Veröffentlicht am

Gut leben und das Klima retten

In Paris hat sich die Menschheit das Ziel gesetzt, die globale Erwärmung auf 1,5 °C zu begrenzen. Die meisten Menschen glauben, daß das durch erheblichen Einbußen bei unserer Lebensqualität erkauft werden muß. Das ist ein Grund, weshalb Klimaschutz von vielen Menschen geradeheraus abgelehnt wird. Bei Frontis Energy denken wir, daß wir das Klima schützen und gleichzeitig besser leben können. Aus gutem Grund, wie die neueste, in Nature Energy veröffentlichte, Studie einer Forschergruppe um Arnulf Grubler vom Internationalen Institut für angewandte Systemanalyse in Laxenburg, Österreich, jetzt gezeigt hat.

Die Gruppe untersuchte mithilfe von Computermodellen das Potenzial von technologischen Trends, den Energieverbrauch zu senken. Dabei gingen die Forscher unter andeem davon aus, daß die Nutzung von Car-Sharing-Diensten zunehmen wird und daß fossile Brennstoffe der Solarenergie und anderen Formen erneuerbarer Energie weichen werden. In einem solchen Szenario deutet ihr Modell darauf hin, daß der weltweite Energieverbrauch trotz Zunahme von Bevölkerung, Einkommen und Wirtschaftstätigkeit um etwa 40% sinken würde. Die Luftverschmutzung und die Nachfrage nach Biokraftstoffen würden ebenfalls sinken, was die Gesundheit und die Nahrungsmittelversorgung verbessern würde.

Im Gegensatz zu vielen früheren Einschätzungen legen die Ergebnisse der Gruppe nahe, daß Menschen den Temperaturanstieg auf 1,5 °C über dem vorindustriellen Niveau begrenzen können, ohne auf drastische Strategien zu setzen, um CO2 aus der Atmosphäre im späteren Verlauf dieses Jahrhunderts abzuziehen.

Nun kann man bezweifeln, daß der Umstieg auf Car-Sharing-Angebote tatsächlich keinen Einschnitt in der Lebensqualität bedeutet. Wir denken trotzdem, daß die individuelle Wahl der Fortbewegung gewahrt werden kann bei gleichzeitigem Klimaschutz. Die Rückgewinnung von CO2 zur Herstellung von Verbrennungkraftstoffen ist z.B. so eine Möglichkeit. Die Power-to-Gas-Technologie ist die fortschrittlichste Variante CO2-Recyclings und sollte in zukünftigen Studien sicherlich berücksichtigt werden. Ein Beispiel dafür ist die Bewertung der Power-to-Gas-Technologie durch eine schweizer Forschergruppe um Frédéric Meylan, die herausgefunden hat, daß die CO2-Bilanz mit herkömmlicher Technologie schon nach wenigen Zyklen ausgeglichen werden kann.

(Bild: Pieter Bruegel der Ältere, Das Schlaraffenland, Wikipedia)

Veröffentlicht am

Eine Landkarte für Energie aus Abfall

Den meisten Lesern unseres Blogs ist bekannt, daß Abfälle leicht in nutzbare Energie umgewandelt werden können, z.B. in Biogasanlagen. Biogas, Biowasserstoff und Biodiesel sind Biokraftstoffe, weil sie biologisch durch Mirkoorganismen oder Pflanzen produziert werden. Anlagen, die Biokraftstoffe produzieren, sind weltweit in Betrieb. Allerdings weiß niemand wo genau sich diese Biokraftstoffanlagen befinden und wo sie am wirtschaftlichsten betrieben werden können. Diese Wissenslücke behindert den Marktzugang von Biokraftstoffproduzenten.

Wenigstens für die Vereinigten Staaten − den größten Markt für Biokraftstoffe − gibt es nun eine Landkarte. Eine Forscherguppe des Pacific Northwest National Laboratory (PNNL) und des National Renewable Energy Laboratory (NREL) hat nun eine detaillierte Analyse des Potenzials für Energie aus Abfällen in den USA im Fachmagazin Renewable und Sustainable Energy Reviews veröffentlicht.

