Veröffentlicht am

Festoxidbrennstoffzellen wandeln Methan aus dem Grundwasser in Strom um

Festoxidbrennstoffzellen (FOBZ) sind hocheffiziente Stromerzeuger mit niedrigen Betriebskosten. Sie arbeiten in einem Temperaturbereich von 800 bis 1.000°C. Dies ermöglicht die interne Umwandlung von Kohlenwasserstoffen in Wasserstoff. Methan, Methanol, Benzin und andere Kohlenwasserstoffe können direkt in der Brennstoffzelle in Wasserstoff (H2) umgewandelt werden.

SOFCs bieten eine Reihe zusätzlicher Vorteile gegenüber herkömmlichen Verbrennungsmotoren oder anderen Brennstoffzellen. Zum Beispiel macht die hohe Abwärme (über 800°C) sie zu einer nützlichen Anwendung in der Industrie für die Kraft-Wärme-Kopplung. Durch kombinierte Zyklen kann ein hoher Wirkungsgrad für die Stromerzeugung erreicht werden. Aufgrund des modularen Charakters von FOBZ bieten sie außerdem eine flexible Planung der Stromerzeugungskapazität. Auf diese Weise führt die Verwendung von FOBZ zu einer weiteren Reduzierung der Kohlendioxidemission.

Der größte Vorteil von FOBZ besteht darin, daß sie mit Kohlenwasserstoffen wie Methan (CH4, Erdgas) betrieben werden können. Durch die direkte Verwendung von Methan sind keine Vorreformer erforderlich, wodurch die Komplexität, Größe und Kosten des gesamten FOBZ-Systems verringert werden.

Methan kann aus dem Zerfall organischer Abfälle auf Abfalldeponien, Trinkwasseraufbereitungsanlagen usw. gewonnen werden. Das Gas kann uch aus dem Grundwasser gewonnen werden. Methangas gelangt durch natürlich vorkommenden anaeroben Abbau organischen Materials im Untergrund oder durch Eingasen aus Lagerstätten ins Grundwasser.

Forscher der Technischen Universität Delft ging davon aus, daß das aus der Grundwasseraufbereitung gewonnene Gas auch als Brennstoff in FOBZ verwendet werden kann, und stellten ihre Hypothese auf die Probe. Sie veröffentlichten ihre Ergebnisse in der Fachzeitschrift Journal of Cleaner Production. Derzeit wird das aus der Trinkwasseraufbereitungsanlage in Spannenburg, Niederlande, gewonnene Methan entweder in die Atmosphäre freigesetzt oder abgefackelt, wodurch eine wertvolle Ressource verschwendet wird. Zudem tragen sowohl das Methan als auch das CO2 zu weiteren Treibhausgasemissionen bei.

FOBZ stellen die sauberste der derzeit gängigen Lösungen für die Umwandlung von zurückgewonnenem Methan in elektrische Energie dar. Die so gewonnene Energie kann wiederum von der Trinkwasseraufbereitungsanlage genutzt werden. Dieser Prozess verringert den Strombedarf und gleichzeitig die Treibhausgasemissionen des DWTP.

Der gesamte Prozess war in folgende Schritte unterteilt:

  1. Methan wurde zunächst dem Grundwasser entnommen: Das Grundwasser wurde aus den Tiefbrunnen direkt in ein System von Vakuumtürmen gepumpt, die 90% des gelösten Gases mit einem Nahvakuum von 0,2 bar entfernen.
  2. Die anschließende Behandlung durch Plattenbelüftung entfernten die verbliebenen 10% Methan aus dem Grundwasser.
  3. Zur Entfernung von weiterem  CO2 wurde das Wasser einer weiteren Turmbelüftung unterzigen wodurch das Wasser zusätzlich weicher wurde.

Probenahme von zurückgewonnenem Gas:

Zweihundert Mililiter des mit Methan angereicherten Gases wurden verwendet, um die Konzentration von CH4, H2, Sauerstoff (O2), Stickstoff (N2), Kohlenmonoxid (CO) und CO2 zu bestimmen.

FOBZ-Aufbau & thermodynamischer Ansatz:

Eine FOBZ-Teststation wurde verwendet, um die Experimente durchzuführen. Das methanreiche Gas wurde der Anode zugeführt und das Leerlaufpotential aufgezeichnet. Methan muss in Wasserstoff und CO umgewandelt werden, bevor in einer FOBZ effektiv Strom erzeugt werden kann.

Ergebnisse:

Die Hauptkomponenten im Probengas waren Methan und CO2 mit Konzentrationen von 71 bzw. 23 Mol-%. Zusätzlich enthielt das zurückgewonnene Gas 9 ppm Schwefelwasserstoff (H2S), was die Zellleistung einer FOBZ dauerhaft verringern kann. Schwefelwasserstoff wurde mit imprägnierter Aktivkohle wirksam entfernt (<0,1 ppm)

Die Verwendung von CH4 aus dem Grundwasser in einer FOBZ trägt dazu bei, die Treibhausgasemissionen zu verringern und die Nachhaltigkeit von Trinkwasseraufbereitungsanlagen zu verbessern. Mit dem zurückgewonnenen Methangas des Spannenburg Trinkwasseraufbereitungsanlage kann ein 915 kW SOFC-System betrieben werden. Dies kann 51,2% des gesamten Strombedarfs der Anlage decken und die Treibhausgasemissionen um 17,6% senken, was rund 1,794 Tonnen CO2 entspricht.

Die jährliche Stromerzeugung des FOBZ-Systems könnte 8 GWh betragen, was etwa 3 GWh mehr ist als die, die von einer Gasturbine oder einem Verbrennungsmotor erzeugt wird.

In Zukunft werden die Forscher Langzeittests durchführen, um den sicheren Betrieb von FOBZ, insbesondere im Hinsblick auf das Problems der Kohlenstoffablagerung, zu untersuchen. Diese Tests werden auf die FOBZ-Reihen und die Pilotanlage (im Bereich einiger kW-Systeme) ausgedehnt.

(Abbildung: Indiamart)

Quelle: https://doi.org/10.1016/j.jclepro.2021.125877 (A solid oxide fuel cell fueled by methane recovered from groundwater, 2021)

Veröffentlicht am

Grüner Wasserstoff produziert mit Sonnenlicht und Nanopartikeln

Der Energiebedarf steigt und der Rohstoff für die Wirtschaft mit fossilen Brennstoffen nimmt ab. Darüber hinaus verschlechtert die Emission von Gasen aus dem Verbrauch fossiler Brennstoffe die Luftqualität erheblich. Die aus diesen fossilen Brennstoffen erzeugten Kohlenstoffnebenprodukte beeinflussen das Klima erheblich.

