Veröffentlicht am

Festoxidbrennstoffzellen wandeln Methan aus dem Grundwasser in Strom um

Festoxidbrennstoffzellen (FOBZ) sind hocheffiziente Stromerzeuger mit niedrigen Betriebskosten. Sie arbeiten in einem Temperaturbereich von 800 bis 1.000°C. Dies ermöglicht die interne Umwandlung von Kohlenwasserstoffen in Wasserstoff. Methan, Methanol, Benzin und andere Kohlenwasserstoffe können direkt in der Brennstoffzelle in Wasserstoff (H2) umgewandelt werden.

SOFCs bieten eine Reihe zusätzlicher Vorteile gegenüber herkömmlichen Verbrennungsmotoren oder anderen Brennstoffzellen. Zum Beispiel macht die hohe Abwärme (über 800°C) sie zu einer nützlichen Anwendung in der Industrie für die Kraft-Wärme-Kopplung. Durch kombinierte Zyklen kann ein hoher Wirkungsgrad für die Stromerzeugung erreicht werden. Aufgrund des modularen Charakters von FOBZ bieten sie außerdem eine flexible Planung der Stromerzeugungskapazität. Auf diese Weise führt die Verwendung von FOBZ zu einer weiteren Reduzierung der Kohlendioxidemission.

Der größte Vorteil von FOBZ besteht darin, daß sie mit Kohlenwasserstoffen wie Methan (CH4, Erdgas) betrieben werden können. Durch die direkte Verwendung von Methan sind keine Vorreformer erforderlich, wodurch die Komplexität, Größe und Kosten des gesamten FOBZ-Systems verringert werden.

Methan kann aus dem Zerfall organischer Abfälle auf Abfalldeponien, Trinkwasseraufbereitungsanlagen usw. gewonnen werden. Das Gas kann uch aus dem Grundwasser gewonnen werden. Methangas gelangt durch natürlich vorkommenden anaeroben Abbau organischen Materials im Untergrund oder durch Eingasen aus Lagerstätten ins Grundwasser.

Forscher der Technischen Universität Delft ging davon aus, daß das aus der Grundwasseraufbereitung gewonnene Gas auch als Brennstoff in FOBZ verwendet werden kann, und stellten ihre Hypothese auf die Probe. Sie veröffentlichten ihre Ergebnisse in der Fachzeitschrift Journal of Cleaner Production. Derzeit wird das aus der Trinkwasseraufbereitungsanlage in Spannenburg, Niederlande, gewonnene Methan entweder in die Atmosphäre freigesetzt oder abgefackelt, wodurch eine wertvolle Ressource verschwendet wird. Zudem tragen sowohl das Methan als auch das CO2 zu weiteren Treibhausgasemissionen bei.

FOBZ stellen die sauberste der derzeit gängigen Lösungen für die Umwandlung von zurückgewonnenem Methan in elektrische Energie dar. Die so gewonnene Energie kann wiederum von der Trinkwasseraufbereitungsanlage genutzt werden. Dieser Prozess verringert den Strombedarf und gleichzeitig die Treibhausgasemissionen des DWTP.

Der gesamte Prozess war in folgende Schritte unterteilt:

  1. Methan wurde zunächst dem Grundwasser entnommen: Das Grundwasser wurde aus den Tiefbrunnen direkt in ein System von Vakuumtürmen gepumpt, die 90% des gelösten Gases mit einem Nahvakuum von 0,2 bar entfernen.
  2. Die anschließende Behandlung durch Plattenbelüftung entfernten die verbliebenen 10% Methan aus dem Grundwasser.
  3. Zur Entfernung von weiterem  CO2 wurde das Wasser einer weiteren Turmbelüftung unterzigen wodurch das Wasser zusätzlich weicher wurde.

Probenahme von zurückgewonnenem Gas:

Zweihundert Mililiter des mit Methan angereicherten Gases wurden verwendet, um die Konzentration von CH4, H2, Sauerstoff (O2), Stickstoff (N2), Kohlenmonoxid (CO) und CO2 zu bestimmen.