Dabei konzentriete sich die Gruppe auf flüssige Biokraftstoffe, die aus Klärschlämmen durch das Fischer-Tropsch-Verfahren gewonnen werden können. Das industrielle Verfahren wurde ursprünglich in Nazi-Deutschland zur Kohleverflüssigung eingesetzt, kann aber auch auf andere organische Materialien, wie z.B. Biomasse, angewendet werden. Das resultierende Öl ähnelt Erdöl, enthält aber auch geringe Mengen an Sauerstoff und Wasser. Dabei können Nährstoffe, wie Phosphat zurückgewonnen werden.

Die Forschergruppe koppelte die besten verfügbaren Informationen zu diesen organischen Abfällen aus einer bestehenden Datenbank mit Computermodellen, um die Mengen und die beste geografische Verteilung der potenziellen Produktion von flüssigen Biokraftstoff abzuschätzen. Die Ergebnisse deuten darauf hin, daß die Vereinigten Staaten jährlich mehr als 20 Milliarden Liter flüssigen Biokraftstoff produzieren könnten.

Zudem fand die Gruppe heraus, daß das Potenzial für flüssigen Biokraftstoff aus Klärschlamm öffentlicher Kläranlagen 4 Milliarden Liter pro Jahr beträgt. Diese Ressource wurde im ganzen Land verbreitet gefunden − mit einer hohen Dichte an Standorten in den östlichen Vereinigten Staaten, sowie in den größten Städten. Tierdung hat ein Potenzial für 10 Milliarden Liter flüssigen Biokraftstoff pro Jahr. Besonders im Mittleren Westen befinden sich die größten unerschlossenen Ressourcen.

Das Potenzial für flüssigen Biokraftstoff aus Lebensmittelabfällen folgt ebenfalls der Bevölkerungsdichte. Für Ballungsräume wie Los Angeles, Seattle, Las Vegas, New York usw. wird geschätzt, daß deren Abfälle mehr als 3 Milliarden Liter pro Jahr produzieren könnte. Allerdings hatten Lebensmittelreste auch die niedrigste Umwandlungseffizienz. Dies ist auch die größte Kritik am Fischer-Tropsch-Verfahren. Anlagen zur Produktion von signifikanten Mengen Flüssigkraftstoff sind bedeutend größer, als herkömmliche Raffinerien, verbrauchen viel Energie und produzieren mehr CO2, als sie einsparen.

Bessere Verfahren zur Biomasseverflüssigung und eine effizientere Verwertung von Biomasse bleiben also nach wie vor eine Herausforderung für Industrie und Wissenschaft.

(Foto: Wikipedia)

Veröffentlicht am

CO2 Netto und Brutto − photosynthetische Betriebswirtschaft mit Algen

Daß Algen nicht nur CO2 speichern, sondern auch freisetzen, ist manchen Interessierten sicherlich bekannt. Bis jetzt unbekannt war allerdings, daß Algen durch die Klimaerwärmung sogar zusätzliches CO2 freisetzen können. Das fanden jetzt der Algenforscher Chao Song und seine Kollegen von der University of Georgia in Athens, GA heraus.

Wie die Forscher im Fachblatt Nature Geoscience publizierten, beschleunigt sich der Stoffwechsel von Algen durch höhere Wassertemperaturen in großen Flüssen. Das könnte dazu führen, daß einige Flüsse mehr CO2 freisetzen als bisher, wodurch sich die Erderwärmung noch weiter beschleunigen könnte. Zwar würde sich auch die Photosyntheserate in Flußalgen erhöhen, doch Pflanzen an den Ufern der Flüsse wären noch schneller. Der mikrobielle Abbau des Pflanzenmaterials würde das so fixierte CO2 sofort wieder freisetzen. Das heißt, konkurrierende Mikroorganismen würden die Flußalgen überwachsen oder die Algen müßten ihren Stoffwechsel der Konkurrenz anpassen − was auch tun.