Daher besteht die Notwendigkeit, eine erneuerbare Energiequelle zu finden, die je nach Anforderung leicht hergestellt, gespeichert und verwendet werden kann. Wasserstoff kann eine vielversprechende Energieressource sein, da er eine reichlich verfügbare, ungiftige Ressource ist und leicht zum Speichern überschüssiger elektrischer Energie verwendet werden kann.

Wasserstoff erzeugt in Kombination mit Sauerstoff in einer Brennstoffzelle Strom und die Nebenprodukte sind Wasser und Wärme. Basierend auf der Methode zur Herstellung von Wasserstoff wird es in blauen Wasserstoff und grünen Wasserstoff eingeteilt. Blauer Wasserstoff wird aus fossilen Brennstoffen wie Methan, Benzin und Kohle hergestellt, während grüner Wasserstoff aus nicht fossilen Brennstoffen / Wasser erzeugt wird. Der sauberste Weg zur Herstellung von umweltfreundlichem Wasserstoff ist die Elektrolyse von Wasser, bei der Wasser elektrolysiert wird, um Wasserstoff und Sauerstoff zu trennen. Erneuerbare Energie kann als Leistungselektrolyseur zur Erzeugung von Wasserstoff aus Wasser verwendet werden. Die solarbetriebene photoelektrochemische Wasserspaltung ist eine der gängigen Methoden. Bei der photoelektrochemischen Wasserspaltung wird Wasserstoff aus Wasser unter Verwendung von Sonnenlicht erzeugt.

PEC-Zellen bestehen aus einer funktionierenden Photoelektrode und einer Gegenelektrode. Die Photoelektrode besteht aus Halbleitermaterial mit einer Bandlücke, um Sonnenlicht zu absorbieren und ein Elektron-Loch-Paar zu erzeugen. Die durch Licht erzeugten Ladungen sind für die Oxidation von Wasser und dessen Reduktion zu Wasserstoff verantwortlich. Die PEC leiden unter Geräten mit geringer Stabilität und Effizienz.

Das Forschungsteam des Instituts National de la Recherche Scientifique (INRS) hat zusammen mit Forschern des Instituts für Chemie und Prozesse für Energie, Umwelt und Gesundheit (ICPEES), einem gemeinsamen Forschungslabor der CNRS-Universität Straßburg, einen Weg zur signifikanten Verbesserung des Effizienz der Wasserdissoziation zur Erzeugung von Wasserstoff durch Entwicklung lichtempfindlicher nanostrukturierter Elektroden im Sonnenlicht.

Eine Vergleichsstudie zwischen Kobalt- und Nickeloxid-Nanopartikeln, die auf durch Anodisierung hergestellten TiO2-Nanoröhren abgeschieden wurden, wurde durchgeführt. Die TiO2-Nanoröhren wurden mit CoO- (Kobaltoxid) und NiO- (Nickeloxid) -Nanopartikeln unter Verwendung des reaktiven Pulslaser-Abscheidungsverfahrens dekoriert. Die Oberflächenbeladungen von CoO- oder NiO-Nanopartikeln wurden durch die Anzahl der Laserablationsimpulse gesteuert. Die Effizienz von CoO- und NiO-Nanopartikeln als Cokatalysatoren für die photoelektrochemische Wasserspaltung wurde durch Cyclovoltammetrie sowohl unter simuliertem Sonnenlicht als auch unter Beleuchtung mit sichtbarem Licht und durch externe Quanteneffizienzmessungen untersucht

Die gesamte Forschungsarbeit wurde in folgenden Schritten durchgeführt:

Schritte zur Verbesserung der Effizienz der Wasserstoffproduktion
Schritte zur Verbesserung der Effizienz der Wasserstoffproduktion

(Quelle: Favet et al., Solar Energy Materials and Solar Cells, 2020)

In dieser Studie wurden Kobalt (CoO) – und Nickel (NiO) -Oxide als wirksame Cokatalysatoren für die Spaltung von Wassermolekülen angesehen. Beide Cokatalysatoren verbesserten die photoelektrochemische Umwandlung von Photonen aus ultraviolettem und sichtbarem Licht.

Es wurde jedoch festgestellt, dass CoO-Nanopartikel unter Beleuchtung mit sichtbarem Licht der beste Cokatalysator sind, wobei die Photoumwandlungseffizienz fast zehnmal höher ist als bei TiO2. Die Leistung von CoO-Nanopartikeln wurde im sichtbaren Spektralbereich (λ> 400 nm) verbessert. Der mögliche Grund kann eine Folge ihrer sichtbaren Bandlücke sein, die es ihnen ermöglicht, mehr Photonen im Bereich von 400 bis 500 nm zu gewinnen und die durch Licht erzeugten Elektronen effektiv auf TiO2-Nanoröhren zu übertragen.

Bei Frontis Energy sind wir von dieser neuen Entdeckung zur Verbesserung der Wasserstoffproduktion aus Sonnenlicht begeistert und hoffen, bald eine industrielle Anwendung zu sehen.

(Bild: Engineersforum)

(Quelle: Favet et al., Solar Energy Materials and Solar Cells, 2020)

Veröffentlicht am

Mikrobielle Brennstoffzelle im Pilotmaßstab produziert Strom aus Abwasser

Bei der Abwasserbehandlung ist die Belüftung ein energieintensives und notwendiges Verfahren zur Entfernung von Verunreinigungen. Dabei blasen Pumpen Luft in das Abwasser und versorgen so die im Belebtschlammbecken vorhanden Mikroben mit Sauerstoff. Diese Bakterien oxidieren im Gegenzug organische Stoffe zu CO2 und entfernen diese adaurch aus dem Abwasser. Dieses Verfahren is der indutrielle Standard und hat sich seit über einem Jahrhundert bewährt. Geht es nach den Forschern der Washington State University und der University of Idaho, ändert sich das jetzt.

In ihrer Arbeit verwendeten die Forscher ein einzigartiges mikrobielles Brennstoffzellensystem, das sie als Ersatz für den Belebtschlamm entwickelten. Dieses nachhaltige Abwasserbehandlungssystem, reinigt Abwasser mithilfe von Mikroorganismen, die elektrischen Strom produzieren. Solche Mikroben nennt man Elektrophile.

