Veröffentlicht am

Bioelektrischer Alkohol als Flüssigkraftstoff mit Hilfe von Hefen

Hefen wie Saccharomyces cerevisiae werden, wie der Name erraten läßt, zur Herstellung von Bier und anderen alkoholischen Getränken im großen Maßstab eingesetzt. Ihre hohe Salz- und Ethanoltoleranz macht sie dabei aber nicht nur für die Herstellung von Getränken nützlich, sondern auch für hohe Alkoholkonzentrationen bei der Produktion von Kraftstoffen. Wie wir schon berichteten, sind dabei neben dem bekannten Ethanol besonders auch die langkettigen Fuselalkohole interessant. Schon heute wird Bioethanol mit Benzin gemischt und verbessert somit die CO2-Bilanz von Verbrennungsmotoren. Dieser flüssiger Biokraftstoff wird entweder aus Stärke oder Lignocellulose hergestellt. Die lokale Produktion und Verwendung von Bioethanol unterstützt lokale Volkswirtschaften, verringert den CO2-Ausstoß und fördert die Selbstversorgung. Letzteres ist besonders wichtig für ressourcenarme Binnenländer von Bedeutung.

Um Ethanol und andere Alkohole effizient aus Lignocellulose-Hydrolysaten herzustellen, müssen Hefen sowohl Glucose als auch Pentosen wie Xylose und Arabinose verwenden. Dies liegt daran, daß Biomasse sowohl reich an Lignocellulose und damit auch Glucose und Xylose ist. Dies ist allerdings auch der Hauptnachteil der Verwendung von Saccharomyces cerevisiae, da sie Xylose nicht fermentieren kann. Dementsprechend ist die Identifizierung von Hefestämmen, die sowohl Glucose als auch Xylose fermentieren können, von großer Bedeutung. Hocheffiziente Hefestämme können, z.B. in Co-Kulturen mit anderen Hefen, die zur Lignocellulosefermentation fähig sind, für die Ethanolherstellung verwendet werden. Eine solche Hefe ist z.B. Wickerhamomyces anomalous.

Um die Ethanolproduktion weiter zu verbessern, kann bioelektrische Fermentationstechnologie eingesetzt werden, die die traditionelle Fermentation unterstützt. Der mikrobielle Metabolismus kann so elektrochemisch gesteuert werden. Die Vorteile sind vielfältig. Die Fermentation wird durch das Anlegen eines elektrochemischen Potentials selektiv, wodurch sich die Effizienz der  von Zuckerverwertung erhöht. Zudem wird so der Einsatz von Additiven zur Kontrolle das Redoxgleichgewichts sowie des pH-Wertes minimiert. Auch das Zellwachstum kann dadurch verbessert werden.

Solche bioelektrischen Zellen sind galvanische Zellen. Die in der bioelektrischen Zelle verwendeten Elektroden können als Elektronenakzeptoren oder -quelle wirken. Solche elektrochemischen Veränderungen wirken sich nicht nur auf den Stoffwechsel und die Zellregulation aus, sondern auch auf die Wechselwirkungen zwischen den eingesetzten Hefen aus. Jetzt hat eine Forschergruppe aus Nepal (einem ressourcenarmen Binnenland) neue Hefestämme von Saccharomyces cerevisiae und Wickerhamomyces anomalous in einem bioelektrischen Fermenter verwendet, um die Ethanolproduktion aus Biomasse zu verbessern. Die Ergebnisse haben die Wissenschaftler im Fachmagazin Frontiers in Energy Research publiziert.

Für die Studie wurden Saccharomyces cerevisiae und Wickerhamomyces anomalus ausgewählt, da beide gute Ethanolproduzenten sind und von letzterer gezeigt wurde, daß sie Xylose in Ethanol umwandeln können. Nachdem die Forscher eine Spannung an das System angelegt hatten, verdoppelte sich die Ethanolproduktion durch die verwendeten Hefen. Beide Hefen bildeten einen Biofilm auf den Elektroden, was das System ideal für den Einsatz als Durchflußsystem macht, da die Mikroorganismen nicht ausgewaschen werden.

Saccharomyces cerevisiae, lichtmikroskopische Aufnahme, 600-fache Vergrößerung (Foto: Amanda Luraschi)

Die Forscher spekulierten, daß die erhöhte Ethanolproduktion durch die stärker angetrieben Umwandlung von Pyruvat zu Ethanol zu Stande kam − dem zentralen Stoffwechselmechanismus der Hefe. Dies führten die Forscher auf einen Beschleunigung der Redoxreaktionen an der Anode und Kathode zurück. Die zugeführte externe Spannung polarisierte die im Cytosol vorhandenen Ionen und erleichtert so den Elektronentransfer von der Kathode. Dies und die beschleunigte Glucoseoxidation führten wahrscheinlich zu einer erhöhten Ethanolproduktion.

Normalerweise wird Pyruvat in Gärhefen zu Ethanol umgewandelt. Eine externe Spannungseingabe kann die Kinetik des Glukosestoffwechsels in Saccharomyces cerevisiae sowohl unter aeroben als auch unter anaeroben Bedingungen zu steuern. Dabei spielen intrazelluläre wie das Transplasmamembran-Elektronentransfersystem eine wichtige Rolle für den Elektronentransport durch die Zellmembran. Das Elektronentransfersystem besteht aus Cytochromen und verschiedenen Redoxenzymen, die der Membran an bestimmten Stellen Redoxaktivität verleiht.

