Veröffentlicht am

Energiespeicherung in Italien

Italiens Stromportfolio

In unserem letzten Beitrag haben wir Sie über das Energiespeicherpotenzial in Großbritannien informiert. Italien wird mit dem Brexit nach Deutschland und Frankreich das drittgrößte EU-Mitglied. Italien, das im Norden ein ausgedehntes Bergland hat, war lange Zeit von der Stromerzeugung aus Wasserkraft abhängig. Bis Mitte der 1960er Jahre entfiel fast die gesamte Stromerzeugung in Italien auf Wasserkraft. Die installierte Kapazität der Wasserkraft stagnierte aber seit Mitte der 1960er Jahre, wobei ein rascher Anstieg der Erzeugung fossiler Brennstoffe den Gesamtanteil der Wasserkraft im Jahr 2014 von ~90% auf 22% senkte. Eine detaillierte Aufschlüsselung der Stromquellen in Italien ist nachstehend aufgeführt .

Italiens Stromproduktion 2015

Es wurden erhebliche Anstrengungen unternommen, um Italien auf kohlenstoffarmen Stromerzeugung umzustellen. Italien hatte 2016 die fünfthöchste installierte Solarkapazität der Welt und die zweithöchste Pro-Kopf-Solarkapazität nach Deutschland. Neben dem beeindruckenden Fortschritt bei der Photovoltaik belegte Italien mit 0,9 GW weltweit den 6. Platz in der Geothermie.

Das Solarwachstum in Italien wurde durch Einspeisevergütungen vorangetrieben, die im Jahr 2005 verabschiedet wurden. Dies bot den Eigentümern von PV-Wohnhäusern eine finanzielle Entschädigung für den Verkauf von Energie an das Netz. Das Einspeisevergütungensprogramm wurde jedoch am 6. Juli 2014 eingestellt, nachdem das Subventionslimit von 6,7 Mrd. EUR erreicht war.

Trotz der beeindruckenden Erfolge im Bereich der erneuerbaren Energien macht die traditionelle Wärmeerzeugung (Erdgas) in Italien immer noch ca. 60% der gesamten Stromerzeugung aus. Wie viel Aufwand in die Reduzierung dieser Zahl gesteckt wird, ist noch unklar. Italien hat bis 2020 18% erneuerbare Energien zugesagt und ist bereits zu fast 70% vor Ort, sodaß die Reduzierung fossilen Stroms im Hinblick auf die Erreichung dieses Ziels kaum dringend erforderlich scheint. Italien ist jedoch in hohem Maße von Importen fossiler Brennstoffe abhängig, und die Anforderungen an die Energiesicherheit werden wahrscheinlich weiterhin die Entwicklung von mehr heimischen Stromquellen wie erneuerbaren Energien vorantreiben.

Energiespeicher

Italien dominiert den Markt für elektrochemische Energiespeicher in Europa. Mit über 6.000 GWh geplanter und installierter elektrochemischer Erzeugungskapazität (~84 MW installierte Kapazität) liegt Italien weit vor dem zweiten Platz in Großbritannien. Dies ist vor allem auf das umfangreiche SNAC-Projekt von TERNA (Italiens Übertragungsnetzbetreiber) zurückzuführen, einer Natriumionenbatterieanlage mit einer Gesamtleistung von fast 35 MW in drei Phasen. Eine Aufschlüsselung der Energiespeicherprojekte nach Technologietyp ist hier aufgeführt.

Energiespeicherprojekte nach Typ (Sandia National Laboratories)

Service-Einsatz von Energiespeichern

In Italien wird der elektrische Energiespeicher fast ausschließlich für netzunterstützende Funktionen verwendet. vor allem Entlastung von Übertragungsstaus (Frequenzregelung). Zwar handelt es sich möglicherweise nicht direkt um eine Straffung erneuerbarer Energien, doch lassen sich Engpässe auf die Variabilität der Sonnenenergie zurückführen, was bedeutet, daß die Entwicklung der elektrischen Energiespeicher in Italien weitgehend von der Notwendigkeit der Integration der Sonnenenergie getrieben wird.