Die Arbeiten sollen eines Tages zu einer geringeren Abhängigkeit von den energieintensiven Klärprozessen führen. Die meiste Energie in solchen Prozessen wird im Belebtschlamm und bei dessen Entsorgung verbraucht. Der Energieverbrauch bei der Wasseraufbereitung produziert weltweit zirka 4-5% des anthropogenen CO2. Zum Vergleich, laut der Air Transport Action Group in Genf produzierte der internationale Luftverkehr Jahr 2019 2,1% CO2. Ihre Arbeit publizierten die Forscher in der Fachzeitschrift Bioelectrochemistry. Zusätzlich zur Senkung der Emissionen, würde eine Senkung des Energieverbrauchs der Abwasserbehandlung jährliche Kostenersparnisse in Milliardenhöhe bringen.

Mikrobielle Brennstoffzellen lassen Mikroben chemische Energie ähnlich wie eine Batterie in Elektrizität umwandeln. Bei der Abwasserbehandlung kann eine mikrobielle Brennstoffzelle die Rolle der Belüftung übernehmen und Elektronen aus dem Abwasser aufnehmen. Diese Elektron sind wiederum ein Abfallprodukt des bakteriellen Stoffwechsels. Alle lebenden Organismen sind bestrebt, ihre ueberschuessigen Elektronen abzugeben. Dieser Prozess wird unter als Atmung oder Gärung bezeichnet. Der von den Mikroben erzeugte Strom kann für nützliche Anwendungen in der Kläranlage selbst verwendet werden. Die Technologie schlägt also zwei Fliegen mit einer Klappe. Einerseits spart die Klärung des Abwasser Energie. Andererseits erzeugt sie zusätzlich Strom.

Bisher wurden die mikrobiellen Brenstoffzellen experimentell in Abwasserbehandlungssystemen unter idealen Bedingungen eingesetzt, aber unter realen und wechselnden Bedingungen versagen sie häufig. Den mikrobiellen Brennstoffzellen fehlt eine interne Regulation, die das Potenzial von Anoden und Kathoden und damit das Zellpotential steuern, was zu einem Systemausfall führen kann.

Die Forscher fügten dem System eine zusätzliche Referenzelektrode hinzu, die die Steuerung ihres Brennstoffzellensystems ermöglicht. Das System ist umschaltbar. Es kann entweder als mikrobielle Brennstoffzelle für sich arbeiten und keine Energie verbrauchen, oder es kann so umgestellt werden, dass weniger Energie zur Belüftung verbraucht wird während es das Abwasser intensiver reinigt. Frontis Energy verwendet ein ähnliches Steuersystem für seine Elektrolysereaktoren.

Das System wurde ein Jahr lang ohne Fehler im Labor sowie im Pilotmaßstab in einer Test-Kläranlage in Idaho betrieben. Das System entfernte Abfälle mit vergleichbaren Raten wie in einem klassischen Belebtschlammbecken. Zusätzlich könnte die mikrobielle Brennstoffzelle möglicherweise völlig unabhängig vom Stromnetz verwendet werden. Die Forscher hoffen, daß es eines Tages für kleine Abwasserbehandlungsanlagen verwendet werden könnte, beispielsweise für die Reinigung von Viehbetrieben oder in sehr ländlichen Gebieten.

Trotz der Fortschritte gibt es immer noch Herausforderungen, die bewältigen müssen. Es handelt sich um komplexe Systeme, die schwer zu bauen sind. Bei Frontis Energy sind wir auf solche System spezialisiert und können bei der Markeinführung helfen.

(Foto: Wikipedia / National University of Singapore)

Veröffentlicht am

Biokohle aus Abfall entfernt Arzneimittel aus Abwasser

Biokohle ist eine kohleähnliche Substanz, die hauptsächlich aus landwirtschaftlichen Abfallprodukten hergestellt wird. Sie kann Verunreinigungen wie Arzneimittel aus vorbehandeltem Abwasser entfernen. Zu diesem Ergebnis kam eine Forschergruppe, der Pennsylvania State University und dem Arid Lands Agricultural Research Centerin Arizona. Die Biokohle wurde aus zwei in den USA gängigen landwirtschaftlichen Reststoffen aus der Baumwoll- und Kautschukverarbeitung hergestellt.

Um die Fähigkeit der Biokohle zur Adsorption von Arzneimitteln aus behandeltem Abwasser zu testen, erglichen die Wissenschaftler drei gängige pharmazeutische Verbindungen. Bei der Adsorption haftet ein Material wie eine pharmazeutische Verbindung an der Oberfläche fester Biokohlepartikel. Bei der Absorption dagegen wird ein Material intern in ein anderes aufgenommen, wie z.B. in einem Schwamm.

Guayule, ein Strauch, der im trockenen Südwesten der USA wächst, lieferte den Abfall für die getestete Biokohle. Unter Bonatikern auch Parthenium argentatum genannt, wird der Strauch als Quelle für Gummi und Latex kultiviert. Die Pflanze wird zu Boden gehackt und ihre Zweige zerdrückt, um den Latex zu extrahieren. Der trockene, breiige, faserige Rückstand, der nach dem Zerkleinern der Stiele zur Extraktion des Latex zurückbleibt, wird als Bagasse bezeichnet.

Die Ergebnisse sind von Bedeutung, da sie das Potenzial von Biokohle aus reichlich vorhandenen landwirtschaftlichen Abfällen aufzeigen. Diese Abfälle müßten ansonsten teuer entsorgt werden. Die Herstellung von Biokohle ist eine kostengünstige Zusatzbehandlung zur Reduzierung von Verunreinigungen in behandeltem Abwasser, das zur Bewässerung verwendet wird.

Gleichzeitig sind die meisten Kläranlagen derzeit nicht für die Entfernung neu auftretender Verunreinigungen wie Pharmazeutika ausgerüstet. Wenn diese toxischen Verbindungen durch Biokohle entfernt würden, könnte das Abwasser in Bewässerungssystemen wiederaufbereitet werden. Diese Wiederverwendung ist von entscheidender Bedeutung in Regionen, in denen ein Wassermangel die landwirtschaftliche Produktion behindert.

Die in der Studie verwendeten pharmazeutischen Verbindungen waren: Sulfapyridin, ein antibakterielles Medikament, das üblicherweise in der Veterinärmedizin verwendet wird; Docusat, ein weit verbreitetes Abführmittel und Stuhlweichmacher, sowie Erythromycin, ein Antibiotikum zur Behandlung von Infektionen und Akne.