Die Autoren haben zudem festgestellt, daß eine erhöhte Salzkonzentration die Leitfähigkeit und damit die Ethanolproduktion fördert. Die erhöhte Ethanolproduktion aus lignocellulosehaltiger Biomasse könnte auch auf das Vorhandensein verschiedener Naturstoffe zurückzuführen sein, die das Wachstum von Hefestämmen fördern könnten. Wenn die Celluloseacetatmembran durch eine Nafion™-Membran ersetzt wurde, erhöhte dies die Ethanolproduktion ebenfalls. Das könnte auf einen verbesserten Transport von Xylose durch die Nafion™-Membran sowie auf die Abnahme des Innenwiderstands zurückzuführen sein. Eine weitere Steigerung der Ethanolproduktion wurde beobachtet, wenn der bioelektrische Reaktor mit feinen Platinpartikeln betrieben wurde, die auf die Platinanode aufgetragen waren, und Neutralrot auf der Graphitkathode abgeschieden wurde.

Hefekulturen von links nach rechts: Saccharomyces cerevisiae, Candida utilis, Aureobasidium pullulans, Trichosporum cutaneum, Saccharomycopsis capsularis, Saccharomycopsis lipolytica, Hanseniaspora guilliermondii, Hansenula capsulata, Saccharomyces carlsbergensis, Saccharomyces rouxii, Rhodotorula rubra, Phaffia rhodozyba, Cryptococcus laurentii, Metschnikowia pulcherrima, Rhodotorula pallida

Bei Frontis Energy denken wir, daß die vorliegende Studie vielversprechend ist. Für die Zukunft sollten aber langkettige Fuselalkohole in Betracht gezogen werden, da diese weniger flüchtig und besser mit derzeitigen Verbrennungsmotoren verträglich sind. Diese können zudem leicht in die entsprechenden langkettigen Kohlenwasserstoffe umgewandelt werden.

Veröffentlicht am

Billiger Biokraftstoff mit hoher Oktanzahl entwickelt

Forscher des National Renewable Energy Laboratory (NREL) haben eine billige Methode zur Herstellung von Benzin mit hoher Oktanzahl aus Methanol entwickelt und diese im Fachblatt Nature Catalysis veröffentlicht. Methanol kann über verschiedene Wege aus CO2 gewonnen werden, wie wir bereits im letzten Jahr berichteten. Biomasse, wie z.B. Holz, ist dabei eine mögliche Methode.

Die Herstellung von Biokraftstoffen aus Holz ist allerdings zu teuer, um mit fossilen Brennstoffen zu konkurrieren. Um eine Lösung für dieses Problem zu finden, kombinierten die NREL-Forscher ihre Grundlagenforschung mit einer wirtschaftlichen Analyse. Dabei zielten die Forscher zunächst auf den teuersten Teil des Prozesses. Danach fanden die Forscher Methoden, um diese Kosten mit Methanol als Zwischenprodukt zu senken.

Bisher lagen die Kosten für die Umwandlung von Methanol in Benzin oder Diesel bei ungef 0.24 € pro Liter. Die Forscher haben nun einen Preis von ca. 0.16 € pro Liter erreicht.

Bei der katalytischen Umwandlung von Methanol in Benzin handelt es sich um ein wichtiges Forschungsgebiet im Bereich der CO2-Rückgewinnung. Die traditionelle Methode beruht auf mehrstufigen Prozessen und hohen Temperaturen. Sie ist teuer, produziert minderwertigen Kraftstoff in geringen Mengen. Damit ist sie im Vergleich zu Kraftstoffen auf Erdölbasis nicht konkurrenzfähig.

Das entwickelte Verfahren stieß zunächst auf das Problem eines Wasserstoffmangels. Wasserstoff ist das energetische Schlüsselelement in Kohlenwasserstoffen. Die Forscher stellten die Hypothese auf, daß die Verwendung des Übergangsmetalls Kupfer dieses Problem lösen würde, was es auch tat. Die Forscher schätzen, daß der mit Kupfer infundierte Katalysator zu 38% mehr Ausbeute weniger Kosten führte.

Durch Erleichterung der Wiedereingliederung von C4-Nebenprodukten während der Homologation von Dimethylether ermöglichte der Kupfer-Zeolith-Katalysator die 38%ige Steigerung der Ausbeute des Produkts und eine 35%ige Reduzierung der Umwandlungskosten im Vergleich zu herkömmlichen Zeolith-Katalysatoren. Alternativ dazu wurden C4-Nebenprodukte an ein synthetisches Kerosin weitergeleitet, das fünf Spezifikationen für einen typischen Düsentreibstoff erfüllte. Die Treibstoffsynthesekosten nahmen dabei im Vergleich geringfügig zu. Selbst wenn die Kosteneinsparungen minimal wären, hätte das resultierende Produkt einen höheren Wert.

Abgesehen von den Kosten bietet der neue Prozess den Anwendern weitere Wettbewerbsvorteile. Zum Beispiel können Unternehmen mit Ethanolherstellern um Gutschriften für erneuerbare Brennstoffe konkurrieren (wenn der verwendete Kohlenstoff aus Biogas oder Hausabfällen stammt). Der Prozess ist auch mit vorhandenen Methanolanlagen kompatibel, die Erdgas oder festen Abfall zur Erzeugung von Synthesegas verwenden.