Energiespeicherung nach Nutzungsart (Sandia National Laboratories)

Energiespeichermarktausblick

Italien ist einer der Top-Märkte für Energiespeicher in der EU und auf Wachstum ausgerichtet. Der italienische Übertragungsnetzbetreiber TERNA hat den Verkauf von Energiespeichern als Dienstleistung untersucht. Im Jahr 2014 schlug die AEEG, die elektrische Regulierungsbehörde, unter der TERNA tätig ist, vor, Batterien als Erzeugungsquellen zu behandeln, die Kraft-Wärme-Kopplungs-Anlagen ähneln. Italien war schon immer ein Markt, der vollständig von einer kleinen Anzahl großer zentraler Versorgungsunternehmen dominiert wurde, und dieser Trend dürfte sich bei der Einführung von elektrischer Energiespeicherung fortsetzen. Diese Unternehmen haben sich auf Batterietechnologien konzentriert und werden diesen Weg voraussichtlich fortsetzen.

Der private Markt könnte jedoch eine große Chance für P2G darstellen. Die International Battery & Energy Storage Alliance hat die Realität des unerschlossenen italienischen Energiespeichermarktes wie folgt zusammengefasst: „Mit einer hohen Solarleistung von 1.400 kWh / kWp, Nettostrompreisen für Privathaushalte von rund 23 Cent / kWh und derzeit ohne Einspeisevergütungen ist der italienische Energiemarkt als sehr empfänglich für Energiespeicherung. “

Italien ist jetzt gut mit PV-Wohnanlagen ausgestattet, für die keine Subventionen mehr erhoben werden können. Verbunden damit, daß die überwiegende Mehrheit der Haushalte in Italien Erdgas verbrennt, das aus Rußland, Libyen und Algerien importiert wird, und daß Italien eine einzigartige Chance für P2G auf Wohn- / Gemeindeebene darstellt. Dies wird durch Energy Storage Update bestätigt, das 2015 zu dem Schluß kam, daß Italien „einer der vier größten Märkte weltweit für den Eigenverbrauch von PV- und Batterie-Energie“ ist.

Zwar ist nicht genau bekannt, wie viele PV-Anlagen in Wohngebieten in Italien vorhanden sind, es wurde jedoch Ende 2015 spekuliert, daß es in Italien über 500.000 PV-Anlagen gab.

(Jon Martin, 2019)

Veröffentlicht am

Halbleiternanoröhrchen mit photovoltaischem Effekt

Kostengünstigen und effiziente Methoden zur Umwandlung von Sonnenlicht in Elektrizität stehen im Fokus der Erforschung umweltfreundlicher Methoden zur Energiegewinnung. Solarzellen, die zu diesem Zweck entwickelt wurden bestehen zurzeit aus Halbleitern wie Silizium. Elektrische Energie wird am Übergang zwischen zwei verschiededen Halbleitern erzeugt. Der Wirkungsgrad dieser Solarzellen hat jedoch seine theoretische Grenze fast erreicht. Neue Methoden zur Umwandlung von Sonnenlicht in Elektrizität müssen daher gefunden werden, um eine größere Durchdringung unserer Energienetze mit erneuerbaren Energiequellen zu ermöglichen. Ein internationales Forscherkonsortium aus Deutschland, Japan und Israel hat jetzt einen wichtigen Fortschritt in dieser Richtung erzielt. Zhang und Kollegen veröffentlichten ihre Ergebnisse kürzlich im angesehen Fachblatt Nature. Sie demonstrieren eine übergangsfreie Solarzelle, die durch Auftragen einer atomeren Halbleiterschicht in eine Nanoröhre hergestellt werden kann.

In einer herkömmlichen Solarzelle werden zwei Bereichen eines Halbleiters in einem als Dotierung bekannten Prozess unterschiedliche chemische Elemente hinzugefügt. Der elektrische Transport erfolgt durch die negativ geladene Elektronen einer Region und durch die positiv geladene Elektronenlöcher (Defektelektronen). An der Verbindungsstelle zwischen diesen beiden Bereichen wird ein elektrisches Feld erzeugt. Wenn an diesem Übergang Sonnenlicht absorbiert wird, entstehen Elektron-Defektelektronen-Paare. Die Elektronen und Defektelektronen werden dann durch das entstandene elektrische Feld getrennt, wodurch ein elektrischer Strom entsteht. Diese Umwandlung von Sonnenenergie in Strom wird als photovoltaischer Effekt bezeichnet. Dieser photovoltaische Effekt ist besonders wichtig für eine umweltfreundliche Energiegewinnung. Sein Wirkungsgrad hat wie eingangs gesagt fast die theoretische Grenze erreicht.

