Veröffentlicht am

Leistungsfähigere bioelektrische Reaktoren durch Nanomaterialien

Seit Professor Potters Entdeckung der Fähigkeit von Mikroben, organische Moleküle mithilfe von mikrobiellen Brennstoffzellen (MBZ) elektrische Energie umzuwandeln (Potter MC, 1911, Proc Roy Soc Lond Ser B 84: 260–276), wurde viel Forschung betrieben um deren Leistung zu verbessern. Leider hat dies nicht zu einer wirtschaftlich sinnvollen Technologie geführt. MFCs schafften es nie aus den Klassenräumen heraus. Durch die jüngsten Fortschritte bei der Entwicklung von Nanomaterialien könnte sich das jetzt ändern.

Der Fokus der Entwicklung von Nanomaterialien in bioelektrischen Reaktoren lag gewöhnlich auf Elektroden, Membranen und den Elektrolyten mit deren nahezu unerschöpflichen Möglichkeiten, leistungsfähige Verbundstoffe herzustellen. Die Vorteile solcher Materialien sind ihre große Oberfläche, Kosteneinsparungen und Skalierbarkeit. All dies ist erforderlich, um bioelektrischen Reaktoren erfolgreich zu kommerzialisieren. Die großtechnische kommerzielle Anwendung könnte die Abwasserbehandlung sein. In unserer kürzlich veröffentlichten Literaturstudie haben wir herausgefunden, dass es keinen gemeinsamen Benchmark für Leistung gibt, wie er in der Photovoltaik oder bei Batterien üblich ist. Um unsere Ergebnisse zu normalisieren, verwendeten wir Dollar pro Peak-Leistungskapazität als (USD/Wp), wie es in der Photovoltaik Standard ist. Die durchschnittlichen Kosten für Luftkathoden von MBZ betragen 4.700 USD/Wp (2.800 USD/m²). Platin auf Kohlenstoff (Pt/C) und Kohlenstoffnanofasern sind mit 500 USD/Wp (Pt/C 2.800 USD/m²; Nanofasern 2.000 USD/m²) die besten Materialien.

Wir haben herausgefunden, daß kohlenstoffbasierte Nanomaterialien oft eine mit Pt/C vergleichbare Leistung liefern. Während MBZ noch weit davon entfernt sind, rentabel zu sein, sind bereits mikrobielle Elektrolysezellen bereits im Markt angekommen. Mit diesen neuen kohlenstoffbasierten Nanomaterialien rücken MBZ jedoch näher und werden zu einer wirtschaftlichen Realität. Graphen- und Kohlenstoffnanoröhrchen sind vielversprechende Materialien, wenn sie mit Mineralien wie Mangan- oder Eisenoxiden kombiniert werden. Der Preis für Graphen ist jedoch immer noch zu hoch, um MBZ in der Abwasserbehandlung zur wirtschaftlichen rentabel zu machen. Die Kosten für die mikrobielle Elektrolyse sind allerdings bereits so niedrig, dass sie eine ernstzunehmende Alternative zur herkömmlichen Abwasserbehandlung darstellen, wie wir im obigen Beitragsbild zeigen. Bei stark belastetem Abwasser könnte eine Aufbereitungsanlage tatsächlich zu einem Kraftwerk werden, dessen überschüssiger Strom am Markt verkauft werden kann. Die Kosten für die mikrobielle Elektrolyse werden durch die Kombination von billigem Stahl und Graphit reduziert.

Zusammenhang zwischen Reaktorkapazität und Gesamtelektrodenkosten einschließlich Anode und Kathode. Fehler sind Standardabweichungen von vier verschiedenen Rohrreaktorkonstruktionen. Anoden sind Graphitgranulate und Kathoden sind Stahlrohre