Die im Fachmagazin Biochar veröffentlichten Ergebnisse legen nahe, daß Biokohle landwirtschaftliche Abfälle wirksam Arzneimittel adsorbieren kann. Dabei war die aus Abfällen der Baumwollverarbeitung gewonnene Biokohle jedoch wesentlich effizienter. Die Biokohle adsorbierte es 98% des Docusats, 74% des Erythromycins und 70% des Sulfapyridins aus wäßriger Lösung. Im Vergleich dazu adsorbierte die aus Guayulerückständen gewonnene Biokohle 50% des Docusats, 50% des Erythromycins und nur 5% des Sulfapyridins.

Die Forschung ergab, daß ein Temperaturanstieg von ungefähr 340ºC auf zirka 700ºC im sauerstoffreien Pyrolyseprozeß, der zur Umwandlung der landwirtschaftlichen Abfallmaterialien in Biokohle verwendet wurde, zu einer stark verbesserten Kapazität der Adsorption führte.

Bisher gab es keine Studien zur Verwendung von Guayulerückständen zur Herstellung von Biokohle und zur Entfernung von Verunreinigungen, ebenso wie für Baumwollverarbeitungsabfälle. Es wurden zwar Untersuchungen zur möglichen Entfernung anderer Verunreinigungen durchgeführt. Doch ist dies die erste Studie, in der Baumwollverarbeitungsabfälle speziell zur Entfernung von Arzneimitteln aus Wasser verwendet werden.

Die Forschung mehr als theoretisch. Bei Frontis Energy hoffen wir, daß die Technologie schon bald im industriellen Maßstab verfügbar sein wird. Da Baumwollverarbeitungsabfälle auch in den ärmsten Regionen weit verbreitet sind, sind wir der Ansicht, daß diese Quelle für Biokohle zur Dekontamination von Wasser vielversprechend ist. Der nächste Schritt wäre die Entwicklung einer Mischung aus Biokohlematerial, um eine Vielzahl von Verunreinigungen aus Wasser zu adsorbieren.

(Foto: Wikipedia)

Veröffentlicht am

Hocheffiziente Entsalzung durch Nanoröhrchen

Die Trennung flüssiger Kompartimente ist nicht nur für die Energiegewinnung biologischer Zellen von Bedeutung, da dort die Zellatmung stattfindet, sondern auch für elektrochemische Zellen und Entsalzung durch revertierte Osmose und andere Prozesse. Es ist also nur folgerichtig, daß die die angewandte Forschung sich intensiv damit beschäftigt. Wir haben schon in mehreren Artikeln über vielversprechende Versuche berichtet, Membranen billiger und effektiver zu machen. Auch Nanomaterialien sind schon intensiv beforscht worden.

In Folge klimatischer Veränderungen, hervorgerufen durch die globale Erwärmung, wird Wasserknappheit immer häufiger zu einem Problem in vielen Teilen der Welt. Am Meer gelegene Siedlungen können ihre Versorgung mit entsalztem Wasser aus Meerwasser und Brackwasserquellen sichern.

Jetzt haben Forscher des kalifornischen Lawrence Livermore National Laboratory (LLNL) Poren aus Kohlenstoffnanoröhrchen entwickelt, die so effizient Salz aus Wasser entfernen, daß sie mit kommerziellen Entsalzungsmembranen vergleichbar sind. Diese winzigen Poren haben einen Durchmesser von nur 0,8 Nanometern (nm). Ein menschliches Haar einen Durchmesser von 60.000 nm. Die Ergebnisse haben die Forscher in der Zeitschrift Science Advances publiziert.

Die vorherrschende Technologie zur Entfernung von Salz aus Wasser ist die Umkehrosmose. Dabei wird eine Dünnschicht-Verbundmembran (DVM) verwendet, um Wasser von Ionen zu trennen. Bisher war die Leistung dieser Membranen jedoch unbefriedigend. Beispielsweise sind DV-Membranen durch die Kompromisse zwischen Permeabilität und Selektivität eingeschränkt. Zudem weisen sie häufig eine unzureichende Abstoßung einiger Ionen und Spuren von Verunreinigungen auf.  Das erfordert zusätzliche Reinigungsstufen die wieder die Energiekosten erhöhen.

Wie so oft, haben sich die Forscher die Natur zum Vorbild genommen. Biologische Wasserkanäle, auch als Aquaporine bekannt, liefern eine Blaupause für die Strukturen, die eine höhere Leistung bieten können. Diese Aquaporine haben extrem enge innere Poren, die das Wasser zusammendrückt. Dadurch wird eine extrem hohe Wasserdurchlässigkeit mit Transportraten von mehr als 1 Milliarde Wassermolekülen pro Sekunde pro Pore ermöglicht. Kohlenstoffnanoröhren stellen aufgrund der geringen Reibung des Wassers auf den Innenflächen einen der vielversprechenden Ansatz für künstliche Wasserkanäle dar.

Die Forschergruppe entwickelte Nanoröhrchen-Porine, die sich selbst in nachgeahmte biologische Membranen einfügen. Diese künstlichen Wasserkanäle bilden die Funktionalität von Aquaporinkanälen nach. Die Forscher maßen den Wasser- und Chloridionentransport durch die künstlichen Porine mit einem Durchmesser von 0,8 nm. Computersimulationen und Experimente unter Verwendung de künstlichen Porine in Lipidmembranen zeigten einen verbesserten Fluß sowie eine starke Ionenabstoßung in den Kanäle von Kohlenstoffnanoröhrchen.

Mit diesem Verfahren kann man den genauen Wert der Wasser-Salz-Permselektivität in den engen Kohlenstoffnanoröhrchen bestimmen. Simulationen auf Atomebene bieten eine detaillierte molekulare Ansicht der neuartign Kanäle. Bei Frontis Energy freuen wir uns über diesen vielversprechenden Ansatz und hoffen schon bald ein kommerzielles Produkt auf dem Markt sehen zu können.