Physikalisch entsteht der photovoltaische Effekt in traditionellen pn-Übergängen, bei denen ein p-Typ-Material (mit einem Überschuss an Defektelektronen) an ein n-Typ-Material (mit einem Überschuss an Elektronen) angrenzt. In der lichtinduzierten Erzeugung von Elektronen-Defektelektronen-Paaren und deren anschließende Trennung wird Strom erzeugt. Weitere Fortschritte werden durch die Nutzung anderer photovoltaischer Effekte erwartet, die keinen Übergang erfordern und nur in Kristallen mit gebrochener Inversionssymmetrie auftretet. Die praktische Umsetzung dieser Effekte wird jedoch durch die geringe Effizienz der vorhandenen Materialien behindert. Halbleiter mit reduzierter Dimensionalität oder kleinerem Bandabstand haben sich als effizienter erwiesen. Übergangsmetall-Dichalkogenide (TMDs) sind z.B. zweidimensionale Halbleiter mit kleiner Bandlücke, bei denen verschiedene Effekte durch Aufbrechen der Inversionssymmetrie in ihren Volumenkristallen beobachtet wurden.

Die neu entwickelte photovolataische Methode basiert auf Wolframdisulfid, einem Mitglied der TMD-Familie. Kristalle dieses Materials sind schichtförmig aufgebaut und können ähnlich wie Graphit schichtweise abgezogen werden. Die resultierenden atomdicken Bleche können dann durch chemische Verfahren zu Röhrchen mit Durchmessern von etwa 100 Nanometern gewalzt werden. Die Autoren stellten photovoltaische Apparate aus drei Arten von Wolframdisulfid her: eine Monoschicht, eine Doppelschicht und eine Nanoröhre.

Eine systematische Reduzierung der Kristallsymmetrie wurde über die bloße gebrochene Inversionssymmetrie hinaus erreicht. Der Übergang von einer zweidimensionalen Monoschicht zu einer Nanoröhre mit polaren Eigenschaften wurde erheblich verbessert. Die so erzeugte Photostromdichte ist um Größenordnungen größer als die anderer vergleichbarer Materialien. Die Ergebnisse bestätigen nicht nur das Potenzial von TMD-basierten Nanomaterialien, sondern allgemein auch die Bedeutung der Reduzierung der Kristallsymmetrie für die Verbesserung des photovoltaischen Effekts.

Während die Nanoröhrenbauelemente einen großen photovoltaischen Effekt hatten, erzeugten die Einschicht- und Zweischicht-Bauelemente unter Beleuchtung nur einen vernachlässigbaren elektrischen Strom. Die Forscher führen die unterschiedlichen Leistungsmerkmale der Solarzellen auf ihre ausgeprägte Kristallsymmetrie zurück. So kann man spontan einen Strom in gleichmäßigen Halbleitern erzeugen, ohne daß ein Übergang erforderlich ist.

Der Effekt wurde erstmals 1956 in den Bell Laboren in New Jersey beobachtet, nur zwei Jahre nach der Erfindung moderner Siliziumsolarzellen. Der Effekt ist auf nicht zentrosymmetrische Materialien beschränkt, die durch mangelnde Symmetrie bei räumlicher Inversion (die Kombination aus einer 180°-Drehung und einer Reflexion) gekennzeichnet sind. Der Effekt hat zwei faszinierende Eigenschaften: Der durch Licht erzeugte Strom hängt von der Polarisation des einfallenden Lichts ab und die zugehörige Spannung ist größer als die Bandlücke des Materials. Das ist die Energie, die zur Anregung von leitenden freien Elektronen erforderlich ist. Der Effekt weist jedoch typischerweise eine geringe Umwandlungseffizienz auf und ist daher im Laufe der Jahre eher von akademischem als von praktischem Interesse geblieben.