Graphit wiederum ist das Ausgangsmaterial für Graphen, einem vielversprechenden Stoff für MBZ-Elektroden. Wenn Graphitflocken auf wenige Graphenschichten reduziert werden, sind einige der technologisch wichtigsten Eigenschaften des Materials stark verbessert. Dazu gehören die Gesamtoberfläche und die Elastizät. Graphen ist also ein sehr dünner Graphit. Viele Hersteller von Graphen nutzen dies, um ein Material zu verkaufen, das in Wirklichkeit nur billiger Graphit ist. Im Fachmagazin Advanced Materials schreiben Kauling und Kollegen eine systematische Studie von Graphen von 60 Herstellern und stellen fest, daß viele hochpreisige Graphenprodukte hauptsächlich aus Graphitpulver bestehen. Die Studie ergab, daß weniger als 10% des Materials in den meisten Produkten aus Graphen bestand. Keines der getesteten Produkte enthielt mehr als 50% Graphen. Viele waren stark kontaminiert, höchstwahrscheinlich mit Chemikalien, die im Produktionsprozess verwendet wurden. Dies kann oft dazu führen, daß ein Material katalytische Eigenschaften hat, die ohne Verunreinigung nicht beobachten worden wären, wie z.B. die Materialforscher Wang und Pumera berichteten.

Es gibt viele Verfahren zur Herstellung von Graphen. Eines der einfachsten ist die Ablagerung auf einer Metallischen Oberfläche, wie wir es in unserer neuesten Publikation beschreiben:

Im Allgemeinen werden einschichtiges Graphen (ESG) und mehrlagiges Graphen (MLG) durch chemische Gasphasenabscheidung (CVD) aus einem Kohlenstoffvorläufer (kohlenstoffhaltigen Gasen) auf katalytischen Metalloberflächen synthetisiert. In einem oberflächenvermittelten Gasphasenabscheidungsprozess kann der Kohlenstoffvorläufer, z. Isopropylalkohol (IPA) wird an der Metalloberfläche zersetzt, z. Cu oder Ni. Um die Anzahl der gebildeten Graphenschichten zu kontrollieren, muss die Löslichkeit des Kohlenstoffvorläufers auf der Metallkatalysatoroberfläche berücksichtigt werden. Aufgrund der geringen Löslichkeit des Vorläufers in Cu kann ESG gebildet werden. Es ist schwierig, ESG auf der Oberfläche eines Metalls mit einer hohen Affinität für den Vorläufer zu züchten.

Protokoll:
Das Protokoll ist eine wirtschaftliche, sichere und einfache Methode zur Synthese von MLG-Filmen durch Gasphasenabscheidung in 30–45 Minuten in einem Chemielabor. Eine Nickelfolie wird zum Ätzen in Essigsäure getaucht und anschließend in ein luftdichtes Quarzrohr überführt, das das System vor Umgebungssauerstoff und Wasserdampf schützt. Stickstoffgas wird durch IPA geblasen, und das resultierende IPA-gesättigte Gas wird durch das geschlossene System geleitet. Dabei werden die Abgase in einem Becher mit Wasser- oder Gaswaschflasche gewaschen. Der Strom wird 5 min lang mit einer Geschwindigkeit von ca. 50 cm3/min gespült. Sobald die Flamme eines Meker-Brenners 575–625 °C erreicht, wird sie unter der Nickelfolie positioniert, sodaß ausreichend Energie für die Bildung von Graphen zur Verfügung steht. Die Flamme wird nach 5–10 Minuten gelöscht, um die Reaktion zu stoppen und das System 5 min lang abzukühlen. Man erhält die mit Graphen beschichtete Ni-Folie.

Aber wie dünn müssen Graphitflocken sein, um sich als Graphen zu verhalten? Eine verbreitete Idee, die von der International Organization for Standardization (ISO) unterstützt wird, ist, daß Flocken mit mehr als zehn Graphenschichten im Wesentlichen aus Graphit bestehen. Die Thermodynamik gibt vor, daß sich jede Atomschicht in einer Flocke mit zehn oder weniger Schichten bei Raumtemperatur als einzelner Graphenkristall verhält. Darüber hinaus verstärkt sich die Steifheit der Graphitflocken mit der Schichtdicke, was bedeutet, daß dünne Graphenflocken um Größenordnungen elastischer sind als dickere Graphitflocken.

Um tatsächlich Graphen in bioelektrischen Reaktoren einsetzen zu können, muß man es leider immernoch selbst herstellen. Die Zutaten finden Sie in unserem Do-It-Yourself Shop.