FOBZ-Aufbau & thermodynamischer Ansatz:

Eine FOBZ-Teststation wurde verwendet, um die Experimente durchzuführen. Das methanreiche Gas wurde der Anode zugeführt und das Leerlaufpotential aufgezeichnet. Methan muss in Wasserstoff und CO umgewandelt werden, bevor in einer FOBZ effektiv Strom erzeugt werden kann.

Ergebnisse:

Die Hauptkomponenten im Probengas waren Methan und CO2 mit Konzentrationen von 71 bzw. 23 Mol-%. Zusätzlich enthielt das zurückgewonnene Gas 9 ppm Schwefelwasserstoff (H2S), was die Zellleistung einer FOBZ dauerhaft verringern kann. Schwefelwasserstoff wurde mit imprägnierter Aktivkohle wirksam entfernt (<0,1 ppm)

Die Verwendung von CH4 aus dem Grundwasser in einer FOBZ trägt dazu bei, die Treibhausgasemissionen zu verringern und die Nachhaltigkeit von Trinkwasseraufbereitungsanlagen zu verbessern. Mit dem zurückgewonnenen Methangas des Spannenburg Trinkwasseraufbereitungsanlage kann ein 915 kW SOFC-System betrieben werden. Dies kann 51,2% des gesamten Strombedarfs der Anlage decken und die Treibhausgasemissionen um 17,6% senken, was rund 1,794 Tonnen CO2 entspricht.

Die jährliche Stromerzeugung des FOBZ-Systems könnte 8 GWh betragen, was etwa 3 GWh mehr ist als die, die von einer Gasturbine oder einem Verbrennungsmotor erzeugt wird.

In Zukunft werden die Forscher Langzeittests durchführen, um den sicheren Betrieb von FOBZ, insbesondere im Hinsblick auf das Problems der Kohlenstoffablagerung, zu untersuchen. Diese Tests werden auf die FOBZ-Reihen und die Pilotanlage (im Bereich einiger kW-Systeme) ausgedehnt.

(Abbildung: Indiamart)

Quelle: https://doi.org/10.1016/j.jclepro.2021.125877 (A solid oxide fuel cell fueled by methane recovered from groundwater, 2021)

Veröffentlicht am

Photokatalytische Synthese aus CO2

Um unsere Abhängigkeit von fossile Brennstoffen zu verringern, werden derzeit enorme Anstrengungen in Industrie und. In dieser Hinsicht erscheint Synthesegas eine elegante und billige Lösung für eine nachhaltige Energieentwicklung zu sein. Synthesegas ist das Gemisch aus Wasserstoff (H2) und Kohlenmonoxid (CO) als Hauptbestandteilen. Es stellt ein wichtiges chemisches Ausgangsmaterial dar, das häufig für industrielle Prozesse zur Erzeugung von Chemikalien und Kraftstoffen verwendet wird:

Nutzung von Synthese in verschiedenen Industriesektoren

Synthesegas kann aus Methan (CH4) in einer Reformierungsreaktion mit Wasser (H2O), Sauerstoff (O2) oder Kohlendioxid (CO2) hergestellt werden. Der als Methan-Trockenreformierung (MTR) bezeichnete Prozess kann mit Kohlendioxid kombiniert werden:

CH4 + CO2 → 2 H2 + 2 CO

Dies ist ein umweltfreundlicher Weg, der zwei Treibhausgase in ein wertvolles chemisches Ausgangsmaterial verwandelt.

Das MTR-Verfahren erfordert jedoch chemische Katalysatoren und hohe Temperaturen zwischen 700 und 1.000°C. Normalerweise kommt es zu Kohlenstoffablagerung und letztlich Katalysatordeaktivierung.

Einige Chemiker haben kürzlich gezeigt, daß Licht und nicht Wärme eine effektivere Lösung für diese energiehungrige Reaktion sein könnte.