Um eine hohe Effizienz zu erzielen, muß ein Material eine hohe Lichtabsorption und eine geringe innere Symmetrie aufweisen. Diese beiden Eigenschaften existieren jedoch in einem bestimmten Material normalerweise nicht gleichzeitig. Halbleiter, die das meiste einfallende Sonnenlicht absorbieren, weisen im Allgemeinen eine hohe Symmetrie auf. Das verringert oder verhindert gar den Effekt. Materialien mit geringer Symmetrie, wie Perowskitoxide, absorbieren aufgrund ihrer großen Bandlücke nur wenig Sonnenlicht. Um dieses Problem zu umgehen, wurden enorme Anstrengungen unternommen, um die Lichtabsorption in Materialien mit geringer Symmetrie zu verbessern, beispielsweise durch Verwendung der erwähnten Dotierung. Inzwischen wurde gezeigt, daß die Effekt in Halbleitern auftreten kann, indem mechanische Felder verwendet werden, um die Kristallsymmetrie des Materials anzupassen.

Die neu entdeckte Lösung ist ermutigend im Hinblick auf die Herstellung von Halbleiternanoröhrchen mit hoher Lichtabsorption. Im Falle von Wolframdisulfid ist die Kristallsymmetrie der Nanoröhrchen im Vergleich zur Mono- und Doppelschicht aufgrund der gekrümmten Wände des Röhrchens verringert. Die Kombination aus ausgezeichneter Lichtabsorption und geringer Kristallsymmetrie bedeutet, daß die Nanoröhrchen einen erheblichen photovoltaischen Effekt aufweisen. Die elektrische Stromdichte übertrifft die von Materialien, die von Natur aus eine geringe Symmetrie aufweisen. Dennoch ist die erzielte Umwandlungseffizienz immer noch viel geringer ist als die des Photovoltaik-Effekts in herkömmlichen Solarzellen auf Sperrschichtbasis.

Die Ergebnisse der Autoren belegen das große Potenzial von Nanoröhrchen bei der Gewinnung von Sonnenenergie und werfen verschiedene technologische Herausforderungen und wissenschaftliche Fragen auf. Aus Anwendersicht wäre es aufschlußreich, eine Solarzelle zu fertigen die aus eine hohen Zahl von Halbleiternanoröhrchen besteht, um zu überprüfen, ob sich der Ansatz skalieren lässt. Die Richtung des erzeugten Stroms würde weitgehend von der inneren Symmetrie des Materials bestimmt. Daher wäre eine gleichmäßige Symmetrie über das Nanoröhrchenanordnungen erforderlich, um einen gemeinsamen Strom zu erzeugen. Dabei könnten sich die in verschiedenen Nanoröhrchen gegenseitig ausgleichen, was zu einer Anullierung des erzeugten Stroms führen würde.

Bei Frontis Energy fragen wir uns, ob die beschrieben Methode mit dem klassichen photovoltaischen Effekt in derselben Solarzelle zusammenwirken könnte. Das würde eventuell den Gesamtwirkungsgrad steigern. Die beiden Effekte könnten die Sonnenenergie aufeinander folgend nutzen. Trotz der verbleibenden Herausforderungen bietet die vorgelgte Arbeit einen Möglichkeit zur Entwicklung hocheffizienter Solarzellen.

(Photo: Wikipedia)

Veröffentlicht am

Möglichkeiten zur Energiespeicherung im EU-Markt

Elektrische Energiespeicher (EES) sind nicht nur wesentlicher Bestandteil für den zuverlässigen Betrieb moderner Stromnetze, sondern auch ein Schwerpunkt der globalen Energiewende. Energiespeicher sind die krtitische technologische Hürde bei der Einführung erneuerbarer Energie als alleinige Quelle der Stromversorgung. Hier werden ausgewählte Energiespeichermärkte in der EU bewertet. In den folgenden Blogbeiträgen werden diese detailliert beschrieben.

