017 für die PV-Integration und Backup-Stromversorgung in Auftrag gegeben. Das 3-MW-Wind-Diesel-Hybridprojekt Bonaire ist ein Batteriearray auf der niederländischen Karibikinsel Bonaire, das als Puffer zwischen intermittierender Windenergie und den Dieselkraftwerken auf der Insel dient.

Die verbleibenden 3 MW niederländischer Energiespeicherprojekte verteilen sich auf 21 Anlagen unter 100 kW, die hauptsächlich auf das Laden von Elektrofahrzeugen (EV) ausgerichtet sind. Mistergreen, ein führender Entwickler von Elektromobil-Ladestationen in den Niederlanden, hat an seinen verschiedenen Ladestationen für Elektrofahrzeuge 750 kW LI-Ionen-Energiespeicher gebaut.
Ausblick auf den Energiespeichermarkt

Angesichts des deutlichen Marktwachstums für Elektrofahrzeuge in den Niederlanden wurden erhebliche Anstrengungen unternommen, um das Netz der Schnelladestationen des Landes zu erweitern. Dieser Trend muß sich fortsetzen, um die Nachfrage nach den in den Niederlanden erwarteten 1 Million Elektrofahrzeugen bis 2025 zu befriedigen. Man kann also davon ausgehen, daß die Li-Ionen-Stationen unter 100 kW, die bereits in Betrieb sind, stark wachsen werden im ganzen Land.

Über den Bedarf an Energiespeichern in großem Maßstab liegen nur wenige Informationen vor, der Gesamtbedarf dürfte jedoch aufgrund der geringen Verbreitung erneuerbarer Energien im Elektrizitätssektor gering sein. Es liegt jedoch ein erheblicher Schwerpunkt auf energieeffizientem, unabhängigem und autarkem Wohnen.

Wie die Italiener sind auch die Niederländer sehr daran gewöhnt, Erdgas in ihren Häusern zu verwenden. Dies könnte zusammen mit dem Streben nach energieautarkem Wohnraum einen einzigartigen Markt für Strom-Gas-Systeme für Privathaushalte in den Niederlanden darstellen.

(Jon Martin, 2020, Foto: Fotolia)