(Bild: Wikipedia)

Veröffentlicht am

Wiederaufladbare PAM-Brennstoffzelle mit Wasserstoffspeicherpolymer

Brennstoffzellen gehören zu den effizientesten und saubersten alternativen Energiequellen. Sie haben das Potential, Stromerzeuger auf Basis fossiler Brennstoffe zu ersetzen. Insbesondere Protonenaustauschmembran-Brennstoffzellen (PAMBZ) sind aufgrund ihrer hohen Leistungsdichte und Effizienz bei niedrigen Betriebstemperaturen (ca. 60–80°C) vielversprechende Energieumwandler für zahlreiche Anwendung im Transportsektor, als Energiespeicher oder zur Stromerzeugung in entlegenen Regionen. PAMBZ könnten zu einem der saubersten Energieträger werden. Dies liegt daran, dass Wasser das Endprodukt solcher Energieumwandlungssysteme ist. Derzeit werden in diesen Brennstoffzellen hauptsächlich Nafion™ -Membranen als Wasserstoffbarrieren verwendet, die für ihre Robustheit bekannt sind.

PFSA Protonenaustauschmembran

Eine ausreichende Versorgung mit Wasserstoff ist für die Anwendung von PAMBZ-Systemen von entscheidender Bedeutung. Derzeit sind teure Hochdrucktanks (70 MPa) für die Wasserstoffspeicherung der neueste Stand der Technik. Neben den Kosten gibt es auch noch andere Nachteile wie die mangelnde Beweglichkeit und Sicherheit. Um diese Probleme anzugehen, wurden alternative Wasserstoffspeichermaterialien eingehend untersucht. Beispielsweise können Metallhydride und organische Hydridmaterialien Wasserstoff durch kovalente Bindung fixieren und freisetzen.

Jetzt haben Dr. Junpei Miyake und Kollegen von der Universität von Yamanashi, Japan, ein wiederaufladbares PAMBZ-System (RCFC) vorgeschlagen, das ausschließlich aus Polymeren besteht. Die Arbeit wurde in Nature Communications Chemistry veröffentlicht. Die Strategie der Forscher bestand darin, eine Polymerfolie zur Wasserstoffspeicher (HSP, ein organisches Festkörperhydrid) als Wasserstoffspeichermedium in der Brennstoffzelle anzubringen. Mit diesem Ansatz wurden die Probleme wie Toxizität, Entflammbarkeit und Flüchtigkeit sowie Bedenken in Bezug auf andere Komponenten wie Kraftstoffbehälter, Pumpen und den Verdampfer gelöst. Die HSP-Struktur basiert auf Fluorenol / Fluorenon-Gruppen, die als Wasserstoffspeicher dienen.

Um die Leistung ihrer wiederaufladbaren HSP-basierten Brennstoffzelle zu testen, brachten die Wissenschaftler die HSP-Folie an der Membranelektrode der anodischen Katalysatorschicht an. Gleichzeitig wurde die Kathodenseite wie bei regulären PAMBZ betrieben. Die Forscher berichteten ebenfalls, daß auch ein Iridiumkatalysator auf die Innenseite der HSP-Folie angebracht wurde. Dadurch wurden die Freisetzung und Fixierung des Wasserstoffs verbessert.

Zur Leistungsbeschreibung wurden der Brennstoffzellenbetrieb an sich, die Zyklusleistung und Haltbarkeit über mehrere Zyklen von je sechs Schritten getestet. Zuerst wurde die HSP-Folie für zwei Stunden mit Wasserstoff beladen. Darauf folgten eine Stickstoffgasspülung, um den überschüssigen Wasserstoff von der Anode zu entfernen. Nach dem Erhitzen der Zelle auf 80°C, wurde der Wasserstoff aus der HSP-Folie freigestzt. Zusammen mit dem der Kathodenseite zugeführten Sauerstoff erzeugte die Brennstoffzelle konstanten elektrischen Strom.

Die Forschergruppe zeigte, daß die HSP-Folie in 20, 30, 60 bzw. 360 Minuten respektive 20%, 33%, 51% oder 96% des gesamten fixierten Wasserstoffgases freisetzte. Die Temperatur betrug 80°C in Gegenwart des Iridiumkatalysators. Der Iridiumkatalysator konnte auch bis zu 58 Mol-% Wasserstoff absorbieren, was jedoch erheblich niedriger war als der im HSP gespeicherte Wasserstoff. Die maximale Betriebszeit betrug ca. 10,2 s / mgHSP (ca. 509 s für 50 mg HSP) bei einer konstanten Stromdichte von 1 mA / cm2. Die RCFCs erreichten eine Zyklisierbarkeit von mindestens 50 Zyklen. Darüber hinaus erwies sich die Verwendung einer gasundurchlässigen sulfonierten Polyphenylenmembran (SPP-QP, eine weitere PEM) als gute Strategie zur Verlängerung der Operationszeit der RCFC.

Zu den vorteilhaften Merkmalen des beschriebenen RCFC-Systems gehören seine verbessere Sicherheit, seine einfachere Handhabung und sein geringeres Gewicht. Diese Merkmale eignen sich beispielsweise perfekt für mobile Anwendungen in Brennstoffzellenfahrzeugen. Um wirtschaftlich einsetzbar zu sein, müssen jedoch die Wasserstoffspeicherkapazität und -kinetik (H2-Freisetzungs- / Fixierungsreaktionen) sowie die Katalysatorstabilität des RCFC-Systems weiter verbessert werden.

(Miroslava Varnicic, 2020)

Veröffentlicht am

Umgekehrte Elektrodialyse mit Nafion™-Membranen erzeugt erneuerbare Energie

Um dem weltweiten Bedarf an sauberen Energiequellen gerecht zu werden, stößt die durch umgekehrte Elektrodialyse (UED) gewonnene Energie mit Salzgehaltsgradienten in den letzten Jahren auf großes Interesse. Darüber hinaus wird Solelösung aus der Meerwasserentsalzung derzeit als Abfall betrachtet. Dank seines hohen Salzgehalts kann es jedoch als wertvolle Ressource für die UED genutzt werden. Die UED ist eine technische Anpassung der osmotischen Energieproduktion der Natur, bei der Ionen über die Zellmembran fließen, um die universelle biologische Währung ATP zu produzieren. Diese Energie wird auch durch die UED-Technologie gewonnen.

Mehr denn je besteht Bedarf an nachhaltigen und umweltfreundlichen technologischen Lösungen, um mit der ständig wachsenden Nachfrage nach sauberem Wasser und sauberer Energie Schritt zu halten. Die traditionelle lineare Art der Energieproduktion ist nicht nachhaltig und der neue Ansatz der Kreislaufwirtschaft hat einen Platz gefunden, an dem Abfälle als wertvolle Ressource für einen anderen Prozess betrachtet werden können. In dieser Hinsicht ist die umgekehrte Elektrodialyse eine vielversprechende elektromembranbasierte Technologie zur Erzeugung von Strom aus konzentrierten Lösungen durch Ernte der freien Gibbs-Energie zum Mischen der Lösungen mit unterschiedlichem Salzgehalt. Insbesondere in Entsalzungsanlagen hergestellte Solelösungen, die derzeit als Abfall betrachtet werden, können als konzentrierte Ströme im RED-Stapel verwendet werden.