Deutschland ist mit über 80 MW installierter Wind- und Solarkapazität das absolut führende EU-Land in der Energiewende. Experten haben jedoch argumentiert, daß es unwahrscheinlich ist, den Gesamtbedarf Deutschlands an großtechnischen Energiespeichern in den nächsten 20 Jahren in nennenswerter Menge auszubauen. Dies ist auf eine Reihe von Faktoren zurückzuführen. Die geografische Lage Deutschlands und die zahlreichen Anschlüsse an benachbarte Stromnetze erleichtern den Export von Überschußstrom. Wenn Deutschland außerdem seine 2020-Ziele für Wind- und Solarkapazität (46 GW bzw. 52 GW) erreicht, würde das Angebot in der Regel 55 GW nicht überschreiten. Fast alles würde im Inland verbraucht und der Speicherbedarf wäre gering.

Bei der Bewertung der Energiespeicherung in Großbritannien stellt sich anders dar. Da es sich um einen isoliertes Inselstaat handelt, liegt der Schwerpunkt wesentlich stärker auf der Unabhängigkeit im Energiebereich. Dieses Bestreben ist nach Energieunabhängigkeit ist stärker, als das Ziel, einen kohlenstoffarmen Energiesektor aufzubauen. Die bestehende Gesetzgebung ist jedoch umständlich und birgt Hindernisse, die den Übergang zu einem kohlenstoffarmen Energiesektor − einschließlich Energiespeicherung − erheblich behindern. Die britische Regierung hat die Existenz gesetzgeberischer Hindernisse anerkannt und sich dazu verpflichtet, diese zu beseitigen. Im Rahmen dieser Bemühungen wird bereits eine Umstrukturierung ihres Strommarktes zu einem kapazitätsbasierten Markt durchgeführt. Die Aussichten für Energiespeicherung in Großbritannien sind vielversprechend, da nicht nur die Industrie, sondern auch die Öffentlichkeit und die Regierung erheblichen Druck ausüben, solche Anlagen in industriellem Maßstab weiterzuentwickeln. Der bevorstehende Brexit trübt diese Aussicht jedoch in merhfacher Hinsicht.

Italien, das einst stark von Wasserkraft abhängig war, bezieht derzeit 50% seines Stroms aus Erdgas, Kohle und Öl (34% Erdgas). Die Einführung einer Solar-FIT im Jahr 2005 führte zu einem deutlichen Wachstum in der Solarindustrie bevor das Programm im Juli 2014 endete. Italien belegt jetzt weltweit den 2. Platz bei der Pro-Kopf-Solarkapazität . In den letzten Jahren war ein deutlicher Anstieg der elektrochemischen Energiespeicherkapazität zu verzeichnen (>90 MW verfügbar). Dieser Anstieg wurde hauptsächlich von einzelnen TERNA Großprojekten angetrieben, TERNA ist Italiens Übertragungsnetzbetreiber (ÜNB). Diese Kapazität hat Italien zum führenden Anbieter von Energiespeicherkapazitäten in der EU gemacht. Der Markt wird jedoch bislang von den großen ÜNB dominiert. Die Kombination aus Abhängigkeit von importiertem Erdgas und mehr als 500.000 Photovoltaikanlagen, die keine FIT-Prämien mehr erheben, sowie die Erhöhung der Stromtarife, machen Italien zu einem erfolgversprehcenden Markt für Power-to-Gas für Privathaushalte.

Dänemark verfolgt aggressiv ein zu 100% erneuerbares Energieziel für alle Sektoren bis zum Jahr 2050. Zwar gibt es noch keine offizielle Gesetzgebung. Die Richtung wurde jedoch im Wesentlichen auf eines von zwei Szenarien eingegrenzt: ein auf Biomasse basierendes Szenario oder ein Wind + Wasserstoff-basiertes Szenario. Unter dem wasserstoffbasierten Szenario wären weitreichende Investitionen in die Erweiterung der Windkapazität und in die Kopplung dieser Kapazität mit Wasserstoff-Power-to-Gas-Systemen zur Speicherung überschüssiger Energie erforderlich. Angesichts des dänischen Fachwissens und der damit verbundenen Investitionen in die Windenergie ist zu erwarten, daß das künftige dänische Energiesystem auf dieser Stärke aufbaut und daher erhebliche Power-to-Gas-Investitionen erfordert.

