Veröffentlicht am

Korrosion

Korrosion ist der chemische Angriff auf Werkstoffe, der, wenn nicht gestoppt, schließlich zu deren Zerstörung führt. Korrosion wird durch Elektrolyte, Gase, Lösungen oder Schmelzen verursacht. Korrosion tritt in verschiedenen Formen auf, abhängig von dem korrodierenden Werkstoffe und dem Korrosionsmittel. Auf Metallen, zum Beispiel Eisen, ist seine sichtbarste Rost, in Form von Löchern bzw. Oberflächenkorrosion. Kristalline Korrosion von Metallen folgt Korngrenzen auf Oberflächen. Korrosion wird stark beschleunigt, wenn der korrodierende Werkstoff in elektrolytischem Kontakt mit einem edleren Material steht. Ist dieser elektrolytische Kontakt eine flüssige oder feuchte Substanz, wird die Korrosion weiter beschleunigt. Der Grund ist, daß das korrodierende Material als Anode (Lokalelement) einer galvanischen Zelle wirkt. Mechanische Beanspruchung kann ebenfalls die Korrosion beschleunigen.

Eine einfache galvanische Zelle. Das Metall auf der linken Seite fungiert als Anode und wird in Metallionen (M+) aufgelöst. An der Kathode wird Wasser in Wasserstoffgas umgewandelt.

Korrosionsschutz wird erreicht, indem der anfällige Werkstoff mit korrosionsbeständigen Film überzogen wird. Eine solche Beschichtung kann ein anderes Metall (Verzinken oder Verchromen), sowie Glasur (Emaille) sein. Schutzfarbe ist eine weit verbreitete Maßnahme und wird durch Zugabe von Pigmenten (Mennige, Bleiweiß) oder organischen Substanzen erreicht. Enge Plastikfolie wird ebenfalls verwendet. Eisen wird durch Vehüttung zu Edelstahl geschützt. Dabei werden u.a. Kohle, Chrom, Nickel usw. hinzugefügt.

Die Opferanode ist kein sich auflösendes Metall, sondern organisches Material. Mikroben zerstören diese organischen Stoffe und produzieren CO2

Wenn der Werkstoff permanent Wasser ausgesetzt ist, wird häufig sogenannter kathodischer Schutz ein gesetzt. Um kathodischen Schutz zu erreichen, wird der anfällige Werkstoff mit Opferanoden (Stäben oder Platten) verbunden, die sich im Laufe der Zeit auflösen. Alternativ wird oft Gleichstrom verwendet. Unsere zum Patent angemeldete Lösung stellt eine mikrobielle Anode zur Verfügung, die organisches Material im Boden oder in der Kanalisation als Opferanode verwendet. Statt das Metall aufzulösen, wird organische Substanz von Mikroben abgebaut.

Wenn ein Potentiostat zu der galvanischen Zelle hinzugefügt wird, kann der kathodische Schutz auf das geschützte Material oder die organischen Stoffe zugeschnitten werden.

Neben Metallen können auch natürliche Stoffe (Holz, Seide) und künstliche Polymere (Kunststoffe, Gummi) korrodieren. Weichholz ist im Allgemeinen widerstandsfähiger als Hartholz. Schwache Säuren schädigen Holz normalerweise nicht. Der Korrosionsschutz von Holz wird jedoch durch Anstreichen oder Tränken mit Schutzmitteln erreicht. Künstliche Polymere korrodieren selten so schnell wie Metalle, und wenn sie dies tun, wird zum Zeitpunkt ihrer Synthese ein Schutzmittel in die Polymerformel eingemischt.

Veröffentlicht am

Skalierbarer Mehrkanalpotentiostat

Als treuer Leser wissen Sie bereits, daß wir an Power-to-Gas zur Bekämpfung der globalen Erwärmung arbeiten. Wir sind der Meinung, daß die Verwertung von CO2 einen Anreiz für dessen Recycling darstellt. Am besten funktioniert das, wenn aus CO2 ein Kraftstoff hergestellt wird, da Gas und Benzin das Fundament jeder Volkswirtschaft sind. Während der Preis für die Bindung von CO2 aus Luft immer noch zu hoch ist, um es in Verbrennungskraftstoff umzuwandeln, nähern wir uns dem Problem aus der anderen Richtung, nämlich der CO2-Verwertung. Durch wirtschaftliche CO2-Verwertung können wir die hohen Kosten der CO2-Bindung ein Stück weit ausgleichen. Wir haben jetzt einen wissenschaftlichen Artikel veröffentlicht, der zeigt, wie die Kosten für elektronische Geräte für die CO2-Umwandlung durch den Einsatz unserer Software reduziert werden können. Für Power-to-Gas sowie für die Elektrosynthese flüssiger Kraftstoffe ist es erforderlich, ein stabiles elektrochemisches Potenzial zu erzeugen. Das konnten bisher nur elektronische Potentiostaten. Wir haben eine Softwarelösung entwickelt, mit der preiswerte Standardgeräte gesteuert werden können, um dasselbe Ziel zu erreichen. Da die Software sowohl µA als auch MA steuert, ist sie frei skalierbar. Durch die Verwendung mehrerer Netzteile kann auch eine unbegrenzte Anzahl von Kanälen angeschlossen werden.

Frontcell©-Ensemble mit zwei Kanälen. Von links nach rechts: Digitales Multimeter (hinten), Relaisplatine (vorne), zwei H-Elektrolysezellen, Stromversorgung, Steuercomputer.

Wir testeten die Software in einem typischen Power-to-Gas Experiment bei −800 mV und stellten fest, daß das aufgezeichnete Potenzial über 10 Tage stabil war. Die kleinen elektrochemischen Zellen konnten auch durch einen größeren 7-Liter-Reaktor ersetzt werden, der häusliches Abwasser behandelte. Dieses Potenzial war ebenfalls stabil.

Das durch Frontcell© gesteuerte Potenzial von −800 mV war sowohl für 200 ml Elektrolysezellen (links) als auch für einen größeren 7 l-Reaktor (rechts) stabil.

Da die Instrumentensteuerung von billiger elektronischer Massenware macht auch die chemischen Prozess günstiger. Dadurch wird die mikrobielle Elektrolyse von Abwasser wirtschaftlich machbar. Die Entfernung von organischen Rückständen aus Abwässern erfolgt normalerweise bei positiven elektrochemischen Potentialen. Tatsächlich stabilisiert die Software solche Potenziale auch bei +300 mV.

Frontcell© stabilisierte 200 ml Elektrolysezellen zehn Tage lang bei +300 mV.

Die Software ist jetzt als Kommandozeilenversion verfügbar. Wir akzeptieren Vorbestellungen zu einem Preisnachlaß von 50% für die kommerzielle Version mit graphischer Benutzeroberfläche und Fernsteuerung über einen Internetbrowser.