Veröffentlicht am

Hydrophile Membranen mit schnellem und selektivem Ionentransport

Neben den bekannten Nafion™-Membranen, die derzeit das wohl beste Preis-Leistungsverhältnis bei zahlreichen elektrochemischen Zellen (Protonenaustauschbrennstoffzellen, Methanolbrennstoffzellen, Elektrolysezellen usw.) darstellen, wächst mit der Diversifizierung unserer Energieressourcen auch Nachfrage nach effizienten und selektiven Ionenaustauschmembranen für Energiespeicher wie Flußbatterien.

Eine Sumitomo Flußbatterie zur Energiespeicherung einer Solaranlage. (Foto: Sumitomo Electric Co.)

Flußbatterien – der Durchbruch bei der Energiespeicherung

Die hohe Nachfrage nach zuverlässigen und kostengünstigen Energiespeichersystemen spiegelt sich in der zunehmenden Vielfalt der Technologien zur Energiespeicherung wider. Einer der vielversprechendsten Kandidaten unter den verschiedenen elektrochemischen Speichersystemen sind Flußbatterien. Sie könnten die Anforderungen an Energiespeicher in großem Maßstab erfüllen und sich durch hohe Effizienz, niedrige Skalierungskosten, hohe Lade- / Entladezyklenzahl sowie unabhängige Energiespeicher- und Stromerzeugungskapazitäten auszeichnen.

Da diese Technologie noch jung ist, liegt derzeit der Fokus auf kommerziell und wirtschaftlich tragfähigen Systeme, insbesondere auf der:

  • Verbesserung der Kernkomponenten, z.B. Membranen mit besonderen Eigenschaften,
  • Verbesserung der Energieeffizienz
  • Reduzierung des Gesamtkostensystems.

Erfüllt Anforderungen an Flußbatterien

Zwei Forschergruppen aus Großbritannien, eine vom Imperial College und die andere von der University of Cambridge, verfolgten einen neuen Ansatz, um die nächste Generation mikroporöser Membranmaterialien für die Flußbatterien zu entwickeln. Sie haben ihre Daten kürzlich in der bekannten Zeitschrift Nature Materials veröffentlicht. Gut definierte enge mikroporöse Kanäle ermöglichen zusammen mit der hydrophilen Funktionalität der Membranen einen schnellen inorganischen Ionentransport und eine hohe Selektivität für kleine organische Moleküle. Die neue Membranarchitektur ist besonders wertvoll für wässrige organische Flußbatterien, die eine hohe Energieeffizienz und Kapazitätserhaltung ermöglichen. Wichtig ist, daß die Membranen unter Verwendung der Rollpresstechnologie und eines kostengünstigen mesoporösen Polyacrylnitril-Trägers hergestellt wurden. Dies könnte die Membranen billig in der Herstellung machen.

Wie die Autoren berichteten, besteht die Herausforderung für die Flußbatterien der neuen Generation in der Entwicklung kostengünstiger Polymermembranen auf Kohlenwasserstoffbasis, die eine präzise Selektivität zwischen Ionen und organischen redoxaktiven Molekülen aufweisen. Darüber hinaus hängt der Ionentransport in diesen Membranen von der Bildung der miteinander verbundenen Wasserkanäle über die Mikrophasentrennung ab, was auf molekularer Ebene als komplexer und schwer zu kontrollierender Prozess angesehen wird.

Das neue Synthesekonzept ionenselektiver Membranen basiert auf hydrophilen Polymeren mit intrinsischer Mikroporosität (PIMs), die einen schnellen Ionentransport und eine hohe molekulare Selektivität ermöglichen. Die strukturelle Vielfalt von PIMs kann durch Monomerauswahl, Polymerisationsreaktion und nachsynthetische Modifikation gesteuert werden, wodurch diese Membranen für Flußbatterien weiter optimiert werden.

Zwei Arten von hydrophilem PIM wurden entwickelt und getestet: PIMs, die von Tröger-Basen abgeleitet sind, und PIMs auf Dibenzodioxin-Basis mit hydrophilen und ionisierbaren Amidoximgruppen.

Die Autoren bezeichnen ihren Ansatz als innovativ, weil:

  1. PIMs verwendet wurden, um starre und verzerrte Polymerketten zu erhalten, die zu Hohlräumen in mikroporösen Membranen im Subnanometerbereich führen;
  2. Hydrophiler funktionelle Gruppen eingeführt wurden, die miteinander verbundene Wasserkanäle bilden, um die Hydrophilie und Ionenleitfähigkeit zu optimieren;
  3. Zur Verarbeitung eine Lösung verwendet wurde, dei die Membranherstellung auf Nanometerstärke erlaubt. Dies reduziert den Ionentransportwiderstand und die Membranproduktionskosten weiter.