In Spanien stagnierte der Ausbau erneuerbarer Energien aufgrund rückwirkender Richtlinienänderungen und Steuern auf den Verbrauch von solarbetriebenem Strom, die 2015 eingeführt wurden. Die Umsetzung des Königlichen Dekrets 900/2015 über den Eigenverbrauch machte Photovoltaikanlagen unrentabel und führte zu zusätzlichen Gebühren und Steuern für die Nutzung von Energiespeichergeräten. Wir haben keinen Hinweis darauf gefunden, daß in naher Zukunft ein Markt für Energiespeicher in Spanien entstehen wird.

Das letzte untersuchte Land waren die Niederlande, die von der EU wegen mangelnder Fortschritte bei den Zielen für erneuerbare Energien kritisiert wurden. Da nur 10% des niederländischen Stroms aus erneuerbaren Quellen stammt, besteht derzeit nur eine geringe Nachfrage nach großtechnischen Energiespeichern. Während die Niederlande möglicherweise hinter den Zielen für erneuerbaren Strom zurückbleiben, waren sie führend bei der Einführung von Elektrofahrzeugen. Ein Trend, der sich bis 2025 fortsetzen wird. Es wird geschätzt, daß eine Million Elektrofahrzeuge auf niederländischen Straßen fahren werden. Parallel zum Anstieg der Elektrofahrzeuge gab es einen starken Anstieg von Li-Ionen-Anlagen mit einer Leistung von weniger als 100 kW zur Speicherung von Energie an Ladestationen für Elektrofahrzeuge. Es wird erwartet, daß diese Anwendungen weiterhin im Fokus der Energiespeicherung in den Niederlanden stehen werden.

Ähnlich wie in Italien sind die Niederländer in ihren Häusern in hohem Maße auf Erdgas angewiesen. Diese Tatsache, gepaart mit einem immer stärkeren Bedarf an energieunabhängigen und -effizienten Häusern, könnte die Niederlande zu einem Hauptmarkt für Power-to-Gas-Technologien für Privathaushalte machen.

Mehr zu dem Thema EES können Sie hier lesen.

Jon Martin, 2019

(Foto: NASA)

Veröffentlicht am

Schneller photoelektrischer Wasserstoff

Das Erreichen hoher Stromdichten bei gleichzeitig hoher Energieeffizienz ist eine der größten Herausforderungen bei der Verbesserung photoelektrochemischer Geräte. Höhere Stromdichten beschleunigen die Erzeugung von Wasserstoff und anderer elektrochemischer Brennstoffe.

Jetzt wurde ein kompaktes solarbetriebenes Gerät zur Wasserstofferzeugung entwickelt, das den Brennstoff in Rekordgeschwindigkeit erzeugt. Die Autoren um Saurabh Tembhurne beschreiben ein Konzept im Fachblatt Nature Energy, das es ermöglicht, konzentrierte Sonneneinstrahlung (bis zu 474 kW/m²) durch thermische Integration, Stofftransportoptimierung und bessere Elektronik zwischen Photoabsorber und Elektrokatalysator zu verwenden.

Die Forschungsgruppe der Eidgenössischen Technischen Hochschule in Lausanne (EPFL) errechnete die Zunahme der maximalen Wirkungsgrade, die theoretisch möglich sind. Danach überprüften sie die errechneten Werte experimentell unter Verwendung eines Photoabsorbers und eines Elektrokatalysators auf Iridium-Rutheniumoxid-Platin-Basis. Der Elektrokatalysator erreichte eine Stromdichte von mehr als 0,88 A/cm², wobei der erechneten Wirkungsgrad für die Umwandlung von Sonnenenenergie in Wasserstof mehr als 15% betrug. Das System war unter verschiedenen Bedingungen für mehr als zwei Stunden stabil. Als nächtes wollen die Forscher ihr System skalieren.

