Veröffentlicht am

Biokohle aus Abfall entfernt Arzneimittel aus Abwasser

Biokohle ist eine kohleähnliche Substanz, die hauptsächlich aus landwirtschaftlichen Abfallprodukten hergestellt wird. Sie kann Verunreinigungen wie Arzneimittel aus vorbehandeltem Abwasser entfernen. Zu diesem Ergebnis kam eine Forschergruppe, der Pennsylvania State University und dem Arid Lands Agricultural Research Centerin Arizona. Die Biokohle wurde aus zwei in den USA gängigen landwirtschaftlichen Reststoffen aus der Baumwoll- und Kautschukverarbeitung hergestellt.

Um die Fähigkeit der Biokohle zur Adsorption von Arzneimitteln aus behandeltem Abwasser zu testen, erglichen die Wissenschaftler drei gängige pharmazeutische Verbindungen. Bei der Adsorption haftet ein Material wie eine pharmazeutische Verbindung an der Oberfläche fester Biokohlepartikel. Bei der Absorption dagegen wird ein Material intern in ein anderes aufgenommen, wie z.B. in einem Schwamm.

Guayule, ein Strauch, der im trockenen Südwesten der USA wächst, lieferte den Abfall für die getestete Biokohle. Unter Bonatikern auch Parthenium argentatum genannt, wird der Strauch als Quelle für Gummi und Latex kultiviert. Die Pflanze wird zu Boden gehackt und ihre Zweige zerdrückt, um den Latex zu extrahieren. Der trockene, breiige, faserige Rückstand, der nach dem Zerkleinern der Stiele zur Extraktion des Latex zurückbleibt, wird als Bagasse bezeichnet.

Die Ergebnisse sind von Bedeutung, da sie das Potenzial von Biokohle aus reichlich vorhandenen landwirtschaftlichen Abfällen aufzeigen. Diese Abfälle müßten ansonsten teuer entsorgt werden. Die Herstellung von Biokohle ist eine kostengünstige Zusatzbehandlung zur Reduzierung von Verunreinigungen in behandeltem Abwasser, das zur Bewässerung verwendet wird.

Gleichzeitig sind die meisten Kläranlagen derzeit nicht für die Entfernung neu auftretender Verunreinigungen wie Pharmazeutika ausgerüstet. Wenn diese toxischen Verbindungen durch Biokohle entfernt würden, könnte das Abwasser in Bewässerungssystemen wiederaufbereitet werden. Diese Wiederverwendung ist von entscheidender Bedeutung in Regionen, in denen ein Wassermangel die landwirtschaftliche Produktion behindert.

Die in der Studie verwendeten pharmazeutischen Verbindungen waren: Sulfapyridin, ein antibakterielles Medikament, das üblicherweise in der Veterinärmedizin verwendet wird; Docusat, ein weit verbreitetes Abführmittel und Stuhlweichmacher, sowie Erythromycin, ein Antibiotikum zur Behandlung von Infektionen und Akne.

Die im Fachmagazin Biochar veröffentlichten Ergebnisse legen nahe, daß Biokohle landwirtschaftliche Abfälle wirksam Arzneimittel adsorbieren kann. Dabei war die aus Abfällen der Baumwollverarbeitung gewonnene Biokohle jedoch wesentlich effizienter. Die Biokohle adsorbierte es 98% des Docusats, 74% des Erythromycins und 70% des Sulfapyridins aus wäßriger Lösung. Im Vergleich dazu adsorbierte die aus Guayulerückständen gewonnene Biokohle 50% des Docusats, 50% des Erythromycins und nur 5% des Sulfapyridins.

Die Forschung ergab, daß ein Temperaturanstieg von ungefähr 340ºC auf zirka 700ºC im sauerstoffreien Pyrolyseprozeß, der zur Umwandlung der landwirtschaftlichen Abfallmaterialien in Biokohle verwendet wurde, zu einer stark verbesserten Kapazität der Adsorption führte.

Bisher gab es keine Studien zur Verwendung von Guayulerückständen zur Herstellung von Biokohle und zur Entfernung von Verunreinigungen, ebenso wie für Baumwollverarbeitungsabfälle. Es wurden zwar Untersuchungen zur möglichen Entfernung anderer Verunreinigungen durchgeführt. Doch ist dies die erste Studie, in der Baumwollverarbeitungsabfälle speziell zur Entfernung von Arzneimitteln aus Wasser verwendet werden.

