Veröffentlicht am

Energiespeicherung in den Niederlanden

Stromerzeugung

In unserem vorherigen Blogbeitrag der Frontis-Reihe zu europäischen Energiespeichermärkten haben wir uns Spanien genauer angesehen. Im letzten Beitrag unserer Reihe zeigen wir nun, wo die Niederlande positioniert sind. Die Niederlande sind neben Dänemark eines von nur zwei Netto-Gasexportländern in der EU. Der inländische Energieverbrauch spiegelt die Fülle der Ressource wider. Über 50% des in den Niederlanden erzeugten Stroms stammt aus Erdgas. Mit einem Anteil von weiteren 31% an Kohle konzentrieren sich die Niederlande stark auf fossilen Strom. Erneuerbare Energien machen weniger als 10% des erzeugten Stroms aus.

Bis 2020 sollen erneuerbare Energien 14% der gesamten niederländischen Energieversorgung ausmachen, wie von der EU in der Richtlinie über erneuerbare Energien (2009/28 / EG) vorgeschrieben. Dies entspricht einem Elektrizitätssektor mit über 30% erneuerbarer Energieerzeugung.

Gegen die Niederlande wurde Kritik an den erzielten Fortschritten geübt. Nach Prognosen in ihrem Nationalen Aktionsplan für erneuerbare Energien 2009 hätten die Niederlande 2014 fast 20% erneuerbaren Strom erreichen sollen. Diese schwachen Fortschritte führten zu einer Erklärung der EU-Kommission in ihrem zweiten Bericht von 2017 über den Zustand der Energieunion, in dem die Die EU-Kommission gab an, daß die Niederlande der einzige Mitgliedstaat waren, der 2013/2014 keine durchschnittlichen erneuerbaren Energieateile aufwies, die gleich oder höher waren als die entsprechenden Zielvorgaben des Aktionsplans.

Die EU-Kommission erklärte außerdem, daß die Niederlande eines der drei Länder (andere: Frankreich, Luxemburg) mit den größten Anstrengungen zur Erreichung der Ziele für 2020 seien.

Bestehende Energiespeicher

Bisher verfügen die Niederlande über eine Energiespeicherkapazität von fast 20 MW, die entweder in Betrieb (14 MW), vertraglich (1 MW) oder im Bau (4 MW) ist.

Alle Energiespeicher in den Niederlanden sind elektrochemisch, mit Ausnahme des vertraglich vereinbarten 1 MW Hydrostar-Unterwasser-Druckluftspeicherprojekts in Aruba (Karibik). Hydrostar ist ein kanadisches Unternehmen, das sich auf Unterwasser-Druckluftspeichertechnologien spezialisiert hat.

Die überwiegende Mehrheit der 20 MW installierten Energiespeicherkapazität in den Niederlanden verteilt sich auf nur drei Anlagen: das niederländische Advancion Energy Storage Array (10 MW Li-Ion), das Amsterdam ArenA (4 MW Li-Ion) und das Bonaire Wind-Diesel-Hybrid-Projekt (3 MW Ni-Cd-Batterie).

Das niederländische Advancion Energy Storage Array wurde Ende 2015 in Betrieb genommen und liefert dem niederländischen Übertragungsnetzbetreiber TenneT 10 MWh Speicher. Das Projekt, das 50% der gesamten niederländischen Energiespeicherkapazität ausmacht, bietet eine Frequenzregelung, indem in den Batterien gespeicherter Strom verwendet wird, um auf Ungleichgewichte im Netz zu reagieren.

Das 4 MW Amsterdam ArenA Lithium-Ionen-Projekt wurde 2017 für die PV-Integration und Backup-Stromversorgung in Auftrag gegeben. Das 3-MW-Wind-Diesel-Hybridprojekt Bonaire ist ein Batteriearray auf der niederländischen Karibikinsel Bonaire, das als Puffer zwischen intermittierender Windenergie und den Dieselkraftwerken auf der Insel dient.

Die verbleibenden 3 MW niederländischer Energiespeicherprojekte verteilen sich auf 21 Anlagen unter 100 kW, die hauptsächlich auf das Laden von Elektrofahrzeugen (EV) ausgerichtet sind. Mistergreen, ein führender Entwickler von Elektromobil-Ladestationen in den Niederlanden, hat an seinen verschiedenen Ladestationen für Elektrofahrzeuge 750 kW LI-Ionen-Energiespeicher gebaut.
Ausblick auf den Energiespeichermarkt

Angesichts des deutlichen Marktwachstums für Elektrofahrzeuge in den Niederlanden wurden erhebliche Anstrengungen unternommen, um das Netz der Schnelladestationen des Landes zu erweitern. Dieser Trend muß sich fortsetzen, um die Nachfrage nach den in den Niederlanden erwarteten 1 Million Elektrofahrzeugen bis 2025 zu befriedigen. Man kann also davon ausgehen, daß die Li-Ionen-Stationen unter 100 kW, die bereits in Betrieb sind, stark wachsen werden im ganzen Land.

