Veröffentlicht am

Hochleistungs-Biodiesel aus Biomasseabfall

In unseren vorherigen Beiträgen haben wir die Rückgewinnung von Ressourcen aus Abfällen im Zusammenhang mit der Abwasserbehandlung erörtert und gezeigt, daß verbesserte Vorschriften sich positiv auf die Wasserqualität und die öffentliche Gesundheit auswirken. Hier zeigen wir, daß intelligente katalytische Prozesse landwirtschaftlichen Abfallprodukte in wertvolle Rohstoffe umwandeln können.

Kostengünstige Abfallbiomasse kann als erneuerbare Energiequelle dienen, um eine nachhaltige Alternative zu fossilen Kohlenstoffressourcen zu schaffen. So kann der Bedarf an umweltfreundlicher Energie besser gedeckt werden. Beispielsweise sind die von Carbonsäuren aus Biomasse abgeleiteten C2– und C4-Ether vielversprechende Kraftstoffkandidaten. So wurde z.B. berichtet, daß sich bei Verwendung von Ethern Biokraftstoffparameter wie Zündqualität und Ruß, und damit auch Feinstaub, im Vergleich zu handelsüblichem Petrodiesel signifikant verbessert haben (>86% Rußindexreduzierung). Die Zündqualität (Cetanzahl) wurde über 56% verbessert.

Die Wissenschaftler des National Renewable Energy Laboratory arbeiten zusammen mit ihren Kollegen von der Yale Universität, dem Argonne National Laboratory und dem Oak Ridge National Laboratory an einem gemeinsamen Projekt mit dem Ziel der gemeinsamen Optimierung von Kraftstoffen und Motoren. Die Forschung konzentriert sich auf die Verbesserung des Kraftstoffverbrauchs und der Fahrzeugleistung bei gleichzeitiger Reduzierung der Emissionen durch Identifizierung von Mischmaterial aus Biomasse.

In ihrem kürzlich in der renommierten Fachzeitschrift PNAS veröffentlichten Artikel wurde ein neues Molekül, 4-Butoxyheptan, in einem katalytischen Verfahren mit hoher Ausbeute aus Lignocellulose-Biomasse isoliert. Aufgrund seines hohen Sauerstoffgehalts kann dieses vorteilhafte Mischmaterial die Leistung von Dieselkraftstoff verbessern, indem die intrinsische Rußneigung des Kraftstoffs beim Verbrennen verringert wird.

Das Forschungsteam hat einen neuen Ansatz beschrieben, um den Entwicklungsprozess zur Herstellung geeigneter sauerstoffhaltiger Dieselbeimischungenn (Dieseloxygenate) zu beschleunigen. Dabei lag der Fokus auf der Verbesserung der Kraftstoffeigenschaften verglichen mit fossilem Diesel.

Dieser Ansatz umfaßt Schritte:

  1. Charakterisierung der Kraftstoffeigenschaften durch die Identifizierung und Aufstellung zugänglicher Oxygenatprodukte; Vorhersage der Kraftstoffeigenschaften dieser Produkte a priori durch rechnergestütztes Screening
  2. Produktionsprozess durch die Entwicklung des Syntheseweges ausgehend von Biomasse. Das beinhaltet ein kontinuierliches, lösungsmittelfreies Syntheseverfahren auf der Basis eines Metall-Säure-Katalysators bei der Herstellung der ausgewählten Verbindung im Liter-Maßstab
  3. Testen und Analysieren mit dem Ziel, Messungen der Kraftstoffeigenschaften zu validieren und mit Vorhersagen zu vergleichen

Die Kraftstoffeigenschaften der untersuchten Zieloxygenate hängen mit den Gesundheits- und Sicherheitsaspekten wie Flammpunkt, biologischem Abbaupotential und Toxizität / Wasserlöslichkeit sowie mit Markt- und Umweltaspekten wie Zündqualität (Cetanzahl) und Viskosität zusammen. Eine Verbesserung der Kraftstoffqualität wird durch die erhöhung des Heizwertes und die Verringerung des Rußpotentials durch Beimischung sauerstoffhaltiger Mischstoffe erreicht. Infolgedessen schien 4-Butoxyheptan das vielversprechendste Molekül zu sein, das mit herkömmlichem Diesel gemischt werden kann. Es wurde gezeigt, daß die Messungen der Kraftstoffeigenschaften weitgehend mit prädiktiven Schätzungen übereinstimmen, was die Genauigkeit des Ansatzes für die Auswahl des Mischmaterials bestätigte.