Die Forschung mehr als theoretisch. Bei Frontis Energy hoffen wir, daß die Technologie schon bald im industriellen Maßstab verfügbar sein wird. Da Baumwollverarbeitungsabfälle auch in den ärmsten Regionen weit verbreitet sind, sind wir der Ansicht, daß diese Quelle für Biokohle zur Dekontamination von Wasser vielversprechend ist. Der nächste Schritt wäre die Entwicklung einer Mischung aus Biokohlematerial, um eine Vielzahl von Verunreinigungen aus Wasser zu adsorbieren.

(Foto: Wikipedia)

Veröffentlicht am

Schnelles Aufladen von Lithiumakkus bei hoher Temperatur

Eine der größten Hürden bei der Elektrifizierung der Straßenverkehrs ist die lange Aufladezeit der Lithiumakkus in elektrischen Fahrzeugen. In einem aktuellen Forschungsbericht im Fachmagazin Joule wurde jetzt gezeigt, daß man die Ladezeit auf 10 Minuten verkürzen kann, während man den Akku erwärmt.

Ein Lithiumakku kann nach nur 10 Minuten Ladezeit eine 320 Kilometer lange Fahrt mit Strom versorgen − vorausgesetzt, ihre Temperatur wird beim Aufladen auf mehr als 60 °C erhöht.

Lithiumbatterien, bei denen Lithiumionen zur Stromerzeugung verwendet werden, werden bei Raumtemperatur langsam aufgeladen. Das Aufladen dauertof mehr als drei Stunden, im Gegensatz zu drei Minuten beim Volltanken.

Eine kritische Barriere für die Schnellaufladung ist die Lithiumbeschichtung, die normalerweise bei hohen Laderaten auftritt und die Lebensdauer und Sicherheit der Batterien drastisch beeinträchtigt. Die Forscher der Pennsylvania State University in University Park stellen wir eine asymmetrische Temperaturmodulationsmethode vor, die einen Lithiumakku bei einer erhöhten Temperatur von 60 °C auflädt.

Durch das Hochgeschwindigkeitsladen wird Lithium normalerweise dazu angeregt, eine der Elektroden der Batterie zu beschichten (Lithiumplattierung). Dadurch wird der Energiefluß blockiert und der Akku wird schließlich unbrauchbar. Um eine Ablagerung von Lithium auf der Anodenzu vermeiden, haben die Forscher die Expositionszeit bei 60 °C auf nur ~10 Minuten pro Zyklus begrenzt.

Dabei griffen die Forscher auf industriell verfügbare Materialien zurück und minimierten den Kapazitätsverlust bei 500 Zyklen auf 20%. Eine bei Raumtemperatur geladene Batterie konnte nur 60 Zyklen lang schnell geladen werden, bevor ihre Elektrode plattiert wurde.

Die asymmetrische Temperatur zwischen Laden und Entladen eröffnet einen neuen Weg, um den Ionentransport während des Ladens zu verbessern und gleichzeitig eine lange Lebensdauer zu erreichen.

Über viele Jahrzehnte wurde allgemein angenommen, daß Lithumakkus wegen des beschleunigten Materialabbau nicht bei hohen Temperaturen betrieben werden sollten. Im Gegensatz zu dieser herkömmlichen Weisheit stellten die Forscher nun ein Schnelladeverfahren vor, das eine Zelle bei 60 °C lädt und die Zelle bei einer kühlen Temperatur entlädt. Zudem wird durch Laden bei 60 °C  der Batteriekühlungsbedarf um mehr als das 12-fache verringert.

Bei Batterieanwendungen hängen die Entladungsprofile vom Endverbraucher ab, während das Ladeprotokoll vom Hersteller festgelegt wird und daher speziell ausgelegt und gesteuert werden kann. Das hier vorgestellte Schnelladeverfahren eröffnet einen neuen Weg für den Entwurf elektrochemischer Energiesysteme, die gleichzeitig eine hohe Leistung und eine lange Lebensdauer erzielen können.

Bei Frontis Energy denken wir ebenfalls, daß es sich bei dem neuen einfachen Ladeverfahren um eine vielversprechende Methode handelt. Wir sind gespannt auf die Markteinführung dieser neuen Schnellademethode.

(Foto: iStock)