Veröffentlicht am

Ammoniak als Energiespeicher #1

Die alten, trockenen Landschaften Australiens sind nicht nur fruchtbarer Boden für riesige Wälder und Ackerflächen. Die Sonneneinstrahlung ist hier auch höher, als in jedem anderen Land. Starke Winde treffen auf die Süd- und Westküste. Alles in allem verfügt Australien über eine Kapaziatät an erneuerbare Energien von 25 Terawatt − eine der höchsten der Welt und etwa vier Mal so hoch wie die weltweit installierte Stromerzeugungskapazität. Die niedrige Bevölkerungsdichte erlaubt wenig Spielraum für Energiespeicherung und der Stromexport ist durch die isolierte Lage schwierig.

Bisher dachten wir, die billigste Variante, große Mengen Energie zu speichern, sei Power-to-Gas. Es gibt aber noch eine andere Möglichkeit, kohlenstoffreien Brennstoff herzustellen: Ammoniak. Stickstoffgas und Wasser reichen aus, um das Gas herzustellen. Durch die Umwandlung von erneuerbarer Elektrizität in das energiereiches Gas, das auch leicht gekühlt und zu einem flüssigen Brennstoff umgewandelt werden kann, wird ein leicht transportierbarer Träger für Wasserstoff gewonnen. Ammoniak oder Wasserstoff können dann in Brennstoffzellen genutzt werden.

Die Energiedichte von Ammoniak ist pro Volumen fast doppelt so hoch wie die von flüssigem Wasserstoff. Gleichzeitig kann Ammoniak einfacher und schneller transportiert oder gespeichert werden. Forscher auf der ganzen Welt verfolgen die gleiche Vision einer „Ammoniakwirtschaft“. In Australien, das seit langem Kohle und Erdgas exportiert, ist dies besonders wichtig. In diesem Jahr stellt Australiens Agentur für Erneuerbare Energie 20 Mio australische Dollar an Fördermitteln dafür bereit.

Letztes Jahr kündigte ein internationales Konsortium Pläne an, eine kombinierte Wind- und Solaranlage mit einem Volumen von 10 Milliarden US-Dollar zu bauen. Obwohl die meisten der 9 Terawatt des Projekts durch ein Unterwasserkabel fließen würden, könnte ein Teil dieser Energie zur Erzeugung von Ammoniak für den Langstreckentransport genutzt werden. Das Verfahren könnte den Haber-Bosch-Prozess ersetzen.

So eine Ammoniakfabrik ist eine Stadt aus Rohren und Tanks und wird meist dort gebaut, wo Erdgas verfügbar ist. In der westaustralischen Pilbara-Wüste, wo eisenhaltige Felsen und Ozean aufeinander treffen, befindet sich ebenfalls so eine Ammoniak-Stadt. Sie ist eine der größten und modernsten Ammoniakanlagen der Welt. Doch im Kern sind es immernoch die selben Stahlreaktoren, die nach dem jahrhundertealten Ammoniakrezept funktionieren.

Bis 1909 produzierten stickstoffixierende Bakterien den größten Teil des Ammoniaks auf der Erde. Im selben Jahr entdeckte der deutsche Wissenschaftler Fritz Haber eine Reaktion, die mithilfe von Eisenkatalysatoren (Magnetit) die starke chemische Bindung des Stickstoffs, (N2) aufspalten konnte und nachfolgend die Atome mit Wasserstoff zu Ammoniak verbindet. In den großen, schmalen Stahlreaktoren nimmt die Reaktion das 250-fache des atmosphärischen Drucks auf. Der Prozess wurde dann zuerst vom deutschen Chemiker Carl Bosch bei BASF industrialisiert. Der Prozess ist wurde im Laufe der Zeit immer effizienter. Etwa 60% der eingebrachten Energie werden in den Ammoniakbindungen gespeichert. Heute produziert und liefert eine einzelne Anlage bis zu 1 Mio Tonnen Ammoniak pro Jahr.

Das meiste wird als Dünger verwendet. Pflanzen brauchen Stickstoff, der beim Aufbau von Proteinen und DNA verwendet wird, und Ammoniak liefert es in einer biologisch verfügbaren Form. Es wird geschätzt, daß mindestens die Hälfte des Stickstoffs im menschlichen Körper heute synthetischer Ammoniak ist.