Um den Nettoeffekt solcher Veränderungen zu berechnen, überwachten die Wissenschaftler die Temperatur, den gelösten Sauerstoffgehalt und andere Parameter in weltweit 70 Flüssen. Dann benutzten sie die Daten für ihre Computermodelle. Diese Modelle deuten darauf hin, daß im Laufe der Zeit die steigenden Photosyntheseraten in einigen Flüssen nicht mit dem Pflanzenwachstum Schritt halten und zu einer Freisetzung von CO2 führen könnten. Diese Nettoerhöhung von 24% des aus Flüssen freigesetzten CO2 könnte im globalen Maßstab einen zusätzlichen Temperaturanstieg von 1 °C bedeuten.

Dem Computermodell fehlen allerdings noch einige Daten. So wurden z.B. die Sedimentierungsraten nicht mit in Betracht gezogen. Außerdem wachsen nicht an allen Ufern Pflanzen. Viele Flußläufe passieren nur spärlich bewachsenes Gebiet. Wie immer ist also mehr Forschung nötig, um bessere Antworten zu erhalten.

(Foto: Wikipedia)

Veröffentlicht am

Nanokristalle aus Kobalt lassen Lithiumionen-Batterien langsamer altern

In modernen wiederaufladbaren Lithiumionen-Batterien (Akkus) verbessern Kobaltoxidkathoden die Leistung und Haltbarkeit. Allerdings sind solche Kobaltkathoden bei gleicher Leistung teurer als Nickeloxidkathoden. Nickelkathoden werden wiederum schnell brüchig, was sich negativ auf die Lebensdauer von Akkus auswirkt. Dennoch erfreuen sich Nickelkathoden wegen ihres günstigen Preises großer Beliebtheit.

Nun ist es dem Forscherteam um Jaephil Cho vom Ulsan National Institute of Science and Technology in Südkorea gelungen, eine Kathode zu entwickeln, die zu mehr als 80% aus Nickel besteht. Die Forscher berichteten im Fachmagazin Energy & Environmental Science, daß eine Kathode, die mit Nanokristallen aus Kobalt beschichtet wurde, langsamer alterte, als herkömmliche Nickelkathoden. Nach 400-maligem Wiederaufladen bei Raumtemperatur konnte die Batterie 86% ihrer ursprünglichen Kapazität behalten.

Die neuartigen Nickelkathoden könnten dazu beitragen, die wachsende Nachfrage nach wiederaufladbaren Batterien in Elektrofahrzeugen zu befriedigen, falls die Kobaltpreise zukünftig steigen.

(Foto: Wikipedia)

Veröffentlicht am

Wie decarbonisiert man die Atmosphäre schneller?

In der Wissenschaftsgemeinde ist eine hitzige Diskussion über den schnellsten Weg zur Decarbonisierung unserer Atmosphäre entbrannt. Der neueste Artikel von Lovins et al. (Rocky Mountain Insititute, Colorado, USA) soll belegen, daß erneuerbare Energie dies schneller erreicht, als Atomkraft. In der in Energy Research & Social Science publizierten Analyse belegen die Autoren dies in ihrer Untersuchung des Energiemarktes der letzten 17 Jahre. Der Artikel steht im Widerspruch zu zahlreichen anderen Artikeln, in denen Atomkraft als effektivere Methode zur Decarbonisierung genannt wird. So haben es zum Beispiel Cao et al. im Forschungsjournal Science berichtet.

Veröffentlicht am

Power-to-Gas mit Starthilfe?

In ihrem Artikel “Effect of Start-Up Strategies and Electrode Materials on Carbon Dioxide Reduction on Biocathodes“ stellen die Autoren Saheb-Alam et al. fest, daß angeimpfte Elektroden CO2 nicht besser in Methan umwandeln, als ungeimpfte Elektroden. Diese Entdeckung ist insofern interessant, als daß andere Forschergruppen das genaue Gegenteil berichteten. So hat zum Beispiel die Gruppe um Nicole LaBarge von der Pennsylvania State University herausgefunden, daß vorbehandelte Elektroden, die mit bestimmten methanbildenden Mikroben vom Genus Methanobacterium angeimpft wurden, die Startphase von Power-to-Gas Reaktoren verkürzen können.