Die Beimischung von 20-30% 4-Butoxyheptan zum Dieselkraftstoff wurde als günstig vorgeschlagen. Die Verbesserung der Selbstentzündungsqualität sowie die signifikante Verringerung des Rußindexes von 215 auf 173 (20% Verringerung) zeigen, daß die Beimischung dieses Moleküls die Dieselemissionseigenschaften verbessern könnte, ohne die Leistung zu beeinträchtigen. In Bezug auf Entflammbarkeit, Toxizität und Lagerstabilität wurde der Oxygenatbrennstoff als risikoarm eingestuft.

Lebenszyklusanalysen zeigen, daß dieses Gemisch kostengünstig sein und im Vergleich zu Petrodiesel zu erheblichen Treibhausgasreduzierungen (um 50 bis 271%) führen kann.

Da Forschung ein nie endender Prozess ist, ist wieder mehr Forschung notwendig. Zukünftige Untersuchungen sollten die Biemischung in einem tatsächlichen Motor zum Gegenstand machen, sowie die Herstellung des Biokraftstoffs in einem integrierten Prozess direkt aus Biomasse umfassen.

(Mima Varničić, 2020, Foto: Pixabay )

Veröffentlicht am

Billiger Biokraftstoff mit hoher Oktanzahl entwickelt

Forscher des National Renewable Energy Laboratory (NREL) haben eine billige Methode zur Herstellung von Benzin mit hoher Oktanzahl aus Methanol entwickelt und diese im Fachblatt Nature Catalysis veröffentlicht. Methanol kann über verschiedene Wege aus CO2 gewonnen werden, wie wir bereits im letzten Jahr berichteten. Biomasse, wie z.B. Holz, ist dabei eine mögliche Methode.

Die Herstellung von Biokraftstoffen aus Holz ist allerdings zu teuer, um mit fossilen Brennstoffen zu konkurrieren. Um eine Lösung für dieses Problem zu finden, kombinierten die NREL-Forscher ihre Grundlagenforschung mit einer wirtschaftlichen Analyse. Dabei zielten die Forscher zunächst auf den teuersten Teil des Prozesses. Danach fanden die Forscher Methoden, um diese Kosten mit Methanol als Zwischenprodukt zu senken.

Bisher lagen die Kosten für die Umwandlung von Methanol in Benzin oder Diesel bei ungef 0.24 € pro Liter. Die Forscher haben nun einen Preis von ca. 0.16 € pro Liter erreicht.

Bei der katalytischen Umwandlung von Methanol in Benzin handelt es sich um ein wichtiges Forschungsgebiet im Bereich der CO2-Rückgewinnung. Die traditionelle Methode beruht auf mehrstufigen Prozessen und hohen Temperaturen. Sie ist teuer, produziert minderwertigen Kraftstoff in geringen Mengen. Damit ist sie im Vergleich zu Kraftstoffen auf Erdölbasis nicht konkurrenzfähig.

Das entwickelte Verfahren stieß zunächst auf das Problem eines Wasserstoffmangels. Wasserstoff ist das energetische Schlüsselelement in Kohlenwasserstoffen. Die Forscher stellten die Hypothese auf, daß die Verwendung des Übergangsmetalls Kupfer dieses Problem lösen würde, was es auch tat. Die Forscher schätzen, daß der mit Kupfer infundierte Katalysator zu 38% mehr Ausbeute weniger Kosten führte.

Durch Erleichterung der Wiedereingliederung von C4-Nebenprodukten während der Homologation von Dimethylether ermöglichte der Kupfer-Zeolith-Katalysator die 38%ige Steigerung der Ausbeute des Produkts und eine 35%ige Reduzierung der Umwandlungskosten im Vergleich zu herkömmlichen Zeolith-Katalysatoren. Alternativ dazu wurden C4-Nebenprodukte an ein synthetisches Kerosin weitergeleitet, das fünf Spezifikationen für einen typischen Düsentreibstoff erfüllte. Die Treibstoffsynthesekosten nahmen dabei im Vergleich geringfügig zu. Selbst wenn die Kosteneinsparungen minimal wären, hätte das resultierende Produkt einen höheren Wert.