Die Ionenleitfähigkeit wurde durch experimentelle Echtzeitbeobachtungen der Wasser- und Ionenaufnahme bewertet. Die Ergebnisse legen nahe, dass die Wasseradsorption in den eingeschlossenen dreidimensionalen miteinander verbundenen Mikroporen zur Bildung wasserunterstützter Ionenkanäle führt. Diese ermöglichen einen schnellen Transport von Wasser und Ionen.

Der selektive ionische und molekulare Transport in PIM-Membranen wurde unter Verwendung konzentrationsgesteuerter Dialysediffusionstests analysiert. Es wurde bestätigt, daß das neue Design von Membranen große redoxaktive Moleküle effektiv blockiert und gleichzeitig einen schnellen Ionentransport ermöglicht, der für den Betrieb organischer RFBs von entscheidender Bedeutung ist.

Darüber hinaus wurden chemische Langzeitstabilität, gute elektrochemisch und  thermische Stabilität sowie gute mechanische Festigkeit der hydrophilen PIM-Membranen nachgewiesen.

Schließlich wurde berichtet, daß die Leistungs- und Stabilitätstests von Flußbatterien auf der Basis der neuen Membranen mit denen Nafion ™ -basis vergleichbar sind. Langzeitests werden zeigen, wie gut diese Membranen sich im Alltag bewähren.

(Mima Varničić, 2020, Foto: Wikipedia)

Veröffentlicht am

Schnelles Aufladen von Lithiumakkus bei hoher Temperatur

Eine der größten Hürden bei der Elektrifizierung der Straßenverkehrs ist die lange Aufladezeit der Lithiumakkus in elektrischen Fahrzeugen. In einem aktuellen Forschungsbericht im Fachmagazin Joule wurde jetzt gezeigt, daß man die Ladezeit auf 10 Minuten verkürzen kann, während man den Akku erwärmt.

Ein Lithiumakku kann nach nur 10 Minuten Ladezeit eine 320 Kilometer lange Fahrt mit Strom versorgen − vorausgesetzt, ihre Temperatur wird beim Aufladen auf mehr als 60 °C erhöht.

Lithiumbatterien, bei denen Lithiumionen zur Stromerzeugung verwendet werden, werden bei Raumtemperatur langsam aufgeladen. Das Aufladen dauertof mehr als drei Stunden, im Gegensatz zu drei Minuten beim Volltanken.

Eine kritische Barriere für die Schnellaufladung ist die Lithiumbeschichtung, die normalerweise bei hohen Laderaten auftritt und die Lebensdauer und Sicherheit der Batterien drastisch beeinträchtigt. Die Forscher der Pennsylvania State University in University Park stellen wir eine asymmetrische Temperaturmodulationsmethode vor, die einen Lithiumakku bei einer erhöhten Temperatur von 60 °C auflädt.

Durch das Hochgeschwindigkeitsladen wird Lithium normalerweise dazu angeregt, eine der Elektroden der Batterie zu beschichten (Lithiumplattierung). Dadurch wird der Energiefluß blockiert und der Akku wird schließlich unbrauchbar. Um eine Ablagerung von Lithium auf der Anodenzu vermeiden, haben die Forscher die Expositionszeit bei 60 °C auf nur ~10 Minuten pro Zyklus begrenzt.

Dabei griffen die Forscher auf industriell verfügbare Materialien zurück und minimierten den Kapazitätsverlust bei 500 Zyklen auf 20%. Eine bei Raumtemperatur geladene Batterie konnte nur 60 Zyklen lang schnell geladen werden, bevor ihre Elektrode plattiert wurde.

Die asymmetrische Temperatur zwischen Laden und Entladen eröffnet einen neuen Weg, um den Ionentransport während des Ladens zu verbessern und gleichzeitig eine lange Lebensdauer zu erreichen.

Über viele Jahrzehnte wurde allgemein angenommen, daß Lithumakkus wegen des beschleunigten Materialabbau nicht bei hohen Temperaturen betrieben werden sollten. Im Gegensatz zu dieser herkömmlichen Weisheit stellten die Forscher nun ein Schnelladeverfahren vor, das eine Zelle bei 60 °C lädt und die Zelle bei einer kühlen Temperatur entlädt. Zudem wird durch Laden bei 60 °C  der Batteriekühlungsbedarf um mehr als das 12-fache verringert.

Bei Batterieanwendungen hängen die Entladungsprofile vom Endverbraucher ab, während das Ladeprotokoll vom Hersteller festgelegt wird und daher speziell ausgelegt und gesteuert werden kann. Das hier vorgestellte Schnelladeverfahren eröffnet einen neuen Weg für den Entwurf elektrochemischer Energiesysteme, die gleichzeitig eine hohe Leistung und eine lange Lebensdauer erzielen können.

Bei Frontis Energy denken wir ebenfalls, daß es sich bei dem neuen einfachen Ladeverfahren um eine vielversprechende Methode handelt. Wir sind gespannt auf die Markteinführung dieser neuen Schnellademethode.

(Foto: iStock)