Haber-Bosch führte zur grünen Revolution, aber der Prozess ist alles andere als grün. Er benötigt Wasserstoffgas (H2), der von unter Druck stehendem, erhitztem Dampf aus Erdgas oder Kohle gewonnen wird. Kohlendioxid (CO2) bleibt zurück und macht etwa die Hälfte der Emissionen aus. Das zweite Ausgangsmaterial, N2, wird aus der Lusft gewonnen. Aber der Druck, der für die Verschmelzung von Wasserstoff und Stickstoff in den Reaktoren benötigt wird, ist energieintensiv, was wiederum mehr CO2 bedeutet. Die Emissionen summieren sich: Die weltweite Ammoniakproduktion verbraucht etwa 2% der Energie und produziert 1% unseres CO2-Ausstosses.

Unsere mikrobiellen Elektrolysereaktoren können den so gewonnen Ammoniak direkt in Methangas umwandeln − ohne den Umweg über Wasserstoff. Die Technologie befindet sich derzeit im Patentverfahren und ist besonders geeignet, um Ammoniak aus Abwasser zu entfernen. Mikroben, die im Abwasser leben, können den als Ammonium gelösten Ammoniak direkt oxidieren und die freiwerdenden Elektronen in einen Stromkreislauf einspeisen. Der Strom kann zwar direkt gewonnen werden, es ist aber ökonomischer, Methangas aus CO2 herzustellen. So wird ein Teil des CO2’s wieder in den Kohlenstoffkreislauf zurückgeführt und belastete Abwässer gereinigt:

NH3 + CO2 → N2 + CH4

 

Veröffentlicht am

Eine Graphenmembran als elektrischer Wasserhahn

Biologische Systeme können durch Kanäle in ihren Membranen den Wasserfluß steuern. Das hat viele Vorteile, wie z.B. wenn Zellen den osmotischen Druck regulieren müssen. Auch künstliche Systeme, z.B. in der Wasserbehandlung oder in elektrochemischen Zellen, könnten davon profitieren. Jetzt hat eine Gruppe von Materialforschern um Dr. Zhou an der Universität Manchester im Vereinigten Königreich eine Membran entwickelt, die den Wasserfluß elektrisch schalten kann.

Wie die Forscher im Fachmagazin Nature berichteten, wurde eine mehrschichtige Membran aus Silber, Graphen und Gold hergestellt, die bei einer Spannung von mehr als 2 V Kanäle öffnet, die Wasser fast ohne Behinderung durch die Membran durchleiten. Der Effekt ist reversibel. Dazu benutzten die Wissenschaftler die Eigenschaft von Graphen, einen einstellbaren Filter oder eine perfekte Barriere für Flüssigkeiten und Gasen zu bilden. Die Forscher haben dabei eine kostengünstige Form von Graphen (Graphenoxid) verwendet. Diese neue „intelligente“ Membranen haben gezeigt, daß sie eine präzise Steuerung des Wasserflusses durch Verwendung eines elektrischen Stroms möglich ist. Die Membranen können sogar verwendet werden, um den Wasserfluß bei Bedarf vollständig zu blockieren.

Zur Herstellung der Membran hat die Forschergruppe leitende Filamente in die elektrisch isolierende Graphenoxidmembran eingebettet. Ein elektrischer Strom, der durch diese Nanofilamente geleitet wurde, erzeugte ein starkes elektrisches Feld, das die Wassermoleküle ionisiert und somit den Wassertransport durch die Graphenkapillaren in der Membran steuert.

Bei Frontis Energy sind wir begeistert von dieser neuen Technologie und können uns schon viele Anwendungsgebiete vorstellen. Diese Forschung ermöglicht es, die Wasserpermeation von der ultraschnellen Durchdringung bis zur vollständigen Blockierung präzise zu steuern. Die Entwicklung intelligenter Membranen, die eine präzise und reversible Kontrolle der molekularen Durchdringung durch externe Stimuli ermöglichen, wäre für viele Bereiche der Wirtschaft und Forschung von großem Interesse. Diese Membranen könnten z.B. in Elektrolysezellen oder in der Medizin Anwendung finden. Künstlicher biologischer Systeme, wie z.B. Gewebetransplantate ermöglichen zahlreiche medizinische Anwendungen.

