Trinkwasserwasseraufbereitung auf Membranbasis ist weit verbreitet, beispielsweise in der Abwasserbehandlung und Meerwasserentsalzung. Membranverschmutzung durch Biokorrosion ist teures Problem, das man bei allen Membranprozessen antrifft und das nur schwer in Griff zu bekommen ist. Es wurden verschiedene Anstrengungen unternommen, um entweder die Membranverschmutzung direkt zu verhindern oder wenigtens zu verlangsamen.
Keramikmembranen haben eine bessere thermische und chemische Stabilität mit höherer Fouling-Resistenz und längerer Lebensdauer im Vergleich zu Polymermembranen. Aufgrund dieser Eigenschaften sind Keramikmembranen den Polymermembranen überlegen.
Während des Filtrationsprozesses ist die Wassermenge, die eine Membran durchlaufen kann, als Membranfluß bekannt. Durch Verschmutzung der Membran wird dieser Fluß reduziert und die betroffene Membran muß erneuert werden. Unterschiedliche Membranreinigungsstrategien wurden untersucht, einschließlich der selbstreinigenden leitfähigen polymeren Membran und der elektrisch unterstützten Filtration, aber keiner von ihnen hat ein zufriedenstellendes Flusswiederherstellungsverhalten gezeigt.
Bisherige Forschungen haben die Verwendung von ‚Nano Zeolith- und Kohlenstoffnanostrukturen für Wasseraufbereitungs- und Entsalzungsanwendungen empfohlen.
- Zeolithe sind kristalline Aluminosilikate, die eine gut definierte anorganische Struktur besitzen, deren mikroporöse Kanäle und Poren als Filter wirken.
- Kohlenstoffnanostrukturen bestehen aus stark verschlungenen Kohlenstoffnanoröhren, die durch ein standardisiertes chemisches Dampfabscheidungsverfahren hergestellt werden.
Um die Verwendung von Keramikmembranen aus Nano-Zeolith- und Kohlenstoffnanostrukturen zu untersuchen, entwickelte eine Gruppe von Forschern an der New York University Abu Dhabi, Vereinigte Arabische Emirate, eine neue elektro-keramische Membran und bewertete seine Verschmutzungsresistenz. Ihre Forschungsergebnisse wurden in der Fachzeitschrift Chemical Engineering Journal veröffentlicht.
Forschungsansatz:
Zeolith / CNS-Membranvorbereitung:
Nano Zeolith-Y (Nano-Y) -membranen wurden hergestellt, indem die gewünschten Mengen an Nano-Y, Kohlenstoffnanostrukturen und Polyvinylidenfluorid (PVDF) in einer wäßrigen Alkohollösung verteilt wurden.
Die Suspension wurde darauffolgend durch ein Mikrofiltrationsmembranfilter vakuumfiltert, und die Membran wurde vor dem Trocknen bei Raumtemperatur abgezogen.
Drei verschiedene Verhältnisse von Zeolith- und Kohlenstoffnanostrukturen wurden zunächst mit 60, 70 und 80 Gewichts-% Zeolith hergestellt. Die Kohlenstoffnanostrukturen und das Bindemittel wurden in einem Verhältnis von 1:1 hergestellt.
Membran-Charakterisierung:
Die elektrische Leitfähigkeit und die mechanischen Eigenschaften der getrockneten Membranen wurden untersucht.
Die Oberflächenmorphologie der Zeolith-Kohlenstoff-Nanostrukturmembran wurde durch Rasterelektronenmikroskopie und Transmissionselektronenmikroskopie untersucht.
Andere Tests einschließlich der Membrankontaktwinkelprüfung wurden auch an den verschiedenen markierten Membranen durchgeführt.
Membranreinigungstests und antibakterielle Beurteilung:
Als Inokulum wurden zwei Korrosionsbeschleuniger verwendet: Hefe (200 mg / l) und Natriumalginat (30 mg / l).
Eine maßgeschneiderte Zelle wurde für die elektrochemische Messungen entwickelt. Bei jedem Meßvorgang wurde eine frische Membran verwendet, die unter Verwendung von Linear-Sweep-Voltammetrie elektrochemisch charakterisiert wurde.
Antibakterielle Eigenschaften der neuen Strukturmembran wurden durch das Plattendiffusionsverfahren bestimmt. Unterschiedliche Bakterien wurden über Nacht bei 37°C in einem Schütteln inkubator bei 100 U / min kultiviert.
Ergebnisse:
Membranquerschnitte offenbarten eine gleichmäßige Verteilung von Nano-Zeolith-Partikeln und der Kohlenstoffnanostruktur. Die Zugfestigkeit wurde gelungener Nano-Zeolith-Einbau interpretiert. Es wurden Zugfestigkeiten von 3,3 MPa bis 2,1, 1,1 und 0,3 MPa für jeweils 60, 70 und 80 Gewichts-% gemessen. Darüber hinaus wurde innerhalb von 4 Minuten eine Abnahme des Wasserkontaktwinkels von 84,7 ± 2 bis 18 ± 4° gezeigt.
Die Verbundmembran zeigte eine verbesserte elektrokatalytische Aktivität für die Wasserstoffentwicklung in zwei Foulants; Hefe und Natriumalginat.
Diese elektrokeramischen MF-elektrokeramischen, antibakteriellen Membranen scheinen für verschiedene Trennverfahren wie in Abwasseraufbereitung, Farbstofftrennung und Öl / Wassertrennung versprechen, wo Fouling und Bakterienwachstum ein Hauptanliegen sind.
(Foto: WET GmbH, Attribution, Wikipdedia)
Referenz: https://doi.org/10.1016/j.cej.2020.128395 Electro-ceramic self-cleaning membranes for biofouling control and prevention in water treatment, Chemical Engineering Journal, Volume 415, 2021