Photokatalyse als Lösung

Eine Forschergreuppe der Rice University in Houston, hat zusammen mit Kollegen der Princeton University und der University of California lichtstimulierte Katalysatoren entwickelt, mit denen MTR-Reaktionen ohne Wärmeeintrag effizient betrieben werden können. Diese Arbeit wurde in der renommierten Zeitschrift Nature Energy veröffentlicht.

Die Forscher berichteten über einen hocheffizienten und kohlenstoffbeständigen plasmonischen Photokatalysator, der genau ein Ruthenium (Ru) -Atom pro 99 Kupfer (Cu) -Atome enthält. Das isolierte Einzelatom von Ru, das auf Cu-Antennen-Nanopartikeln erhalten wird, bietet eine hohe katalytische Aktivität für die MTR-Reaktion. Auf der anderen Seite ermöglichen Cu-Antennen eine starke Lichtadsorption unter Beleuchtung und bringen heiße Elektronen an die Rutheniumatome. Die Forscher schlugen vor, daß sowohl die Erzeugung heißer Ladungsträger als auch die Einzelatomstruktur für die hervorragende katalytische Leistung in Bezug auf Effizienz und kohlenstoffbeständigkeit wesentlich sind.

Das optimale Cu-Ru-Verhältnis wurde in Synthesereihen von CuxRuy-Katalysatoren mit unterschiedlichen Molverhältnissen von plasmonischem Metall (Cu) und katalytischem Metall (Ru) untersucht, wobei x, y der Atomanteil von Cu und Ru in Prozent sind. Insgesamt war Cu19,8Ru0,2 die vielversprechendste Zusammensetzung in Bezug auf Selektivität, Stabilität und Aktivität. Im Vergleich zu reinen Cu-Nanopartikeln zeigt das Cu19,8Ru0,2-Gemisch erhöhte photokatalytische Reaktionsgeschwindigkeiten (ca. 5,5-mal höher) und eine verbesserte Stabilität zeigten. Dabei wurde seine Leistung über einen Zeitraum von 20 Stunden beibehalten. Berechnungen zeigten, daß isolierte Ru-Atome auf Cu die Aktivierungsbarriere für den Methan-Dehydrierungsschritt im Vergleich zu reinem Cu senken, ohne die unerwünschte Kohlenstoffablagerung zu fördern.

Darüber hinaus wurde die Forschung durch verschiedene Methoden (CO-DRIFTS mit DFT) unterstützt, um Einzelatom-Ru-Strukturen auf Cu-Nanopartikeln in Cu19,9Ru0,1 und Cu19,8Ru0,2 Zusammensetzungen zu entschlüsseln und nachzuweisen.

Der Vergleich zwischen thermokatalytischer und photokatalytischer Aktivität an derselben Oberfläche für MTR wurde ebenfalls angestellt. Die thermokatalytische Reaktionsgeschwindigkeit bei 726ºC (ca. 60 mol CH4 / g / s) war geringer als 25% der photokatalytischen Reaktionsgeschwindigkeit unter Weißlichtbeleuchtung ohne äußere Wärme (etwa 275 umol CH4 / g / s). Diese Steigerung der Aktivität wird auf den durch heiße Träger erzeugten Mechanismus zurückgeführt, der im photokatalytischen MTR vorherrscht. Die Rolle des heißen Trägers ist eine Erhöhung der C−H-Aktivierungsraten auf Ru sowie eine verbesserte H2-Desorption.

Die Wissenschaftler berichteten auch, daß der Katalysator eine Umsatzrate von 34 mol H2 pro mol Ru pro Sekunde und eine photokatalytische Stabilität von 50 h unter Weißlichtbeleuchtung (19,2 W / cm2) ohne externe Wärme erreichte.

Da die synthetisierten Photokatalysatoren hauptsächlich auf Cu basieren, das ein reichlich vorhandenes Element ist, bietet dieser Ansatz einen vielversprechenden, nachhaltigen Katalysator, der bei niedrigen Temperaturen für MTR arbeitet. Dies ermöglicht eine billigere Synthesegasproduktion mit höheren Raten und bringt uns einem sauber brennenden Kohlenstoffbrennstoff näher.

(Photo: Wikipedia)