Der produzierte Wasserstoff kann in Brennstoffzellen zur Stromerzeugung verwendet werden weshalb sich das entwickelte System zur Energierspeicherung eignet. Die mit Wasserstoff betriebene Stromerzeugung gibt nur reines Wasser ab, die saubere und schnelle Erzeugung von Wasserstoff ist jedoch eine Herausforderung. Bei der photoelektrischen Methode werden Materialien verwendet, die denen von Solarmodulen ähneln. Die Elektrolyte basierten in dem neuen System auf Wasser, wobei auch Ammoniak denkbar wäre. Sonnenlicht, das auf diese Materialien fällt, löst eine Reaktion aus, bei der Wasser in Sauerstoff und Wasserstoff gespalten wird. Bisher konnten alle photoelektrischen Methoden jedoch nicht im industriellen Maßstab eingesetzt werden.

2 H2O → 2 H2 + O2; ∆G°’ = +237 kJ/mol (H2)

Das neu entwickelte System nahm mehr als das 400-fachen der Sonnenenergie auf, die normalerweise auf eine bestimmte Erdoberfläche fällt. Dazu benutzten die Forscher Hochleistungslampen, um die notwendige „Sonnenenergie“ bereitzustellen. Bestehende Solaranlagen konzentrieren die Sonnenenergie mithilfe von Spiegeln oder Linsen in ähnlichem Maße. Die Abwärme wird verwendet, um die Reaktionsgeschwindigkeit zu erhöhen.

Das Team sagt voraus, daß das Testgerät mit einer Grundfläche von etwa 5 cm in sechs Sonnenstunden schätzungsweise 47 Liter Wasserstoffgas produzieren kann. Dies ist die höchste Rate pro Flächeneinheit für solche solarbetriebenen elektrochemischen Systeme. Bei Frontis Energy hoffen wir, dieses System schon bald testen und anbieten zu können.

(Foto: Wikipedia)

Veröffentlicht am

Solarenergie

Überraschenderweise ist Solarenergie tatsächlich einer Form der Kernenergie. Unsere Sonne setzt thermische Energie frei, die für das Leben auf der Erde essentiell ist. Diese thermische Energie ist das Ergebnis der Kernfusion des Wasserstoffs im Kern der Sonne. Wenn sich zwei Wasserstoffisotope vereinigen, geben sie ein Heliumatom, ein freiwerdendes Neutron und eine beträchtliche Menge an Strahlungsenergie ab. Während diese Lichtstrahlen zwischen 10.000 und 170.000 Jahren benötigen, um von ihrem Kern aus die Oberfläche der Sonne zu erreichen, benötigen sie nur etwa 8 Minuten, um die Erde zu erreichen, wo sie uns Licht und Wärme und Energie für Sonnenkollektoren liefern.

Solartechnologie wandelt Sonnenlicht in Elektrizität um, entweder direkt mit Photovoltaik (PV) oder indirekt mit Solarthermieanlagen.

Solarthermieanlagen verwenden Linsen oder Spiegel, um eine große Fläche von Sonnenlicht in einen kleinen Strahl zu fokussieren. Auf diese Weise wird die Sonnenergie gebündelt und in Wärme umgewandelt. Durch Hinzufügen einer Dampfturbine wird dieser sogenannte Solarthermie in elektrische Energie umgewandelt. Seit 2014 nutzt Spanien mit einer Gesamtkapazität von 2 GW die größten Solarthermieanlage weltweit.

Die Photovoltaik arbeitet unter Ausnutzung des photovoltaischen Effekts, der die Erzeugung von elektrischem Strom in einem photoelektrischen Material nach Belichtung bewirkt. Der photovoltaische Effekt steht in direktem Zusammenhang mit dem photoelektrischen Effekt, ist jedoch nicht mit diesem zu verwechseln. Der photoelektrische Effekt ist das Phänomen, dass Elektronen von einem gegebenen Metall freigesetzt werden, wenn das gegebene Metall Licht ausgesetzt wird. Die Photovoltaik wurde anfangs und auch heute noch genutzt, um kleine und mittelgroße Anwendungen zu betreiben, vom Taschenrechner mit einer einzigen Solarzelle bis hin zu netzfernen Häusern, die von einer Photovoltaikanlage angetrieben werden. Sie sind eine wichtige und relativ kostengünstige Quelle für elektrische Energie, z.B. wenn die Netzleistung unzureichend ist oder die Netzanbindung zu teuer bzw. nicht verfügbar ist.