Avci et al. der Universität von Kalabrien haben kürzlich ihre Lösung für die Entsorgung von Sole mit UED-Stack veröffentlicht. Sie haben erkannt, dass zur Maximierung der erzeugten Leistung die hohe Permselektivität und Ionenleitfähigkeit von Membrankomponenten in UED wesentlich sind. Obwohl Nafion™-Membranen zu den bekanntesten kommerziellen Kationenaustauschmembranlösungen für elektrochemische Anwendungen gehören, wurden keine Untersuchungen zur Verwendung für RED-Prozesse durchgeführt. Dies war der erste gemeldete UED-Stapel mit Nafion™-Membranen.

Eine typische UED-Einheit ähnelt einer Elektrodialyseeinheit (ED), bei der es sich um eine kommerzialisierte Technologie handelt. ED verwendet eine Beschickungslösung und elektrische Energie, während Konzentrat und Verdünnung getrennt erzeugt werden. Im Gegensatz dazu verwendet UED konzentrierte und verdünnte Lösungen, die kontrolliert miteinander gemischt werden, um spontan elektrische Energie zu erzeugen. In einem UED-Stapel wiederholen sich UED-Zellen, die aus alternierenden Kationen- und Anionenaustauschermembranen bestehen, die für Anionen und Kationen selektiv sind. Der Salzgradient über jeder Ionenaustauschermembran erzeugt eine Spannungsdifferenz, die die treibende Kraft für den Prozess ist. Die Ionenaustauschermembranen sind eine der wichtigsten Komponenten eines UED-Stapels. Die Leistung von Nafion™-Membranen (Nafion™ 117 und Nafion™ 115) wurde unter Bedingungen eines hohen Salzgehaltsgradienten für die mögliche Anwendung in UED bewertet. Um die natürlichen Umgebungen des UED-Betriebs zu simulieren, wurden NaCl-Lösung sowie Mehrkomponenten-NaCl + MgCl2 getestet.

Die Bruttoleistungsdichte unter hohem Salzgehaltsgradienten und die Wirkung von Mg2+ auf die Effizienz bei der Energieumwandlung wurden in Einzelzellen-UED unter Verwendung von Nafion™ 117, Nafion™ 115, CMX und Fuji-CEM-80050 als Kationenaustauschermembranen bewertet. Zwei kommerzielle Kationenaustauschermembranen – CMX und Fuji-CEM 80050, die häufig für UED-Anwendungen verwendet werden, haben als Vergleich gedient.

Die Ergebnisse zeigen, dass unter der Bedingung von 0,5 M / 4,0 M NaCl-Lösungen das höchste Pd,max unter Verwendung einer Nafion™ -Membran erreicht wurde. Dieses Ergebnis wird auf ihre hervorragende Permselektivität im Vergleich zu anderen CEMs zurückgeführt. In Gegenwart von Mg2+ -Ionen wurde Pd,max eine Reduktion von 17 und 20% für Nafion™ 115 bzw. Nafion™ 117 aufgezeichnet. Beide Membranen behielten ihren geringen Widerstand bei; Unter dieser Bedingung wurde jedoch ein Verlust an Permselektivität gemessen. Es wurde jedoch berichtet, dass Nafion™ -Membranen andere kommerzielle Membranen wie CMX und Fuji-CEM-80050 für die UED-Anwendung übertrafen.

(Mima Varničić, 2020, photo: Wikipedia)

Veröffentlicht am

Abholzungen in der EU haben stark zugenommen

Wälder sind für unsere Gesellschaft von entscheidender Bedeutung. In der EU machen Wälder etwa 38% der gesamten Landfläche aus. Sie sind wichtige Kohlenstoffsenken (sie eliminieren rund 10% der EU-Treibhausgase), und die Bemühungen sie zu erhalten, sind ein Kernbestandteil der EU-Klimaziele. Die steigende Nachfrage nach Forstprodukten stellt jedoch die nachhaltige Waldbewirtschaftung vor Herausforderungen.

Laut einem Bericht kürzlich im renomierten Wissenschaftsmagazin Nature erschienenem Artikel, hat die abgeholzten Waldfläche  um 49% zugenommen und damit auch der Verlust an Biomass (69%). Dies ist auf großflächige Rodungen zurückzuführen, die die Kohlenstoffabsorptionskapazität des Kontinents verringert und den Klimawandel beschleunigt.

Die analysierte eine Reihe von sehr detaillierten Satellitendaten. Die Autoren des Berichts zeigen, daß die Abholzung hauptsaechlich auf der Iberian Halbinsel, dem Baltikum und Skandinavien stattfand. Die Abholzung von Waldflächen hat zwischen 2016 und 2018 demnach um 69% zugenommen. Satellitenbilder zeigen ferner, daß die durchschnittliche Flächengröße der Erntefläche in ganz Europa um 34 Prozent gestiegen ist, was potenzielle Auswirkungen auf die biologische Vielfalt, die Bodenerosion und die Wasserregulierung hat.

Das sich beschleunigende Entwaldung könnte die Strategie zur Bekämpfung des Klimawandels der Behörden vereiteln, die insbesondere darauf abzielt, die Wälder in den kommenden Jahren zu schützen, warnen die Experten in ihrer Studie. Aus diesem Grund stellt die zunehmende Nutzung von Wäldern eine Herausforderung dar, um das bestehende Gleichgewicht zwischen der Nachfrage nach Holz und der Notwendigkeit, diese Schlüsselökosysteme für die Umwelt zu erhalten, aufrechtzuerhalten. Typischerweise sind Industriezweige wie die Bioenergie oder die Papierindustrie die treibenden Kräfte hinter der Abholzung.

Die größte Beschleunigung der Abholzung wurde in Schweden und Finnland verzeichnet. In diesen beiden Ländern sind mehr als 50% des Anstiegs der Entwaldung in Europa zu verzeichnen. Als nächstes folgen Spanien, Polen, Frankreich, Lettland, Portugal und Estland, die zusammen sechs bis 30% des Anstiegs ausmachen, heißt es in der Studie.