Über den Bedarf an Energiespeichern in großem Maßstab liegen nur wenige Informationen vor, der Gesamtbedarf dürfte jedoch aufgrund der geringen Verbreitung erneuerbarer Energien im Elektrizitätssektor gering sein. Es liegt jedoch ein erheblicher Schwerpunkt auf energieeffizientem, unabhängigem und autarkem Wohnen.

Wie die Italiener sind auch die Niederländer sehr daran gewöhnt, Erdgas in ihren Häusern zu verwenden. Dies könnte zusammen mit dem Streben nach energieautarkem Wohnraum einen einzigartigen Markt für Strom-Gas-Systeme für Privathaushalte in den Niederlanden darstellen.

(Jon Martin, 2020, Foto: Fotolia)

Veröffentlicht am

Schnelles Aufladen von Lithiumakkus bei hoher Temperatur

Eine der größten Hürden bei der Elektrifizierung der Straßenverkehrs ist die lange Aufladezeit der Lithiumakkus in elektrischen Fahrzeugen. In einem aktuellen Forschungsbericht im Fachmagazin Joule wurde jetzt gezeigt, daß man die Ladezeit auf 10 Minuten verkürzen kann, während man den Akku erwärmt.

Ein Lithiumakku kann nach nur 10 Minuten Ladezeit eine 320 Kilometer lange Fahrt mit Strom versorgen − vorausgesetzt, ihre Temperatur wird beim Aufladen auf mehr als 60 °C erhöht.

Lithiumbatterien, bei denen Lithiumionen zur Stromerzeugung verwendet werden, werden bei Raumtemperatur langsam aufgeladen. Das Aufladen dauertof mehr als drei Stunden, im Gegensatz zu drei Minuten beim Volltanken.

Eine kritische Barriere für die Schnellaufladung ist die Lithiumbeschichtung, die normalerweise bei hohen Laderaten auftritt und die Lebensdauer und Sicherheit der Batterien drastisch beeinträchtigt. Die Forscher der Pennsylvania State University in University Park stellen wir eine asymmetrische Temperaturmodulationsmethode vor, die einen Lithiumakku bei einer erhöhten Temperatur von 60 °C auflädt.

Durch das Hochgeschwindigkeitsladen wird Lithium normalerweise dazu angeregt, eine der Elektroden der Batterie zu beschichten (Lithiumplattierung). Dadurch wird der Energiefluß blockiert und der Akku wird schließlich unbrauchbar. Um eine Ablagerung von Lithium auf der Anodenzu vermeiden, haben die Forscher die Expositionszeit bei 60 °C auf nur ~10 Minuten pro Zyklus begrenzt.

Dabei griffen die Forscher auf industriell verfügbare Materialien zurück und minimierten den Kapazitätsverlust bei 500 Zyklen auf 20%. Eine bei Raumtemperatur geladene Batterie konnte nur 60 Zyklen lang schnell geladen werden, bevor ihre Elektrode plattiert wurde.

Die asymmetrische Temperatur zwischen Laden und Entladen eröffnet einen neuen Weg, um den Ionentransport während des Ladens zu verbessern und gleichzeitig eine lange Lebensdauer zu erreichen.

Über viele Jahrzehnte wurde allgemein angenommen, daß Lithumakkus wegen des beschleunigten Materialabbau nicht bei hohen Temperaturen betrieben werden sollten. Im Gegensatz zu dieser herkömmlichen Weisheit stellten die Forscher nun ein Schnelladeverfahren vor, das eine Zelle bei 60 °C lädt und die Zelle bei einer kühlen Temperatur entlädt. Zudem wird durch Laden bei 60 °C  der Batteriekühlungsbedarf um mehr als das 12-fache verringert.

Bei Batterieanwendungen hängen die Entladungsprofile vom Endverbraucher ab, während das Ladeprotokoll vom Hersteller festgelegt wird und daher speziell ausgelegt und gesteuert werden kann. Das hier vorgestellte Schnelladeverfahren eröffnet einen neuen Weg für den Entwurf elektrochemischer Energiesysteme, die gleichzeitig eine hohe Leistung und eine lange Lebensdauer erzielen können.

Bei Frontis Energy denken wir ebenfalls, daß es sich bei dem neuen einfachen Ladeverfahren um eine vielversprechende Methode handelt. Wir sind gespannt auf die Markteinführung dieser neuen Schnellademethode.

(Foto: iStock)