Das delikate Material bestehend aus Graphen, Gold und Silber ist zwar noch zu teuer und nicht so widerstandsfähig wie unsere Nafion™-Membranen, dafür kann man sie aber ein- und wieder ausschalten. Wir bleiben gespannt.

(Bild: Universität Manchester)

Veröffentlicht am

Eine Landkarte für Energie aus Abfall

Den meisten Lesern unseres Blogs ist bekannt, daß Abfälle leicht in nutzbare Energie umgewandelt werden können, z.B. in Biogasanlagen. Biogas, Biowasserstoff und Biodiesel sind Biokraftstoffe, weil sie biologisch durch Mirkoorganismen oder Pflanzen produziert werden. Anlagen, die Biokraftstoffe produzieren, sind weltweit in Betrieb. Allerdings weiß niemand wo genau sich diese Biokraftstoffanlagen befinden und wo sie am wirtschaftlichsten betrieben werden können. Diese Wissenslücke behindert den Marktzugang von Biokraftstoffproduzenten.

Wenigstens für die Vereinigten Staaten − den größten Markt für Biokraftstoffe − gibt es nun eine Landkarte. Eine Forscherguppe des Pacific Northwest National Laboratory (PNNL) und des National Renewable Energy Laboratory (NREL) hat nun eine detaillierte Analyse des Potenzials für Energie aus Abfällen in den USA im Fachmagazin Renewable und Sustainable Energy Reviews veröffentlicht.

Dabei konzentriete sich die Gruppe auf flüssige Biokraftstoffe, die aus Klärschlämmen durch das Fischer-Tropsch-Verfahren gewonnen werden können. Das industrielle Verfahren wurde ursprünglich in Nazi-Deutschland zur Kohleverflüssigung eingesetzt, kann aber auch auf andere organische Materialien, wie z.B. Biomasse, angewendet werden. Das resultierende Öl ähnelt Erdöl, enthält aber auch geringe Mengen an Sauerstoff und Wasser. Dabei können Nährstoffe, wie Phosphat zurückgewonnen werden.

Die Forschergruppe koppelte die besten verfügbaren Informationen zu diesen organischen Abfällen aus einer bestehenden Datenbank mit Computermodellen, um die Mengen und die beste geografische Verteilung der potenziellen Produktion von flüssigen Biokraftstoff abzuschätzen. Die Ergebnisse deuten darauf hin, daß die Vereinigten Staaten jährlich mehr als 20 Milliarden Liter flüssigen Biokraftstoff produzieren könnten.

Zudem fand die Gruppe heraus, daß das Potenzial für flüssigen Biokraftstoff aus Klärschlamm öffentlicher Kläranlagen 4 Milliarden Liter pro Jahr beträgt. Diese Ressource wurde im ganzen Land verbreitet gefunden − mit einer hohen Dichte an Standorten in den östlichen Vereinigten Staaten, sowie in den größten Städten. Tierdung hat ein Potenzial für 10 Milliarden Liter flüssigen Biokraftstoff pro Jahr. Besonders im Mittleren Westen befinden sich die größten unerschlossenen Ressourcen.

Das Potenzial für flüssigen Biokraftstoff aus Lebensmittelabfällen folgt ebenfalls der Bevölkerungsdichte. Für Ballungsräume wie Los Angeles, Seattle, Las Vegas, New York usw. wird geschätzt, daß deren Abfälle mehr als 3 Milliarden Liter pro Jahr produzieren könnte. Allerdings hatten Lebensmittelreste auch die niedrigste Umwandlungseffizienz. Dies ist auch die größte Kritik am Fischer-Tropsch-Verfahren. Anlagen zur Produktion von signifikanten Mengen Flüssigkraftstoff sind bedeutend größer, als herkömmliche Raffinerien, verbrauchen viel Energie und produzieren mehr CO2, als sie einsparen.

Bessere Verfahren zur Biomasseverflüssigung und eine effizientere Verwertung von Biomasse bleiben also nach wie vor eine Herausforderung für Industrie und Wissenschaft.

(Foto: Wikipedia)