Experten schlagen vor, bei Modellrechnungen die Abholzung und Kohlenstoffemissionen zu verknüpfen, bevor neue Klimaziele festgelegt werden. Der Anstieg der Waldernte ist das Ergebnis der jüngsten Ausweitung der Holzmärkte, wie ökonomischen Indikatoren für Forstwirtschaft, Holz-Bioenergie und internationalen Handel belegen. Wenn eine derart hohe Waldernte weiter anhält, könnte die EU-Vision einer waldbasierten Klimaschutzminderung nach 2020 beeinträchtigt werden, und die zusätzlichen Kohlenstoffverluste aus Wäldern würden zusätzliche Emissionsminderungen in anderen Sektoren erfordern, um Klimaneutralität zu erreichen.

Bei Frontis Energy halten wir die Konkurrenz zwischen Bioenergie und Kohlenstoffspeicherung für besonders schwierig, da beides Strategien zur Abmilderung der Erderwärmung sind.

(Foto: Picography / Pixabay)

Veröffentlicht am

Photokatalytische Synthese aus CO2

Um unsere Abhängigkeit von fossile Brennstoffen zu verringern, werden derzeit enorme Anstrengungen in Industrie und. In dieser Hinsicht erscheint Synthesegas eine elegante und billige Lösung für eine nachhaltige Energieentwicklung zu sein. Synthesegas ist das Gemisch aus Wasserstoff (H2) und Kohlenmonoxid (CO) als Hauptbestandteilen. Es stellt ein wichtiges chemisches Ausgangsmaterial dar, das häufig für industrielle Prozesse zur Erzeugung von Chemikalien und Kraftstoffen verwendet wird:

Nutzung von Synthese in verschiedenen Industriesektoren

Synthesegas kann aus Methan (CH4) in einer Reformierungsreaktion mit Wasser (H2O), Sauerstoff (O2) oder Kohlendioxid (CO2) hergestellt werden. Der als Methan-Trockenreformierung (MTR) bezeichnete Prozess kann mit Kohlendioxid kombiniert werden:

CH4 + CO2 → 2 H2 + 2 CO

Dies ist ein umweltfreundlicher Weg, der zwei Treibhausgase in ein wertvolles chemisches Ausgangsmaterial verwandelt.

Das MTR-Verfahren erfordert jedoch chemische Katalysatoren und hohe Temperaturen zwischen 700 und 1.000°C. Normalerweise kommt es zu Kohlenstoffablagerung und letztlich Katalysatordeaktivierung.

Einige Chemiker haben kürzlich gezeigt, daß Licht und nicht Wärme eine effektivere Lösung für diese energiehungrige Reaktion sein könnte.

Photokatalyse als Lösung

Eine Forschergreuppe der Rice University in Houston, hat zusammen mit Kollegen der Princeton University und der University of California lichtstimulierte Katalysatoren entwickelt, mit denen MTR-Reaktionen ohne Wärmeeintrag effizient betrieben werden können. Diese Arbeit wurde in der renommierten Zeitschrift Nature Energy veröffentlicht.

Die Forscher berichteten über einen hocheffizienten und kohlenstoffbeständigen plasmonischen Photokatalysator, der genau ein Ruthenium (Ru) -Atom pro 99 Kupfer (Cu) -Atome enthält. Das isolierte Einzelatom von Ru, das auf Cu-Antennen-Nanopartikeln erhalten wird, bietet eine hohe katalytische Aktivität für die MTR-Reaktion. Auf der anderen Seite ermöglichen Cu-Antennen eine starke Lichtadsorption unter Beleuchtung und bringen heiße Elektronen an die Rutheniumatome. Die Forscher schlugen vor, daß sowohl die Erzeugung heißer Ladungsträger als auch die Einzelatomstruktur für die hervorragende katalytische Leistung in Bezug auf Effizienz und kohlenstoffbeständigkeit wesentlich sind.

Das optimale Cu-Ru-Verhältnis wurde in Synthesereihen von CuxRuy-Katalysatoren mit unterschiedlichen Molverhältnissen von plasmonischem Metall (Cu) und katalytischem Metall (Ru) untersucht, wobei x, y der Atomanteil von Cu und Ru in Prozent sind. Insgesamt war Cu19,8Ru0,2 die vielversprechendste Zusammensetzung in Bezug auf Selektivität, Stabilität und Aktivität. Im Vergleich zu reinen Cu-Nanopartikeln zeigt das Cu19,8Ru0,2-Gemisch erhöhte photokatalytische Reaktionsgeschwindigkeiten (ca. 5,5-mal höher) und eine verbesserte Stabilität zeigten. Dabei wurde seine Leistung über einen Zeitraum von 20 Stunden beibehalten. Berechnungen zeigten, daß isolierte Ru-Atome auf Cu die Aktivierungsbarriere für den Methan-Dehydrierungsschritt im Vergleich zu reinem Cu senken, ohne die unerwünschte Kohlenstoffablagerung zu fördern.

Darüber hinaus wurde die Forschung durch verschiedene Methoden (CO-DRIFTS mit DFT) unterstützt, um Einzelatom-Ru-Strukturen auf Cu-Nanopartikeln in Cu19,9Ru0,1 und Cu19,8Ru0,2 Zusammensetzungen zu entschlüsseln und nachzuweisen.

Der Vergleich zwischen thermokatalytischer und photokatalytischer Aktivität an derselben Oberfläche für MTR wurde ebenfalls angestellt. Die thermokatalytische Reaktionsgeschwindigkeit bei 726ºC (ca. 60 mol CH4 / g / s) war geringer als 25% der photokatalytischen Reaktionsgeschwindigkeit unter Weißlichtbeleuchtung ohne äußere Wärme (etwa 275 umol CH4 / g / s). Diese Steigerung der Aktivität wird auf den durch heiße Träger erzeugten Mechanismus zurückgeführt, der im photokatalytischen MTR vorherrscht. Die Rolle des heißen Trägers ist eine Erhöhung der C−H-Aktivierungsraten auf Ru sowie eine verbesserte H2-Desorption.

Die Wissenschaftler berichteten auch, daß der Katalysator eine Umsatzrate von 34 mol H2 pro mol Ru pro Sekunde und eine photokatalytische Stabilität von 50 h unter Weißlichtbeleuchtung (19,2 W / cm2) ohne externe Wärme erreichte.