Abgesehen von den Kosten bietet der neue Prozess den Anwendern weitere Wettbewerbsvorteile. Zum Beispiel können Unternehmen mit Ethanolherstellern um Gutschriften für erneuerbare Brennstoffe konkurrieren (wenn der verwendete Kohlenstoff aus Biogas oder Hausabfällen stammt). Der Prozess ist auch mit vorhandenen Methanolanlagen kompatibel, die Erdgas oder festen Abfall zur Erzeugung von Synthesegas verwenden.

Veröffentlicht am

Eine Landkarte für Energie aus Abfall

Den meisten Lesern unseres Blogs ist bekannt, daß Abfälle leicht in nutzbare Energie umgewandelt werden können, z.B. in Biogasanlagen. Biogas, Biowasserstoff und Biodiesel sind Biokraftstoffe, weil sie biologisch durch Mirkoorganismen oder Pflanzen produziert werden. Anlagen, die Biokraftstoffe produzieren, sind weltweit in Betrieb. Allerdings weiß niemand wo genau sich diese Biokraftstoffanlagen befinden und wo sie am wirtschaftlichsten betrieben werden können. Diese Wissenslücke behindert den Marktzugang von Biokraftstoffproduzenten.

Wenigstens für die Vereinigten Staaten − den größten Markt für Biokraftstoffe − gibt es nun eine Landkarte. Eine Forscherguppe des Pacific Northwest National Laboratory (PNNL) und des National Renewable Energy Laboratory (NREL) hat nun eine detaillierte Analyse des Potenzials für Energie aus Abfällen in den USA im Fachmagazin Renewable und Sustainable Energy Reviews veröffentlicht.

Dabei konzentriete sich die Gruppe auf flüssige Biokraftstoffe, die aus Klärschlämmen durch das Fischer-Tropsch-Verfahren gewonnen werden können. Das industrielle Verfahren wurde ursprünglich in Nazi-Deutschland zur Kohleverflüssigung eingesetzt, kann aber auch auf andere organische Materialien, wie z.B. Biomasse, angewendet werden. Das resultierende Öl ähnelt Erdöl, enthält aber auch geringe Mengen an Sauerstoff und Wasser. Dabei können Nährstoffe, wie Phosphat zurückgewonnen werden.

Die Forschergruppe koppelte die besten verfügbaren Informationen zu diesen organischen Abfällen aus einer bestehenden Datenbank mit Computermodellen, um die Mengen und die beste geografische Verteilung der potenziellen Produktion von flüssigen Biokraftstoff abzuschätzen. Die Ergebnisse deuten darauf hin, daß die Vereinigten Staaten jährlich mehr als 20 Milliarden Liter flüssigen Biokraftstoff produzieren könnten.

Zudem fand die Gruppe heraus, daß das Potenzial für flüssigen Biokraftstoff aus Klärschlamm öffentlicher Kläranlagen 4 Milliarden Liter pro Jahr beträgt. Diese Ressource wurde im ganzen Land verbreitet gefunden − mit einer hohen Dichte an Standorten in den östlichen Vereinigten Staaten, sowie in den größten Städten. Tierdung hat ein Potenzial für 10 Milliarden Liter flüssigen Biokraftstoff pro Jahr. Besonders im Mittleren Westen befinden sich die größten unerschlossenen Ressourcen.

Das Potenzial für flüssigen Biokraftstoff aus Lebensmittelabfällen folgt ebenfalls der Bevölkerungsdichte. Für Ballungsräume wie Los Angeles, Seattle, Las Vegas, New York usw. wird geschätzt, daß deren Abfälle mehr als 3 Milliarden Liter pro Jahr produzieren könnte. Allerdings hatten Lebensmittelreste auch die niedrigste Umwandlungseffizienz. Dies ist auch die größte Kritik am Fischer-Tropsch-Verfahren. Anlagen zur Produktion von signifikanten Mengen Flüssigkraftstoff sind bedeutend größer, als herkömmliche Raffinerien, verbrauchen viel Energie und produzieren mehr CO2, als sie einsparen.

Bessere Verfahren zur Biomasseverflüssigung und eine effizientere Verwertung von Biomasse bleiben also nach wie vor eine Herausforderung für Industrie und Wissenschaft.

(Foto: Wikipedia)