Da die synthetisierten Photokatalysatoren hauptsächlich auf Cu basieren, das ein reichlich vorhandenes Element ist, bietet dieser Ansatz einen vielversprechenden, nachhaltigen Katalysator, der bei niedrigen Temperaturen für MTR arbeitet. Dies ermöglicht eine billigere Synthesegasproduktion mit höheren Raten und bringt uns einem sauber brennenden Kohlenstoffbrennstoff näher.

(Photo: Wikipedia)

Veröffentlicht am

Hydrophile Membranen mit schnellem und selektivem Ionentransport

Neben den bekannten Nafion™-Membranen, die derzeit das wohl beste Preis-Leistungsverhältnis bei zahlreichen elektrochemischen Zellen (Protonenaustauschbrennstoffzellen, Methanolbrennstoffzellen, Elektrolysezellen usw.) darstellen, wächst mit der Diversifizierung unserer Energieressourcen auch Nachfrage nach effizienten und selektiven Ionenaustauschmembranen für Energiespeicher wie Flußbatterien.

Eine Sumitomo Flußbatterie zur Energiespeicherung einer Solaranlage. (Foto: Sumitomo Electric Co.)

Flußbatterien – der Durchbruch bei der Energiespeicherung

Die hohe Nachfrage nach zuverlässigen und kostengünstigen Energiespeichersystemen spiegelt sich in der zunehmenden Vielfalt der Technologien zur Energiespeicherung wider. Einer der vielversprechendsten Kandidaten unter den verschiedenen elektrochemischen Speichersystemen sind Flußbatterien. Sie könnten die Anforderungen an Energiespeicher in großem Maßstab erfüllen und sich durch hohe Effizienz, niedrige Skalierungskosten, hohe Lade- / Entladezyklenzahl sowie unabhängige Energiespeicher- und Stromerzeugungskapazitäten auszeichnen.

Da diese Technologie noch jung ist, liegt derzeit der Fokus auf kommerziell und wirtschaftlich tragfähigen Systeme, insbesondere auf der:

  • Verbesserung der Kernkomponenten, z.B. Membranen mit besonderen Eigenschaften,
  • Verbesserung der Energieeffizienz
  • Reduzierung des Gesamtkostensystems.

Erfüllt Anforderungen an Flußbatterien

Zwei Forschergruppen aus Großbritannien, eine vom Imperial College und die andere von der University of Cambridge, verfolgten einen neuen Ansatz, um die nächste Generation mikroporöser Membranmaterialien für die Flußbatterien zu entwickeln. Sie haben ihre Daten kürzlich in der bekannten Zeitschrift Nature Materials veröffentlicht. Gut definierte enge mikroporöse Kanäle ermöglichen zusammen mit der hydrophilen Funktionalität der Membranen einen schnellen inorganischen Ionentransport und eine hohe Selektivität für kleine organische Moleküle. Die neue Membranarchitektur ist besonders wertvoll für wässrige organische Flußbatterien, die eine hohe Energieeffizienz und Kapazitätserhaltung ermöglichen. Wichtig ist, daß die Membranen unter Verwendung der Rollpresstechnologie und eines kostengünstigen mesoporösen Polyacrylnitril-Trägers hergestellt wurden. Dies könnte die Membranen billig in der Herstellung machen.

Wie die Autoren berichteten, besteht die Herausforderung für die Flußbatterien der neuen Generation in der Entwicklung kostengünstiger Polymermembranen auf Kohlenwasserstoffbasis, die eine präzise Selektivität zwischen Ionen und organischen redoxaktiven Molekülen aufweisen. Darüber hinaus hängt der Ionentransport in diesen Membranen von der Bildung der miteinander verbundenen Wasserkanäle über die Mikrophasentrennung ab, was auf molekularer Ebene als komplexer und schwer zu kontrollierender Prozess angesehen wird.

Das neue Synthesekonzept ionenselektiver Membranen basiert auf hydrophilen Polymeren mit intrinsischer Mikroporosität (PIMs), die einen schnellen Ionentransport und eine hohe molekulare Selektivität ermöglichen. Die strukturelle Vielfalt von PIMs kann durch Monomerauswahl, Polymerisationsreaktion und nachsynthetische Modifikation gesteuert werden, wodurch diese Membranen für Flußbatterien weiter optimiert werden.

Zwei Arten von hydrophilem PIM wurden entwickelt und getestet: PIMs, die von Tröger-Basen abgeleitet sind, und PIMs auf Dibenzodioxin-Basis mit hydrophilen und ionisierbaren Amidoximgruppen.

Die Autoren bezeichnen ihren Ansatz als innovativ, weil:

  1. PIMs verwendet wurden, um starre und verzerrte Polymerketten zu erhalten, die zu Hohlräumen in mikroporösen Membranen im Subnanometerbereich führen;
  2. Hydrophiler funktionelle Gruppen eingeführt wurden, die miteinander verbundene Wasserkanäle bilden, um die Hydrophilie und Ionenleitfähigkeit zu optimieren;
  3. Zur Verarbeitung eine Lösung verwendet wurde, dei die Membranherstellung auf Nanometerstärke erlaubt. Dies reduziert den Ionentransportwiderstand und die Membranproduktionskosten weiter.

Die Ionenleitfähigkeit wurde durch experimentelle Echtzeitbeobachtungen der Wasser- und Ionenaufnahme bewertet. Die Ergebnisse legen nahe, dass die Wasseradsorption in den eingeschlossenen dreidimensionalen miteinander verbundenen Mikroporen zur Bildung wasserunterstützter Ionenkanäle führt. Diese ermöglichen einen schnellen Transport von Wasser und Ionen.

Der selektive ionische und molekulare Transport in PIM-Membranen wurde unter Verwendung konzentrationsgesteuerter Dialysediffusionstests analysiert. Es wurde bestätigt, daß das neue Design von Membranen große redoxaktive Moleküle effektiv blockiert und gleichzeitig einen schnellen Ionentransport ermöglicht, der für den Betrieb organischer RFBs von entscheidender Bedeutung ist.

Darüber hinaus wurden chemische Langzeitstabilität, gute elektrochemisch und  thermische Stabilität sowie gute mechanische Festigkeit der hydrophilen PIM-Membranen nachgewiesen.

Schließlich wurde berichtet, daß die Leistungs- und Stabilitätstests von Flußbatterien auf der Basis der neuen Membranen mit denen Nafion ™ -basis vergleichbar sind. Langzeitests werden zeigen, wie gut diese Membranen sich im Alltag bewähren.

(Mima Varničić, 2020, Foto: Wikipedia)